1. Οξειδοαναγωγικές αντιδράσεις στα φυσικά υδατικά συστήματα

Σχετικά έγγραφα
1. Οξειδοαναγωγικές αντιδράσεις στα φυσικά υδατικά συστήματα

ΚΕΦΑΛΑΙΟ 3( ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ!

ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ

ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙ ΡΑΣΕΙΣ ΟΞΕΙ ΩΣΗΣ - ΑΝΑΓΩΓΗΣ

2. Βασικές αρχές-α. Χημικές ισορροπίες Αντιδράσεις οξέων βάσεων Οξειδοαναγωγικές διεργασίες

3. Βασικές αρχές-b Σύμπλοκα Κινητική αντιδράσεων μεταλλικών συμπλόκων Σύμπλοκα μεταλλικών ιόντων στα φυσικά ύδατα

Περιβαλλοντική Γεωχημεία

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚEΣ ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Αριάδνη Αργυράκη

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΟΓΚΟΜΕΤΡΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ετερογενεις Διεργασίες: Αλληλεπιδράσεις Μεταξύ Φάσεων στα Φυσικά Ύδατα

7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ

ΔΙΑΓΡΑΜΜΑΤΑ LATIMER Επ. Καθηγητής Γερ. Μαλανδρίνος

Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) ( ) ΘΕΜΑ Α Α1.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ.

Διάβρωση και Προστασία. Εαρινό εξάμηνο Ακ. Έτους Μάθημα 4ο

ΠΑΡΑΓΟΝΤΕΣ ΕΛΕΓΧΟΥ ΤΗΣ ΔΙΑΛΥΤΟΤΗΤΑΣ ΑΝΟΡΓΑΝΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΙΟΝΤΩΝ ΣΕ ΥΔΑΤΙΝΑ ΣΥΣΤΗΜΑΤΑ. Ε. Κελεπερτζής

ΧΗΜΙΚΕΣ ΑΝΤΙ ΡΑΣΕΙΣ - ΧΗΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής

13. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ

Τύποι Χημικών αντιδράσεων

Υδροχημεία. Ενότητα 10: Οξείδωση - Αναγωγή. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας

1 η Σειρά προβλημάτων στο μάθημα Εισαγωγική Χημεία

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

Άσκηση. Ισχυρό οξύ: Η 2 SeO 4 Ασθενές οξύ: (CH 3 ) 2 CHCOOH Ισχυρή βάση: KOH Ασθενής βάση: (CH 3 ) 2 CHNH 2

Πολυτεχνείο Κρήτης Σχολή Μηχανικών Περιβάλλοντος. Υδατική Χηµεία. Σηµειώσεις

Διάβρωση και Προστασία. Εαρινό εξάμηνο Ακ. Έτους Μάθημα 3ο

(είναι οι αντιδράσεις στις οποίες δεν μεταβάλλεται ο αριθμός οξείδωσης σε κανένα από τα στοιχεία που συμμετέχουν)

Περιοριστικό αντιδρών

Ανόργανη Χημεία. Τμήμα Τεχνολογίας Τροφίμων. Ενότητα 2 η : Αντιδράσεις σε Υδατικά Διαλύματα. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής

Πολυτεχνείο Κρήτης Τµήµα Μηχανικών Περιβάλλοντος ΥΔΑΤΙΚΗ ΧΗΜΕΙΑ. Σηµειώσεις

Περιεχόμενα. Σύστημα υπόγειου νερού. Αντιδράσεις υδρόλυσης πυριτικών ορυκτών. Ρύθμιση ph

Πολυτεχνείο Κρήτης Σχολή Μηχανικών Περιβάλλοντος. Σηµειώσεις

Αντιδράσεις σε υδατικά διαλύματα. Κατερίνα Σάλτα 2ο Πρότυπο Πειραματικό Γενικό Λύκειο Αθηνών 2014

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΟΓΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη Β τάξη Λυκείου ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Θέμα Α. Ονοματεπώνυμο: Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης. Αξιολόγηση :

Διαγώνισμα Χημείας Α Λυκείου Οξέα Βάσεις Αλατα, και Χημικές αντιδράσεις. Θέμα 1 ο...

