F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

Σχετικά έγγραφα
5,2 5,1 5,0 4,9 4,8. Συµπιεστοτητα (10-10 Pa -1 ) 4,7. k T 4,6 4,5 4,4. k S 4,3 4,2. Θερµοκρασια ( 0 C)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Διαγράμματα Ισορροπίας Φάσεων. Διδάσκων : Καθηγητής Γ. Φλούδας

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

V P P. [3] (α) Να δειχθεί ότι για ένα υδροστατικό σύστημα ισχύει: P V

ΕΞΙΣΩΣΗ CLAUSIUS-CLAPEYRON ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

Φυσικοί μετασχηματισμοί καθαρών ουσιών

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας.

Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV

M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

Enrico Fermi, Thermodynamics, 1937

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

(διαγώνισµα Θερµοδυναµική Ι)

Σχέσεις µεταξύ θερµοδυναµικών παραµέτρων σε κλειστά συστήµατα σταθερής σύστασης

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΤΜΗΜΑ ΧΗΜΕΙΑΣ Θέµατα εξετάσεων Σεπτέµβριος 2009 ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΤΗΣ ΥΛΗΣ ΚΑΙ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

2. Ασκήσεις Θερµοδυναµικής

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ

Για τα έργα και που παράγει το αέριο κατά τις διαδρομές και, αντίστοιχα, ισχύει η σχέση: α. β. γ. δ. Μονάδες 5. p A B O V

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική Κατεύθυνσης Β Λυκείου.

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ 4

Προσανατολισμού Θερμοδυναμική

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ

Κατά την αδιαβατική αντιστρεπτή µεταβολή ενός ιδανικού αερίου, η πίεση του αερίου αυξάνεται. Στην περίπτωση αυτή

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο

Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

R T ενώ σε ολοκληρωµένη, αν θεωρήσουµε ότι οι ενθαλπίες αλλαγής φάσεως είναι σταθερές στο διάστηµα θερµοκρασιών που εξετάζουµε, είναι

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

O δεύτερος νόµος της θερµοδυναµικής

2 mol ιδανικού αερίου, η οποία

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

Εφηρμοσμένη Θερμοδυναμική

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

x 3 y, z =, dq = nc V dt + nrtv -1 dv, dp RT

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Θερμοδυναμική Ενότητα 7:

Οδηγίες προς υποψηφίους

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΜΕΤΑΒΟΛΕΣ ΙΣΟΧΩΡΗ ΜΕΤΑΒΟΛΗ

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

Θερμοδυναμική-Εισαγωγή

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΘΗΜΑ 3 : ΟΙ ΑΛΛΑΓΕΣ ΤΩΝ ΦΑΣΕΩΝ

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

Κεφάλαιο 20. Θερμότητα

Transcript:

[1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής ουσίας µε µετασχηµατισµό Legendre της εντροπίας S(U,V) αντί της εσωτερικής ενέργειας U(V,S). Τα θερµοδυναµικά δυναµικά που προκύπτουν είναι αρκετά χρήσιµα στη στατιστική µηχανική. (α) Να δείξετε ότι µετασχηµατισµός Legendre της S(U,V) που δίνει τo θερµοδυναµικό δυναµικό J(1/T, V), γνωστή και σαν συνάρτηση Massieu, δίνεται από U F J = + S = T T και U P dj = dt + dv T T (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το θερµοδυναµικό δυναµικό Υ(1/T, P/T), γνωστή και σαν συνάρτηση Planck, δίνεται από H G Y = + S = T T και H V dy = dt dp T T [3] Αποδείξτε την τρίτη TdS εξίσωση: T T TdS = CV dp+ CP dv P V V P [4] Η πίεση σε 500g χαλκού αυξάνεται αντιστρεπτά και ισόθερµα από 1 σε 500 atm στους 5 ο C. ίνονται, ρ=8.9x10 3 kg/m 3, β=49.5x10-6 Κ -1, κ Τ =6.x10-1 Pa -1 και ειδική θερµότητα c P =385 J/kg K. (α) Ποιο το ποσό θερµότητας που µεταφέρθηκε κατά τη συµπίεση (β) Ποιο το έργο που εκτελέστηκε κατά τη διάρκεια της συµπίεσης (γ) Να υπολογιστεί η µεταβολή στην εσωτερική ενέργεια (δ) Να υπολογιστεί η µεταβολή της θερµοκρασίας αν ο χαλκός είχε υποστεί µια αντιστρεπτή αδιαβατική συµπίεση. V 1

