45 5 2013 10 JournalofNanjingUniversityofAeronautics& Astronautics Vol.45No.5 Oct.2013 ( 210016) : : ; ; :V249.12 :A :1005-2615(2013)05-0599-06 LongitudinalDeck MotionPredictionandCompensationforCarrierLanding Zhou XinPeng RongkunYuan SuozhongJiang Ju (ColegeofAutomationEngineeringNanjingUniversityofAeronautics& AstronauticsNanjing210016China) Abstract:Longitudinaldeckmotioncausesthevariationoftheheightofidealtouchdownpointwhichis amainfactorafectingthesafetyofcarrierlanding.inordertodecreasetheinfluencesoflongitudinal deckmotiononcarrierlandingamethodofdeckmotionpredictionandcompensationisproposed.deck motioncompensatorbasedonleadnetworkanddeck motionpredictorbasedonparticlefilterarede- signed.thedeckmotionsignalisfirstprocessedbythepredictorandcompensatorandthenconnectedto thelongitudinalautomaticcarrierlandingsystemwhichhelpsthecarrieraircrafttrackthedeckmotion accuratelyinthefinalstageoflandinganddecreasestheinfluencesofdeck motiononcarrierlanding. Thedesignedcompensatorandpredictorareexaminedandcomparedwithothermethodthroughsimula- tionexperimentsindiferentseastates.simulationresultsshowthatthedesigneddeckmotionpredictor andcompensatorcanefectivelycompensateforthelandingerrorcausedbydeckmotionandcansignifi- cantlyimprovethesafetyandaccuracyofcarrierlanding. Keywords:deckmotionprediction;deckmotioncompensation;particlefiltering;automaticcarrierland- ingsystem (Longitudinalautomaticcarrierlandingsystem ) ACLS long [1-4] ACLS long : (61273050) ; (20121352026) ; (NZ2012004) :2013-02-19; :2013-06-20 : 1980 E-mail:xzhou@nuaa.edu.cn
600 45 1.1 3 [1314] 3 (Deck motioncompensationdmc) [15-7] ACLS long 0.312s G H (s)= 2 s 4 +0.54s 3 +0.912s 2 +0.176s+0.138 0.354s G H (s)= 2 +0.014s s 4 +0.38s 3 +0.496s 2 +0.084s+0.0484 (DeckmotionpredictionDMP) ACLS long 6.001s ACLS long G H (s)= 2 s 4 +2.08s 3 +1.32s 2 +0.4s+0.16 Kalman [8] [4] (Auto-regressive AR) [9-10] ACLS long [11] : 14444 1.0 ACLS long 0.1s 3 1 H ACLS long ACLS long 50 [11] Kalman 1.7m 1m ; Kalman 11.2 m 7m ; Kalman [12] Kalman ACLS long 1 1 3 1.2 2 ACLS long
5 : 601 H com H i ACLS long ;G F (s) G C (s) G F (s) H er G C (s)= T1s+1 T 2s+1 G F (s)= s2 +2ξωs+ω 2 (4) ω 2 (τs+1) 3 F/A-18A :T 1 T 2 ; [15~17] ξ ωτ [118] ( ACLS long 5) ( ) (s)=180 s+0.8 s+7 [ ] 0.2s 2 +0.7s+1 3 (s+3) (3) (5) 3 0.2~ 1.0rad/s 2 ACLS long 2 ACLS long 3 GDMC(s)GACLS(s) GDMC(s)GACLS(s) 2 3 G ACLS (s) ACLS long (s) 1.1 ACLS long (ωs=0.2~1.0rad/s) (s)g ACLS (s) s=jω ω=0.2~1.0rad/s =1 (1) 1.1 (1) (s) (s)g ACLS (s) { x =Ax+bw z =c T x+v (6) 熿 0 1 0 0 燄 G DMC (s) 0 0 1 0 A= 0 0 0 1 ; (s)= K DMCG C (s)g F (s) (2) 燀 -0.138-0.176-0.912-0. 540 燅 :K DMC ;G C (s) b T = [0 0.312-0.168-0.194 ];c T =
602 45 [ 1 0 0 0 ];x T = [ x 1 x 2 x 3 x 4 ]x 1 3 x 2 x 3 x 4 x 1 2s ;z ;w 4 ;v (6) Kalman 0.2031 m { k x k =Φkk-1x k-1 +Γkk-1w k-1 z k = H kx k +v (7) :Φkk-1 x t k-1 t k 0.2361m; Kalman Φ kk-1=e AT s;γ kk-1 t k-1 0.5752 m w k-1 t k x k 0.3942m ;Γ kk-1= ( T s 0 e At dtb;h ) k=[1 0 0 Kalman 0] ;w k-1 Qk-1;v k R k ;T s (7) (1) (7) k ^xk k : 1 k=0 P(x 0 ) {x 0} i i=1 N {ω 0} i i=1 N N -1 2 k - 1 {x k-1} i i=1 N (7) k {^xi k } i=1 N 3 k ω i k=ω i k-1 P(z k ^x k) i ; : 珘 ω i k=ω k/ i N i=1 ωi k 4 {^xi k } i=1 N { 珘 ωk} i i=1 N {x k} i i=1 N {ω k} i i=1 N N -1 N 5 k :^xk k= i=1 ωi k x k i k=k+1 k 2 (2) x k τ ^xk+m k ^xk+m k=φ(k+mk)^xk k m =τ/t s Φ (k+mk)=e Aτ = i=0 1 i A i τ i [11] Kalman 3 2s w k 1 v k 0.1508m; Kalman 0.3946 m (30kn) 70 m/s 0.225 4 3-3.5 1 56.3s [1] F/A-18 2 Kalman 12.5s 4 4 15.4m/s
