22 4 2013 4 ResourcesandEnvironmentintheYangtzeBasin Vol.22No.4 Apr.2013 EFDC 1, 2, 3 1, (1., 100875;2., 430072;3., 450003) : EFDC 2006 3~7,,, EFDC,,, :EFDC ; ; ; :TV131.2 :A :1004-8227(2013)04-0476-10,,,,, 1 EFDC, EFDC(EnvironmentalFluid DynamicsCode), [5], John M.Hamrick,, [1,2],, EFDC James, York Chesapeake [6,7],, Okeechobee, Indian Everglades [8~10], [3,4], EFDC, EFDC,, [11] [12] [13], :2012-03-31; :2012-07-03 : (2010CB428402); (41075075) : (1985~ ),,,,.E-mail:alex gan@126.com
4, : EFDC 477 mhv t + (m y Huv) x + (m xhvv) y + (mwv) z - mf+v m y ( x -u mx y ) Hu=-mxH (gζ+p) y -mx ( ) ( ) h y - H p y z + z mh v -1 A v (6) z +Qv p z =-gh ( ρ -ρ ) 0-1 ρ =-ghb (7) 0 mhs t + (m y HuS) + (m xhvs) + (mws) x y z ( ) = z mh S -1 A b (8) z +QS mht t + (m y HuT) + (m xhvt) + (mwt) x y z ( ) [14] = [15] z mh T -1 A b (9) z +QT [16] [17] :u v x y EFDC,, ;w ;m x m y,m=m xm y ; σ, w w 1.1 * : EFDC, sigma, w=w * -z ζ ζ ζ t +um-1 x x +vm-1 y ( y ) + (1-, h h, z)um x -1 x +vm-1 y (10) ( y ) x=x(x *,y * ) 烄 :H=h+ζ ; f ;Q u y=y(x *,y * ) (1) 烅 Q v ; ρ, 烆 z=(z * +h)/( ζ +h ) T S p ;b ;Q S Q T :x * y * z * ;A v ;x y ;A b ;z σ ;-h ζ Gelperin [18] 2.5 Melor-Yamada, Boussinesq :,, A v= vql=0.4(1+36r q ) -1 +(1+6R q ) -1 [5] : (1+8R q )ql (11) mζ t + (m y Hu) x + (m xhv) y + (mw) z =0 A b= bql=0.5(1+36r q ) -1 ql (12) (2) mζ t + ( x m yh 1 0udz ) + R q = gh zb l 2 (13) q 2 H 2 ( y mxh 1 0vdz ) =0 :q 2 ;l ;R q (3) Richardson ; v b, ρ=ρ ( p,s,t) (4) mhu t + (m y Huu) + (m xhvu) + (mwu) x y z 1.2 - mf+v m y ( x -u mx y ) Hv=-m yh (gζ+p) x - EFDC, u v ζ h m y ( x -Z H p x ) z + z mh u -1 A ( v (5) z ) +Qu,, ( ) ( ), CFL(Cou- rant-friedriechs-lewy),, 3 ;,,,
478 22 [5],,, 2 2.1, 400m;, 500~1200 m(, 1000m), 139 ; 46km, 40, 5560, 1 2, Y 1200m, 58 m 3, 33.7 ( ),Z ( ) m 3, (0.1%) 20600m 3 /s, (0.02%)23900 m 3 /s, 30000 m 3 /s 6 55 kw, 330 kw, 100 kw, 170 kw h, 145km 139km,,, 1, 5 m, Fig.1 RiverSystemofthe Watershed Where ErtanReservoirLocated 0.5,, [19] 0.5 2.2,,, 1 2 2.3 Fig.2 ReservoirVerticalGrids 2006 2 28 ~3 2 5 24 ~25 7 26~28 7 29~ 30, 14, 1 Tab.1 DistributionofWaterTemperatureObservationSectionsofErtanReservoir 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (km) 0.7 14.0 18.4 19.5 21.3 31.6 40.4 58.5 69.9 75.2 85.3 96.6 112.5 124.1 2 3 5 7 :.