Βουκλής Χ. Αλέξανδρος Αριθμός οξείδωσης, χημικοί τύποι, γραφή - ονοματολογία χημικών ενώσεων Παρουσίαση σε μορφή ερωτωαπαντήσεων

ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΧΗΜΕΙΑ ΑΛΓΟΡΙΘΜΟΣ

ΑΝΟΡΓΑΝΟΙ ΡΥΠΟΙ ΜΗΧΑΝΙΣΜΟΙ ΔΕΣΜΕΥΣΗΣ ΚΥΡΙΟΙ ΜΗΧΑΝΙΣΜΟΙ ΔΕΣΜΕΥΣΗΣ ΣΤΟ ΕΔΑΦΟΣ

Ονοματεπώνυμο: Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση. Αξιολόγηση :

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

Χηµικές Εξισώσεις Οξειδοαναγωγικών Αντιδράσεων

ΚΕΦΑΛΑΙΟ 2 ΟΙ ΒΑΣΕΙΣ ΤΗΣ ΥΔΑΤΙΚΗΣ ΧΗΜΕΙΑΣ

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II

ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

Αποκατάσταση Ρυπασμένων Εδαφών

Ενεργότητα και συντελεστές ενεργότητας- Οξέα- Οι σταθερές ισορροπίας. Εισαγωγική Χημεία

Συνοπτική Θεωρία Χημείας Α Λυκείου. Χημικές αντιδράσεις. Πολύπλοκες

Κανόνες διαλυτότητας για ιοντικές ενώσεις

ΟΞΕΑ, ΒΑΣΕΙΣ ΚΑΙ ΑΛΑΤΑ. ΜΑΘΗΜΑ 1 o : Γενικά για τα οξέα- Ιδιότητες - είκτες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

Όνομα :... Ημερομηνία:... /... /...

Ερωτήσεις πολλαπλης επιλογής στην οξειδοαναγωγή (1ο κεφάλαιο Γ Θετική 2015)

Φροντιστήρια ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο

Κεφάλαιο 3 Χημικές Αντιδράσεις

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ

Γεωχημεία. Ενότητα 2: Γεωχημικές διεργασίες στην επιφάνεια της γης. Αριάδνη Αργυράκη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

Διαγώνισμα Χημείας Α Λυκείου Αριθμοί Οξείδωσης & Χημικές Αντιδράσεις 29/03/2015. Στις ερωτήσεις 1.1 έως 1.10 επιλέξτε τη σωστή απάντηση:

ΓΕΩΧΗΜΕΙΑ ΥΔΑΤΙΚΩΝ ΔΙΑΛΥΜΑΤΩΝ ΑΡΙΑ ΝΗ ΑΡΓΥΡΑΚΗ

Ανάλυση Τροφίμων. Ενότητα 10: Εφαρμογές υδατική ισορροπίας Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ. Τμήμα Τεχνολογίας Τροφίμων. Ακαδημαϊκό Έτος

ÖñïíôéóôÞñéï Ì.Å ÅÐÉËÏÃÇ ÊÁËÁÌÁÔÁ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1

Αντιδράσεις οξείδωσης - αναγωγής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ.

Βαθμός ιοντισμού. Για ισχυρούς ηλεκτρολύτες ισχύει α = 1. Για ασθενής ηλεκτρολύτες ισχύει 0 < α < 1.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ

Κατηγορίες οξειδοαναγωγικών αντιδράσεων.

ΟΞΕΙΔΟΑΝΑΓΩΓΗ. γ) Cl2 (ομοιοπολική ένωση) To μόριο του HCl έχει ηλεκτρονιακό τύπο: H( C

ΟΝΟΜΑΣΙΑ F - HF Υδροφθόριο S 2- H 2 S Υδρόθειο Cl - HCl Υδροχλώριο OH - H 2 O Οξείδιο του Υδρογόνου (Νερό) NO 3 HNO 3. Νιτρικό οξύ SO 3 H 2 SO 3

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

Ονοματεπώνυμο: Χημεία Γ Λυκείου Υλη: Χημική Κινητική Χημική Ισορροπία Ιοντισμός (K a K b ) Επιμέλεια διαγωνίσματος: Τσικριτζή Αθανασία Αξιολόγηση :

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΚΕΦΑΛΑΙΟ 4 ΑΛΛΗΛΕΠΙ ΡΑΣΕΙΣ ΜΕΤΑΞΥ ΦΑΣΕΩΝ ΣΤΑ ΦΥΣΙΚΑ Υ ΑΤΑ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2014 Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ, ΛΕΜΕΣΟΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2005 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ

Η ηλεκτροχηµεία µελετά τις χηµικές µεταβολές που προκαλούνται από ηλεκτρικό ρεύµα ή την παραγωγή ηλεκτρισµού από χηµικές αντιδράσεις.

Αντιδράσεις οξειδοαναγωγής

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.4 εξίσωση του Nernst. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Κεφάλαιο 10 Βασικές Αρχές Οξειδοαναγωγής

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Ημερομηνία: Σάββατο 5 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ & Δ ΕΣΠΕΡΙΝΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: ΔΙΑΡΚΕΙΑ: 3 ώρες

Ερωτήσεις θεωρίας Τύπου Α

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2011 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. δ. 39 φορές μεγαλύτερη από το της μάζας του ατόμου του 12 C 12 Μονάδες 5

5. Να βρείτε τον ατομικό αριθμό του 2ου μέλους της ομάδας των αλογόνων και να γράψετε την ηλεκτρονιακή δομή του.