5 : 603 ( 2s) 2.2194 m ACLS long 5 3 3 1 2 100 [11] Kalman 3 ACLS long 100 3 1 ( ) ( ) ( Kalman ) ( ) [219] 1 Kalman 0.4464m Kalman 0.1964m; Kalman 1.6890m 0.5714 m; 81% Kalman 2.9120m 1 100 /% /m Kalman 93 7 100 0.5482 95 5 100 0.3723 Kalman 70 13 83 1.1295 82 14 96 0.8633 Kalman 47 20 67 2.3278 65 16 81 1.2816 5 3 : 5 3 12.5s [1]. [M]. :
604 45 2007. YangYidong.Guidanceandcontrolofcarrieraircraft landing [M ]. Beijing:National Defense Industry Press2007. (3):289-294. XuDongsongLiuXingyuWangLixing.Influenceof carriermotiononlandingsafetyforcarrier-basedair- planes[j].journalofbeijinguniversityofaeronau- ticsandastronautics201137(3):289-294. [3]. [M]. : 2003. GuoSuofengShen GongzhangWu Chengfu.Ad- vancedflightcontrolsystem [M].Beijing:National DefenseIndustryPress2003. [4]. [J].JournalofNavalAeronauticalandAstronautical [J]. 200624(1):5-8. University201126(4):405-409. ShiMingQuXiangjuWang Menghui.Theinfluence [13] Durand TTeperG.Ananalysisofterminalflight andcompensationofdeck motionincarrierlanding pathcontrolincarrierlanding [R].AD606040.[S. approach [J].FlightDynamics200624(1):5-8. [5]. [J]. 199420(4):386-391. Zhang MinglianXuJun.Studiesonautomaticcarri- erlandingsystemforcarrieraircraft[j].journalof Beijing UniversityofAeronauticsand Astronautics 199420(4):386-391. [6] UrnesJHessR.DevelopmentoftheF/A-18Aau- tomaticcarrierlandingsystem [J].JournalofGuid- ancecontrolanddynamics19858(3):289-295. tionprediction [J].JournalofSystem Simulation 201022(S1):119-122. nalofdataacquisitionandprocessing200217(4): 381-384. [12]. [J]. 201126 (4):405-409. LiJingZuoBinHan Wei.Deck motionprediction forcarrieraircraft slandingbasedonparticlefiltering l.]:defensetechnicalinformationcenter1964. [14]. Wang MinZhangJingShenGongzhang.Designof automaticcarrierlandingsystem basedondeck mo- [2]. [11]. [J]. 201137 [J]. 200217(4):381-384. Yu Yong Yang Yidong. Deck motion prediction techniquebasedonkalmanfilteringtheory[j].jour- [D]. : 2001. PengJing.Researchontheautomaticguideandcon- trolofcarrier-based airplaneapproach andlanding [D].Beijing:Beijing Universityof Aeronauticsand Astronautics2001. [15]Subrahmanyam M.H-infinitydesignofF/A-18Aau- tomaticcarrierlandingsystem [J].JournalofGuid- [18]. H [7]. ancecontrolanddynamics199417(1):187-191. [J]. 200727(1):73-76. Chen HuakunZhang WeiguoWangXinmin.Design ofautomaticcontrolsystemforlongitudinallanding oncarrier [J].JournalofProjectilesRocketsMis- silesandguidance200727(1):73-76. [16]IlifKWangK.Extractionoflateral-directionalsta- bilityandcontrolderivativesforthebasicf-18air- craftathighanglesofatack [R].NASA Technical Memorandum47861997. [17]IlifKWangK.Flight-determinedsubsoniclongitu- [8] Sidar MDoolin B.Onthefeasibilityofreal-time dinalstabilityandcontrolderivativesofthef-18high predictionofaircraftcarriermotionatsea[j].ieee angleofatackresearchvehicle(harv)withthrust Transactionson AutomaticControl198328(3): vectoring [R].NASA/TP-97-2065391997. 350-356. [9]. [J]. 199830(4):377- [J]. 200916(12):85-88. 381. Zu EnlinDong XinminChen Yali.Research on YuanSuozhongYangJingGong Huajunetal. deckmotioncompensationforautomaticcarrierland- Designofanautomaticcarrierlandingsystem using ing [J].Electronics Optics and Control200916 H synthesis[j].journalofnanjing Universityof (12):85-88. Aeronautics& Astronautics199830(4):377-381. [10]. [J]. 201022(S1): [19]Anderson M.Innerandouterloopmanualcontrolof 119-122. carrieraircraftlanding[r].aiaa-1996-38771996.