4, : EFDC 479, (4) : 2006 2 28 ~7 31, 5 2 min, ( 3), (1) : 2006 2 28 2 Tab.2 Monthly MeanValueofUpstreamand, Downstream BoundaryConditions (2) : (m 3 /s) ( ) (m 3 /s) ( 2) 3 455 12.4 759 4 498 15.0 684 (3) : 5 779 17.1 798 ( 2), 6 2634 17.8 1910 7 2598 19.9 2481 Tab.3 3 Monthly MeanValueofFree WaterSurfaceBoundaryConditions (hpa) ( ) (%) (mm/d) (mm/d) (W/m 2 ) ( ) (m/s) 3 875.8 22.1 28 0.2 3.4 224.9 2.6 2.6 4 875.2 25.0 30 0.3 4.0 243.3 4.6 2.9 5 877.2 24.4 48 1.9 4.3 225.8 5.9 2.5 6 874.0 26.2 61 6.3 4.3 204.5 8.0 2.2 7 873.3 26.4 68 10.2 5.0 234.7 8.0 2.2 3 3.1 FF 0.1 0.9 0.1 0.1 SF 0.2 0.2 2.8 0.2 SS 0.025 0.025 0.025 0.12, EFDC, 3 1 2,, : Z 0 = FF, 0.03m; K=0.4; B 1=16.6 5, B 2=10.1 E 1=1.8 E 2=1.33 E 3=0.53; 2.6, 5, 4.2 ; 0.4,4 1 3 FF( );,, SF(1/m);, SS(1/m) 0.1 FF 0.0~1.0,SF 1/5~1/0.35, 5 1 4 SS 1/40~1/7.9 3,, SS, 2.4, 5, 3 ( 1),, 3.6 ; 0.4 FF( 2) SF( 3) SS( 3.2 4), 3, 4, 4 Tab.4 ParameterValuesofDiferentSchemes 1 2 3 4
480 22 3 1 2(a) (b) Fig.3 Comparisonof(a)Surface WaterTemperature,(b)Botom WaterTemperatureBetweenScheme1and2 4 1 3(a) (b) Fig.4 Comparisonof(a)Surface WaterTemperature,(b)Botom WaterTemperatureBetweenScheme1and3 5 1 4(a) (b) Fig.5 Comparisonof(a)Surface WaterTemperature,(b)Botom WaterTemperatureBetweenScheme1and4,,, 0.29, 5 :FF =0.2,SF =0.67,SS = 0.035 3.2.1 坝前水温比较 8,, 6,,, 7 ;,,, ;,,, 3 1~2,, ;7 26~28 7 29~30,, ;,, 3.2.2 不同断面水温比较 km, 3.3 3~7, 7 2006 3 1~2,, 3, 14 ;7,
4, : EFDC 481 6 (a)3 1~2 ; (b)5 24~25 ;(c)7 26~28 ;(d)7 29~30 Fig.6 ComparisonofSimulatedandObserved WaterTemperatureDistributionsNeartheDamSectionin DiferentPeriods(a)AverageTemperatureofMarch1 st and2 nd ;(b)averagetemperatureofmay24 th and25 th ; (c)averagetemperatureofjuly26 th to28 th ;(d)averagetemperatureofjuly29 th and30 th 7 3 1~2 (a) 5km ;(b) 15km ;(c) 40km ;(d) 100km Fig.7 ComparisonofSimulatedandObserved WaterTemperatureDistributionsinDiferentSectionon March1-2 (a)5kmfromthedam;(b)15kmfromthedam;(c)40kmfromthedam;(d)100kmfromthedam 25, 11,, 3, 3 ;7 5, 0.31 /m;, 14, 7,,, 1.1 /m; 60 m, ;, 3 0.25 /m;,,, 4~6, 3.4, 30~40 m; 4,
482 22 8 (a)3 (b)4 (c)5 (d)6 (e)7 Fig.8 ReservoirFlowFieldand WaterTemperatureDistribution in (a)march,(b)april,(c)may,(d)june,(e)july
4, : EFDC 483 3, 1188.5 4 m 1120m 1080m,, 1163m,,3,4~6,7, ; EFDC, 12km, ( ), 3~5, 5, :,3 (1) FF, SS, 4 5, SF, 4 2.5 4 5 (2)EFDC,,, 6 7,, 4~6, 7,7, (3), 7 ;,,, (4) 5, Tab.5 WaterTemperatureComparisonBetween, ReservoirDischargedandNaturalRiver 3 4 5 6 7 (m) 1196.0 1163.0 1158.4 1177.3 1188.4 (m)1188.5 1120.0 1120.0 1120.0 1163.0 ( ) 13.2 12.7 17.5 18.2 20.8 ( ) 12.4 15.2 17.8 17.9 20.4, 2006 3~7 5,,,,,,,,,,,, ; :, [1],. [J].,1992,1(1):17-23.