ΘΕΜΑ Α Για τις προτάσεις A1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή.

ΙΑΓΩΝΙΣΜΑ 1 Ο ( 1 Ο ΚΕΦΑΛΑΙΟ)

ΕΠΙΤΡΕΠΕΤΑΙ Η ΧΡΗΣΗ Scientific calculator

Ημερομηνία: Τρίτη 18 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ 1 0 Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις επόμενες ερωτήσεις:

ΜΟΡΦΕΣ ΕΜΦΑΝΙΣΗΣ ΙΧΝΟΣΤΟΙΧΕΙΩΝ ΣΕ ΕΔΑΦΗ ΜΕΘΟΔΟΙ ΔΙΑΛΥΤΟΠΟΙΗΣΗΣ. Ε. Κελεπερτζής

Transcript:

1. Οξειδοαναγωγικές αντιδράσεις στα φυσικά υδατικά συστήματα Το ph ενός φυσικού υδατικού συστήματος εξαρτάται από τις συγκεντρώσεις όλων των διαλυμένων ουσιών. Οι ουσίες αυτές διαμορφώνουν και το οξειδοαναγωγικό δυναμικό (Ε, pe) στα υδατικά συστήματα Το κάθε σώμα νερού είναι «οξειδοαναγωγικά» στρωματοποιημένο: Οξειδωτικό Περιβάλλον Εύρη τιμών pe & E φυσικών υδατικών συστημάτων Αναγωγικό Περιβάλλον

Διαπιστωμένες οξειδοαναγωγικές διεργασίες του Fe στα φυσικά ύδατα

Διαγράμματα pe-ph (Pourbaix) Περιοχές σταθερότητας και συνοριακές γραμμές συνύπαρξης διαφόρων μορφών των χημικών ενώσεων στο περιβάλλον Διάγραμμα pe ph του ζεύγους Fe (II) /Fe (III) (max συγκ. 10-5 Μ) Ι) ΙΙ) ΙΙΙ) ΙV) V) Fe 3+ + e! " # K sp = Fe2+ $ = 8.0!H " + # 2 1012 $ K sp' = Fe3+ - Fe [ ] [ H + ] = 3 9.1 103 2+ pe = +13.2 + 2+ Fe( OH ) 2( s ) + 2H Fe + 2H 2O (K sp = [Fe 2+ ] [OH - ] 2 ) + 3+ Fe( OH ) 3( s ) + 3H Fe + 3H 2O (K sp = [Fe 3+ ] [OH - ] 3 )

Κάνουμε την παραδοχή ότι οι μορφές του Fe όπως Fe(OH) 2+, Fe(OH) 2+, FeCO 3 & FeS, λόγω της χαμηλής συγκέντρωσής τους στο περιβάλλον, δεν λαμβάνονται υπ όψιν στους υπολογισμούς. Κατασκευή διαγράµµατος pe-ph: Οριακές καταστάσεις Ι) Τα οξειδωτικά και αναγωγικά όρια του νερού pe = 20.75-pH pe = -ph υψηλές τιμές pe χαμηλές τιμές pe ΙΙ) Ζεύγος Fe 3+ /Fe 2+ ΙΙ.1) Σε ph<3 ο Fe 3+ συνυπάρχει σε ισορροπία με τον Fe 2+ Fe 3+ +e - Fe 2+ E = 0.77 V, pe = 13.2 Όταν [Fe 3+ ] = [Fe 2+ ] (οριακή κατάσταση)

pe =13.2 + log Fe3+ [ ] [ Fe 2+ ] =13.2 II.2 Fe 3+ /Fe(OH) 3 pe & ph Þ Fe(OH) 3 καθιζάνει από το διάλυμα του Fe 3+. Η τιμή του ph που αρχίζει η καθίζηση του Fe(OH) 3 εξαρτάται από την [Fe 3+ ] [Fe 3+ ] max = 10-5 M [ K ' sp = Fe3+ ] H + [ ] 3 H + [ ] 3 = [ Fe3+ ] K ' sp = 1.00 10 5 9.1 10 3 ph = 2,99 H καθίζηση αρχίζει στο ph=2,99.

II.3 Fe 2+ /Fe(OH) 2 [Fe 2+ ]=1,00 10-5 Μ στην οριακή περίπτωση όπου σε διάλυμα Fe 2+ καθιζάνει το Fe(OH) 2 [ H + ] 2 = [ 2+ Fe ] Ksp = 1 10 5 ph = 8.95 12 8.0 10 II.4 Fe n+ /Fe(OH) x Σε ένα ευρύ φάσμα τιμών pe-ph: Fe 2+ είναι το κυρίως διαλυτοποιημένο ιόν με τον Fe 3+ ως Fe(OH) 3. Η διαχωριστική γραμμή μεταξύ τους εξαρτάται από το pe και το ph: [ ] K ' sp = Fe3+ [ H + ] [ 3+ ] Fe 2+ [ ] 3, pe =13.2 + log Fe pe =13.2 + log K ' [ sp H + ] 3 [ Fe 2+ ] pe=13.2 + log(9,1 10 3 ) log(1,0 10-5 ) + 3log[H + ] pe= 22.2-3pH

Η διαχωριστική γραμμή μεταξύ των στερεών φάσεων Fe(OH) 2 Fe(OH) 3 είναι συνάρτηση του pe και ph αλλά όχι του [Fe n+ ] διαλυτός. και [ 3+ ] Fe 2+ [ K sp = Fe2+ ] [ H + ],K [ ' 2 sp = Fe 3+ ] pe =13,2 + log Fe [ H + ] 3 [ ] & pe =13,2 + log K ' [ sp H + ] 3 K [ sp H + ] 2 pe =13,2 + log 9,1 103 + log[ + H ] pe = 4,3 ph 12 8,0 10

Στο διάγραμμα pe ph έχουμε κατά περίπτωση τις εξής εξισώσεις: 1 Η 2 Ο/Ο 2 pe = 20,75 - ph 2 Η 2 /Η 2 Ο pe = - ph 3 Fe 3+ /Fe 2+ pe = 13,2 4 Fe 3+ /Fe(OH) 3 ph = 2,99 5 Fe 2+ /Fe(OH) 2 ph = 8,95 6 Fe 2+ /Fe(OH) 3 pe = 22,2 3 ph 7 Fe(OH) 2 /Fe(OH) 3 pe = 4,3 - ph

Fe 3+ O 2 pe = 20,75 - ph ph = 2,99 Η 2 Ο/Ο 2 pe = 13,2 Fe 3+ /Fe 2+ Fe 3+ /Fe(OH) 3 pe Fe 2+ pe = 22,2 3 ph ph = 8,95 Fe(OH) 3 Fe 2+ /Fe(OH) 3 Fe(OH) 2 /Fe(OH) 3 pe = 4,3 - ph Fe 2+ /Fe(OH) 2 pe = - ph Η 2 /Η 2 Ο H 2 Fe(OH) 2 ph

a + & a - H e Fe 3+ O 2 pe Fe 2+ Fe(OH) 3 a + & a - H e a H + &a e - Φυσικά Ύδατα H 2 Fe(OH) 2 a H + &a e - 5 9 ph

Ο μεταλλικός σίδηρος μπορεί να υπάρξει στα φυσικά ύδατα; Fe 2+ + 2 e - Fe pe o = -7,45 pe= -7,45 + 0,5 log[fe 2+ ] αν [Fe 2+ ]=1,0 x 10-5 M pe= -7,45 0,5 log 1,0 x 10-5 = -9,95 pe < pe H 2 O (pe=-7.0).

Fe 3+ O 2 pe Fe 2+ Fe(OH) 3 Fe 2+ + 2 e - Fe pe= -9,95 pε= -7 H 2 H 2 O (pe=-7,0) Fe(OH) 2 ph

Oι αντιδράσεις Ο/Α επηρεάζουν την διαλυτοποίηση (κινητικότητα) των στοιχείων που βρίσκονται σε στερεά: Fe, Mn, Cr, N, S ü Το Ο 2 είναι ο κύριος e-δέκτης. ü Όταν λείπει το Ο 2 αναπληρώνεται από: Fe ΙΙΙ σε Fe ΙΙ, Mn ΙΙΙ ή ΙV σε Mn ΙΙ, SΟ 4 2- σε S, κλπ. Το Διάγραμμα ph pe για το νερό Η πραγματική αναγωγή των υδατικών ειδών περιορίζεται από τα Ε [Ο/Α] του Η 2 Ο. Στα φυσικά νερά, Ε = +0,5 έως -0,5 V E = 1,23-0,059 ph E = -0,059 ph Με διάφορες προσθήκες ουσιών το νερό μπορεί να έχει τιμές pe πιο αρνητικές ή πιο θετικές από το αναγωγικό ή το οξειδωτικό του όριο.