484 22 [9] JIN K R,HAMRICKJH,TISDALET.Applicationofthree- [2]. [J]. andhspf[j].journalofcoastalresearch,2008(52):107-,2008,39(23):62-64. 116. [3]. [11],,. [J].,2006(2):14-17. [4]. [12] EFDC [J]., [J].,2007(6):45-46. namicscomputercode:theoreticalandcomputationalaspects [5] HAMRICKJM.Athree-dimensionalenvironmentalfluiddy- [R].Wiliamsburg,Virginia:VirginiaInstituteofMarineSci- ence,colegeofwiliamand Mary,1992. [6] HAMRICKJ M,KUO A Y,SISSON G M.Someconsidera- tionsinmodelandfielddataselectionforcirculationstudiesof thejamesriverestuary[c].new York:AmericanSocietyof CivilEngineer(ASCE),1989. [7] HAMRICKJM.Estuarineenvironmentalimpactassessment usingathree-dimensionalcirculation and transport model [C].New York:AmericanSocietyofCivilEngineer(ASCE), 1991. [8] MOUSTAFA M Z,HAMRICKJM.Calibrationofthewet- landhydrodynamicmodeltotheevergladesnutrientremoval Project[J].WaterQualityandEcosystems Modeling,2000,1 (1):141-167. dimensionalhydrodynamic modelforlake Okeechobee[J]. JournalofHydraulicEngineering,2000,126(10):758-771. [10] LIUZ,HASHIM N B,KINGERY W L,etal.Hydrodynamic modelingofst.louisbayestuaryandwatershedusingefdc [J].,2003(3):38-42. 2006,24(4):28-30. [13],,. [J]. :A,2005(20):829-835. [14],. [J].,2007,38(12):1495-1499. [15],,. EFDC [J]. :,2008,38(5): 833-840. [16],,. [J]. :,2008(6): 14-22. [17],. [J]. :A, 2010,25(2):155-164. [18] GALPERIN B,HASSIDL H,HASSIDS,etal.Aquasi-equi- libriumturbulentenergy modelforgeophysicalflows[j]. JournalofAtmosphericSciences,1988,45(1):55-62. [19],,,. [R]. :,,2007.
4, : EFDC 485 WATERTEMPERATURE MODELINGANDINFLUENCES OF WATERTEMPERATURESTRATIFICATION OF ERTAN RESERVOIRBASED ONEFDC GAN Yan-jun 1,LILan 2,WUJian 3,YE Ai-zhong 1 (1.ColegeofGlobalChangeandEarthSystemScience,BeijingNormalUniversity,Beijing100875,China; 2.StateKeyLaboratoryofWaterResourcesandHydropowerEngineeringScience,WuhanUniversity,Wuhan430072,China; 3.Yelow RiverEngineeringConsultingCo.,Ltd.,Zhengzhou450003,China) Abstract:EFDC modelwasusedtosimulatewatertemperatureoftheertanreservoirfrom February28th tojuly31th,2006.traversedirectionofthereservoirwasgeneralizedintoagridandtheaveragewidthwas 400m;longitudinaldirectionofthereservoirwasdividedinto139sectionsandthegridspacingrangedfrom about500mto1200m;verticaldirectionofthereservoirwasdividedinto40layers.thus,thetotalnum- beroftheresearchdomaingridswas5560.inordertoimprovesimulationabilityoftheefdc model,a preliminaryexplorationoftheuncertaintiesrelatedtomodelparameterswasmade.byanalyzingparameters relatedtoheatexchangeandtransfer,wehavefoundthat,surfacewatertemperaturewouldincreaseand botom watertemperaturewoulddecrease,whenthevalueofproportionoffastwaveinshortwaveradiation (FF)orcoeficientofshortwaveradiationslowlyatenuatedinwater(SS)increased.Ontheotherhand, thecoeficientofshortwaveradiationrapidlyatenuatedinwater(sf)hadnosignificantinfluenceonwa- tertemperature.then,parameterswerecalibratedbycomparingthesimulatedandobservedwatertempera- tureatdiferentreservoirsectionsindiferenttimeperiod.themodelingresultsindicatedthattheefdc modelcouldwelrevealwatertemperaturestratificationstructureandtheirdevelopmentprocessesoflarge deep-reservoir.onthisbasis,thelawofwatertemperaturestratificationwasanalyzed.watertemperature stratificationphenomenoncouldbeobservedinalthemonthsduringthesimulationperiod.stratification structurewassimpleandasinglethermoclinewasappearedin March.Andtemperaturegradientofthesin- glethermoclinegradualybecamelargerfrom ApriltoJuneandfinalyadoublethermoclinewasformedin July.Surfacewatertemperaturesignificantlyincreasedfrom MarchtoJulyduetotheinfluencescausedby shortwaveradiationandairtemperature(fromabout14 to25 ).Meanwhile,botom watertemperature changedlitleduringthisperiodbecausetheheatwasdificulttotransferfromsurfacetobotom (around 11 ).Italsocouldbeseenthat,temperatureofdischargedwateraftertheconstructionofdam wasdifer- entfromthenaturalriverwatertemperatureatthesameplace.temperatureofdischargedwaterwashigh- erthannaturalriverwatertemperaturein March,JuneandJuly;andlowerthannaturalriverwatertemper- atureinapriland May.Therefore,thereasonsandinfluencesofwatertemperaturediferenceduetothe constructionofdam wereanalyzed.bydoingthis,weatempttoprovidesomescientificbasisforwaterin- takedesignandoperationmanagementofreservoirinordertoreducetheinfluencesofwatertemperature stratificationandprotecttheecologicalenvironmentandaquaticbiodiversityofthedownstreamriver. Keywords:EFDC model;ertanreservoir;reservoirwatertemperature;watertemperaturestratification