Παράδειγμα: Προσθήκη του χλωρίου στο νερό για την αλλαγή του pe Ισοροπίες οξειδοαναγωγής των [Cl 2 & HOCl (OCl - )]/[Cl - ] κατά την διαδικασία της απολύμανσης του νερού με χλώριο (υποχλωριώδες οξύ ή άλατά του). Σε ένα υδατικό διάλυμα στους 25 o C η [Cl] T (όλες οι μορφές του Cl): Cl T = 2[Cl (0) 2] (aq) + [HOCl (+Ι) ] + [OCl (+Ι)- ] + [Cl (-Ι)- ] ( 10-3 Μ) Μέσω θερμοδυναμικών δεδομένων υπολογίζουμε τις Κ των αντιδράσεων που συμβαίνουν κατά τη διαδικασία της απολύμανσης: (1) HClO + H + + e - ½ Cl 2(aq) + H 2 O log K = 26,9 & E Ho = 1,59 (2) ½ Cl 2(aq) + e - Cl - log K = 23,6 & E Ho = 1,40 (3) HClO ClO - + H + log K = -7,3

pε ο = 1/n log K Εξίσωση του Nernst: (για 1 e - mole logk=pe o ) HClO + H + + e - ½ Cl 2 (aq) + H 2 O (1) pe = 26,9 + log [HClO]/[ Cl 2 ] (aq) 1/2 - ph (1) ½ Cl 2(aq) + e - Cl - (2) pe = 23,6 + log ([ Cl 2 ] (aq) 1/2 /[Cl - ]) (2) Αναγωγή του HClO σε Cl - : (1) και (2) HClO + H + + 2e - Cl - + H 2 O K = [Cl - ]/([HClO].[H + ].[e] 2 ) log K = log ([Cl - ]/[HClO]) + log (1/[H + ]) + log (1/[e] 2 )

log K = log ([Cl - ]/[HClO]) + ph + 2 pe ½ log K = - ½ log ([HClO]/[Cl - ]) + ½ ph + pe pe = ½ log K + ½ log ([HClO]/[Cl - ]) - ½ ph pe = 25,25 + ½ log ([HClO]/[Cl - ]) - ½ ph (3)

Αναγωγή του ClO - σε Cl - : HClO + H + + 2 e - Cl - + Η 2 Ο ClO - + H + HClO ClO - + 2 H + + 2 e - Cl - + H 2 O K = [Cl - ]/[ ClO - ].[H + ] 2.[e - ] 2 log K = log ([Cl - ]/[ ClO - ]) log [H + ] 2 log [e - ] 2 ½ log K = ½ log ([Cl - ]/[ ClO - ]) + ph + pe pe = ½ log K + ½ log ([ClO - ]/[Cl - ]) - ph pe = 28,9 + ½ log ([ClO - ]/[Cl - ]) - ph (4)

Υποθέτουμε ότι η συνολική συγκέντρωση του χλωρίου είναι 0,04 Μ: Cl T = 2[Cl 2 ] (aq) + [HOCl] + [OCl - ] + [Cl - ] Χρησιμοποιούμε τις εξισώσεις (1), (2), (3) και (4) για να υπολογίσουμε τις συγκεντρώσεις των διαφόρων μορφών του Cl στις οριακές καταστάσεις. pe = 26,9 + log [HClO]/[ Cl 2 ] 1/2 (aq) - ph (1) pe = 23,6 + log ([ Cl 2 ] 1/2 (aq) /[Cl - ]) (2) pe = 25,25 + ½ log ([HClO]/[Cl - ]) - ½ ph (3) pe = 28,9 + ½ log ([ClO - ]/[Cl - ]) - ph (4)

Η συνολική συγκέντρωση του χλωρίου είναι: Cl T = 2[Cl 2 ] (aq) + [HOCl] + [OCl - ] + [Cl - ] = 0.04 Μ Ι) Cl 2(aq) /HOCl & Cl T = 2[Cl 2 ] (aq) + [HOCl] [HOCl] = 1/2 Cl T = 0.02 Μ & [Cl 2 ] (aq) = 1/4 Cl T = 0.01 Μ ΙΙ) Cl 2(aq) /Cl - & Cl T = 2[Cl 2 ] (aq) + [Cl - ] [Cl - ] = 1/2 Cl T = 0.02 Μ και [Cl 2 ] (aq) = 1/4 Cl T = 0.01 Μ ΙΙΙ) HOCl/OCl - & Cl T = [HOCl] + [OCl - ] (HClO ClO - + H + log K = -7,3) log ([HOCl]/[OCl - ]) + ph = 7,3

pe=26,9+log[hclo]/[ Cl 2 ] 1/2 (aq) -ph Cl 2 H 2 O pe=23,6+log ([ Cl 2 ] 1/2 (aq) /[Cl - ]) O 2 HOCl Cl - pe=25,25+½ log([hclo]/[cl - ])-½ ph OCl - pe=28,9+½log([clo - ]/[Cl - ])-ph pe pe = 20,75 - ph E H (V) H 2 H 2 O pe = - ph ph

Προσθήκη Cl 2 στο νερό μας δίνει HOCl και OCl - Το Cl 2 (aq) μόνο σε χαμηλά ph Cl 2(aq),HOCl,OCl - είναι θερμοδυναμικά ασταθή: Cl 2(aq) +H 2 O HOCl+H + +Cl - Το Cl 2 (aq)/hocl/ocl - ισχυρότερο οξειδωτικό από το Ο 2. Σε όλο το εύρος pe/ph των φυσικών υδάτων το Cl - είναι η σταθερότερη μορφή και δεν οξειδούται από το Ο 2

2. Κινητική της οξειδοαναγωγής στα φυσικά νερά Οι διεργασίες μεταφοράς των ηλεκτρονίων στο περιβάλλον είναι αργές. Οι αντιδράσεις οξειδοαναγωγής δεν συμβαίνουν χωρίς κατάλυση. Παράδειγμα: Η οξείδωση της οργανικής ύλης γίνεται δυνατή μέσω μικροοργανισμών: C 6 H 12 O 6 + 6 O 2 6 CO 2 + 6 H 2 O

Παράδειγμα μελέτης: Οξείδωση του Fe (II) σε Fe (III) από το O 2 Fe (II) + ¼ O 2 + 2 OH - + ½ H 2 O Fe(OH) 3(s) Mελέτη της κινητικής της αντίδρασης: Ρυθμιστικό (φυσικό) στο διάλυμα του Fe (II) : HCO 3- /CO 2 Φωσφορικά ή οξικά θα επηρέαζαν την αντίδραση. Στο διάλυμα εισάγουμε οξυγόνο ώστε να έχουμε μία μερική πίεση po 2 =0,2 atm. Διεξάγουμε το πείραμα σε θερμοκρασία 20 o C. Προσδιορίζουμε σε διάφορα ph τις συγκεντρώσεις του Fe (II).

Διάγραμμα log(συγκέντρωσης)/ph Η συνολική συγκέντρωση όλων των μορφών του Fe (III) : Fe (III) T = [Fe 3+ ] + [FeOH 2+ ] + [Fe(OH) 2+ ] + [Fe(OH) 4- ] Η συγκέντρωση του διαλυτού Fe (II) ορίζεται από τη διαλυτότητα του FeCO 3 : log [Fe 2+ ] = log K sp log [CO 3 2- ] -2-4 Log Conc. -6-8 -10

Πειραματικά αποτελέσματα: Κατασκευάζουμε διαγράμματα log ([Fe 2+ ] t /[Fe 2+ ] 0 ) = f (t) σε διάφορα ph: [Fe (II) ] T [Fe (II) ] 0 min

-d[fe (II) ]/dt = k o [Fe (II) ] -d(ln [Fe (II) ])/dt = k o Εχουμε μία κινητική «πρώτης τάξης»: -d(log [Fe (II) ])/dt. 2,3026 = -d(ln [Fe (II) ])/dt = k o & k o = k o /2,3026 Για διάφορες τιμές του ph παίρνουμε τις αντίστοιχες τιμές k o και κατασκευάζουμε ένα διάγραμμα:

Για κάθε αύξηση της τιμής του ph κατά μία μονάδα η ταχύτητα της αντίδρασης αυξάνεται 100 φορές

Η ταχύτητα είναι 2 ας τάξεως ως προς το Η + ([Η + ]) -2 ή ([ΟΗ - ]) 2 Ο νόμος της ταχύτητας της οξείδωσης του Fe (II) από το Ο 2 εκφράζεται: -d[fe (II) ]/dt = k [Fe (II) ].[OH - ] 2 po 2 k [M -2 atm -1 min -1 ] Tα [OH - ] 2 και po 2 αποτελούν τον παράγοντα περιβάλλοντος Ε -d[fe (II) ]/dt = k [Fe (II) ].Ε

3. Κατανομή χημικών μορφών των ουσιών στα φυσικά ύδατα: ΕΙΔΟΤΑΥΤΟΠΟΙΗΣΗ Η «χημική μορφή» των στοιχείων και των ενώσεων στα φυσικά ύδατα εξαρτάται από τις περιβαλλοντικές συνθήκες που επικρατούν σε αυτά. Η κατανομή τους εξαρτάται από: Ι) το ph, II) σύσταση των υδάτων συνολικά, III) τη Τ ο C, & το IV) Ε [Ο/Α]. Παράδειγμα: Δυνητικές Μορφές του P: H 2 PO 4-, HPO 4 2-, PO 4 3- Το κύριο είδος εξαρτάται από το ph & την ιοντική ισχύ του διαλύματος: γλυκά νερά, ph = 6 : H 2 PO 4 - θάλασσα, ph = 8 : HPO 4 2-

Το Ο/Α περιβάλλον: επιδρά σημαντικά στην κινητικότητα των μετάλλων: Fe (II) & Mn (II) είναι συνήθως διαλυτά σε ύδατα με ανεπάρκεια Ο 2. Οι οξειδωμένες μορφές τους όμως καταβυθίζονται. Παράδειγμα: Περιοχές σταθερότητας των αδιάλυτων οξειδίων του Μαγγανίου Διάγραμμα Pourbaix (E-pH) του Mn

Χημικές μορφές μετάλλων σε σχέση με το pe του συστήματος Μέταλλο Οξειδωτικές pe pe Συνθήκες Αναγωγικές Cd CdCO 3 CdS Cu Cu(OH) 2 CO 3 CuS Fe Fe 2 O 3 (H 2 O) FeS, FeS 2 Hg HgO HgS Συνθήκες Mn MnO 2 (H 2 O) MnS, MnCO 3 Ni Ni(OH) 2, NiCO 3 NiS Pb 2PbCO 3, Pb(OH) 2, PbCO 3 PbS Zn ZnCO 3, ZnSiO 3 ZnS

4. Μέτρηση του pe στα φυσικά ύδατα Ηλεκτρόδιο Υδρογόνου Ημι-αντίδραση αναγωγής: H + H 2(g) Ημι-αντίδραση οξείδωσης: H 2(g) H + ΔG o = -n.f.e h o F = σταθερά του Faraday n = αριθμός των ηλεκτρονίων E Ho = δυναμικό οξειδοαναγωγής E H = 2,3 (R.T/F). pe

½ H 2(g) H + + e - Fe 3+ + ½ H 2(g) Fe 2+ + H + ΔG = ΔG o + R T ln ([Fe 2+ ][H + ]/[Fe 3+ ].ph 2 1/2 ) (ph 2 =1, [H + ]=1) ΔG = ΔG o + R.T.ln ([Fe 2+ ]/[Fe 3+ ]) E H = E Ho + (R T/n F) ln([fe 3+ ]/[Fe 2+ ]) Yπό ιδανικές συνθήκες το δυναμικό οξειδοαναγωγής μπορεί να μετρηθεί με το ηλεκτρόδιο του υδρογόνου

Είναι πιό πρακτικό να μετράμε το E H με το ηλεκτρόδιο του καλομέλανος (calomel): Hg 2 Cl 2(s) + 2e - 2Hg (l) + 2Cl - Στα φυσικά νερά η μέτρηση του δυναμικού της οξειδοαναγωγής είναι δυνατή μόνον αν οι χημικές ουσίες οξειδωτικές ή αναγωγικές ανταλλάζουν ηλεκτρόνια με τα ηλεκτρόδια που χρησιμοποιούμε Pt, Au Χημικές ουσίες που βρίσκονται στα φυσικά ύδατα: O 2, N 2, NH 4+, SO 4 2-, CH 4 δεν έχουν την ικανότητα ανταλλαγής ηλεκτρονίων

Όρια του pe στα οποία οι μετρήσεις με ηλεκτρόδια μπορούν να είναι ακριβείς ή λανθασμένες O 2, N 2, NO 3-, SO 4 2- : Είναι σχετικά αδρανή ως προς τα ηλεκτρόδια. Fe(OH) 3(s), Fe 2+ : Αντιδρούν με τα ηλεκτρόδια.

Για να αποφύγουμε το πρόβλημα υπολογίζουμε ή μετράμε τις συγκεντρώσεις ουσιών όπως: O 2, Mn 2+, CO 2, HS -, NH 4+, SO 4 2-, CH 4 Γνωρίζοντας τις συγκεντρώσεις αυτές μπορούμε βασιζόμενοι στις εξισώσεις που μελετήσαμε να υπολογίσουμε το pe των φυσικών υδάτων.

1) Φυσικό νερό με ph=9.5 σε ισορροπία με την ατμόσφαιρα (po 2 =0.21 Atm) (pe 0 =20.78) 1 + - 1 b ) O2 + H + e H 2O pe 0 =20,78 4 2 pe = pe o + log[po 2 ] 1/4 [ H + ] pe = 20,78 + 1/4log[0.21] + log[h + ] pe = 20.78 0.17 9.5 = 11.11 2) Φυσικό νερό με ph=8 το οποίο περιέχει 10-5 M Mn 2+ σε ισορροπία με MnO 2 (s) (pe 0 =20.42) MnO 2 (s) + 4H + + 2e - Mn 2+ + 2H 2 O(l) pe 0 = 20.42 pe = pe o + 1/2log[H + ] 4 /[ Mn 2+ ] pe = 20.42 2pH 1/2log[10-5 ] pe = 20.42 16 + 2.5 = 6.92

3) Νερό λίμνης σε μεγάλο βάθος με τα εξής χαρακτηριστικά: [SO 4 2- ] = 10-3 M, [H 2 S] = 10-6 M, ph = 6 Το δυναμικό οξειδοαναγωγής μπορούμε να το υπολογίσουμε μέσω της χημικής ισορροπίας: SO 4 2- + 10 H + + 8 e - H 2 S (aq) + 4 H 2 O Όπου log K = 41,0 pe = 1/8 (41,0 10 ph - pso 2-4 + ph 2 S) και pe = -2 ή E H = -0,12 V

4) Υπολογισμός της [Fe 3+ ], του pe και του ph στο σημείο του διαγράμματος pe-ph οξειδο-αναγωγικών καταστάσεων του σιδήρου όπου: [Fe 2+ ]=10-5 M και Fe(OH) 2, Fe(OH) 3 βρίσκονται σε ισορροπία. Η οριακή γραμμή για την ισορροπία των Fe(OH) 2 /Fe(OH) 3 στο διάγραμμα pe-ph του Fe: pe = 4.3 - ph α + & α - H e Fe 3+ O 2 pe Fe 2+ Fe(OH) 3 α + & α - H e α H &α e + - Φυσικά Ύδατα H 2 Fe(OH) 2 α H &α e + - 5 9 ph

pe = 4.3 - ph + 2+ Fe( OH ) 2( s ) + 2H Fe + 2H 2O [ Ksp = Fe2+ ] [ H + ] = 2 8,0 1012 [ H + ] 2 = [ 2+ Fe ] Ksp = 1 10 5 ph = 8,95 12 8,0 10 pe = 4.3 ph = 4.3 8.95 = -4.65

H συγκέντρωση του διαλυμένου [Fe 3+ ]: Fe 3+ +e - Fe 2+, pe = 13.2! " # pe =13.2 + log Fe3+ $!Fe " 2+ # $ pe = -4.65=13.2 + log ([Fe 3+ ]/10-5 ) pe= -4.65=13.2 + log [Fe 3+ ] + 5 log [Fe 3+ ] = -22.9 [Fe 3+ ] = 1,25 10-23 (πολύ μικρή)

5. Σχηματισμός συμπλόκων στα φυσικά υδατικά συστήματα Οργανικοί Υποκαταστάτες M n+ Ανόργανοι υποκαταστάτες Fe 2+ >Al 3+ >Cu 2+ > Ni 2+ >Ca 2+ >Zn 2+ με Φουλβικά 0,2-0,6 mmol/g Fe με Χουμικά

Προσρόφηση μεταλλικών συμπλόκων και υποκαταστατών σε στερεές επιφάνειες Οι επιφάνειες ορυκτών (οξείδια, υδροξείδια του σιδήρου και αργιλλίου) διαιρούνται σε πολύ μικρά σωματίδια & έχουν μια περίσσεια επιφανειακής ενέργειας που επιτρέπει την προσρόφηση χημικών ουσιών σε διάφορες μορφές. A. Προσρόφηση υδατικών ιόντων M OH + Mt z+ M OMt z 1 + H + B. Συμπλοκοποίηση

Γ. Ένα μεταλλικό ιόν (Μt z+ ) συμπλοκοποιημένο με μία ένωση (L) μπορεί να ενωθεί υποκαθιστώντας ένα Η + ή ένα ΟΗ - M M Z + Z -1 - OH + MtL «M - OMtL + H + + - OH + MtL Z Z «M - MtL 1 + OH + - Δ. Ένα προσροφημένο σε επιφάνεια υδατικό μεταλλικό ιόν, ή το σύμπλοκό του και ο υποκαταστάτης του, μπορούν να συμμετάσχουν στις παρακάτω ισορροπίες Mt Z + z+ ( prosr.) «Mt ( aq) MtL Z + (.) z + prosr «MtL ( aq) L «L ( prosr.) ( aq)

Η προσρόφηση μεταλλικών συμπλόκων και υποκαταστατών σε στερεές επιφάνειες εξαρτάται από: Τη συγκέντρωση του υποκαταστάτη L Τη συγκέντρωση των ενεργών επιφανειακών θέσεων στο στερεό (προσροφητής) Τη σταθερότητα του συμπλόκου Mt-L z+ στο διάλυμα Τη σταθερότητα των στερεών επιφανειακών συμπλόκων Mt-L z+ ---- (προσροφητής) Υδατική φάση: L ισχυρής δεσμευτικής ικανότητας σε ph>6, Cu, Ni, Cd παραμένουν στο διάλυμα, μειώνεται η ένταση της προσρόφησης. L ασθενούς δεσμευτικής ικανότητας σε ph<6, ευνοείται η προσρόφηση.

Φυσική οξείδωση διαλυμένων μεταλλικών συμπλόκων με διαλυμένο οξυγόνο 4[Fe 2+ L n- ] (2-n) + O 2(g) + 2H 2 O (l) è 4[Fe 3+ L n- ] (3-n) + 4OH - Φυσική οξείδωση συμπλόκου με συμμετοχή φυσικού καταλύτη (α-feooh, γκαιτίτης) 4[Co (II) EDTA] 2- + O 2(g) + 4H + è 4[Co (III) EDTA] - + 2H 2 O (l) {γκαιτίτης}