[5] (a) Ένα mol αερίου εκτονώνεται αντιστρεπτά και ισόθερµα από αρχικό όγκο 1 l σε τελικό όγκο.4 l. Υπολογίστε το ποσό θερµότητας που έχει µεταφερθεί αν (i) το αέριο είναι ιδανικό (Pυ=RT), (ii) ηµι-ιδανικό [P(υ-b)=RT] και (iii) τύπου van der Waals [(P+a/υ )(υ-b)=rt]. Θα µπορούσε το πείραµα αυτό να χρησιµοποιηθεί για το διαχωρισµό ιδανικών και πραγµατικών αερίων; ίνονται: T=0 0 C, a=0. Nm 4 /mol, b=x10-5 m 3 /mol, R=8.314 J/Kmol (b) 15 cm 3 υδραργύρου που βρίσκονται στους 0 0 C συµπιέζονται αντιστρεπτά και ισόθερµα από 1 σε 1000 atm. Να υπολογισθούν: (i) το ποσό θερµότητος, (ii) το έργο που εκτελέστηκε στο σύστηµα και (iii) η µεταβολή στην εσωτερική ενέργεια του συστήµατος. ίνονται: ο συντελεστής θερµικής διαστολής (1.8x10-4 K -1 ) και ο συντελεστής ισόθερµης συµπιεστότητας (4x10-11 Pa -1 ) του υδραργύρου (1atm=1.013x10 5 Pa). (Ιούνιος 004) [6] Ενα αέριο έχει καταστατική εξίσωση, P (υ b) = RT, όπου b είναι µια σταθερά και το c V είναι σταθερό. Να δείξετε ότι: (α) Η εσωτερική ενέργεια u είναι συνάρτηση µόνο της θερµοκρασίας T. (β) Ο λόγος γ, είναι σταθερός. (γ) Για µια αδιαβατική µεταβολή ισχύει: P( υ b) γ =σταθερά (Σεπτ. 001) [7] Ένα αέριο υπακούει στην καταστατική εξίσωση P(υ-b)=RT. Να υπολογιστεί η µεταβολή στη θερµοκρασία του κατά τη διάρκεια: (α) µιας ελεύθερης εκτόνωσης και (β) µιας ελεγχόµενης εκτόνωσης (Joule-Thomson). (Σεπτέµβριος 00) [8] Το ερώτηµα κατά πόσον η θερµοκρασία ενός αερίου κατά τη διάρκεια µιας ελεύθερης εκτόνωσης µεταβάλλεται, και αν ναι, ποιο είναι το πρόσηµο της µεταβολής, έχει απασχολήσει τους επιστήµονες από το 1843 (Joule). Για τρία διαφορετικά αέρια που περιγράφονται από τις καταστατικές εξισώσεις: a (i) Pυ= RT, (ii) P( υ b) = RT και (iii) P + ( υ b) = RT υ εξετάστε αν θα υπάρξει µεταβολή της θερµοκρασίας και βρείτε το µέγεθος της µεταβολής. ίνονται: υ αρχικός, υ τελικός, οι σταθερές α και b, και το c v. (Ιούνιος 00). [9] (α) Να αποδειχθεί η εξίσωση: C P V T = P T T P (β) Να δειχθεί ότι το C P ενός ιδανικού αερίου είναι συνάρτηση µόνο του Τ. (γ) Για ένα αέριο µε καταστατική εξίσωση P υ = RT + BP όπου Β είναι συνάρτηση µόνο της θερµοκρασίας, να δειχθεί ότι: d B c P = T P+ ( c P ) 0 dt όπου (c P ) 0 είναι η τιµή σε πολύ χαµηλές πιέσεις.

[10] Το θείο όταν θερµανθεί αλλάζει φάσεις: από το ροµβικό κρυσταλλικό πλέγµα στο µονοκλινές και σε πιο ψηλές θερµοκρασίες στο υγρό (τήγµα). Η θερµοκρασιακή εξάρτηση της γραµµοµοριακής θερµοχωρητικότητας για τις διαφορετικές φάσεις δίνεται στον παρακάτω πίνακα: Φάση Θερµοχωρητικότητα (J/Kmol) Περιοχή θερµοκρασιών (Κ) Ροµβικό c P =15+6.x10-3 T 98<T<368.6 Μονοκλινές c P =14.9+9.x10-3 T 368.6<T<Σηµείο Τήξης (Τ m) Υγρό (τήγµα) c P =.7+1x10-3 T Τ m <T<Σηµείο Βρασµού Επίσης δίνονται: Η θερµοκρασία µετάβασης από το ροµβικό στο µονοκλινές=95.6 0 C. Το σηµείο Τήξης Τ m (µονοκλινές-υγρό)=119 0 C. Η ενθαλπία της µετάβασης από το ροµβικό στο µονοκλινές=0.361 kj/mol ( Η P = Q) Η ενθαλπία τήξης (µονοκλινές-υγρό)=1.6 kj/mol. Με βάση τα παραπάνω δεδοµένα υπολογίστε τη µεταβολή της εντροπίας όταν το θείο θερµανθεί από τους 7 στους 137 0 C. (Σεπτέµβριος 003) [11] Από αριστερά: (κρύσταλλος, σµηκτική, νηµατική και ισότροπη φάση υγρού κρυστάλλου) Οι υγροί κρύσταλλοι αποτελούνται από µικρά ανισότροπα µόρια που έχουν την ικανότητα προσανατολισµού. Ανάλογα µε την προσανατολιστική τους τάξη και την τάξη από απλή µετατόπιση δηµιουργούν φάσεις γνωστές σαν: σµηκτική (τάξη από µετατόπιση και από προσανατολισµό), νηµατική (τάξη από µετατόπιση) ή ισότροπη (απουσία τάξης). Επιπλέον, σε χαµηλές θερµοκρασίες τα µόρια κρυσταλλώνονται όπως στο σχήµα. Για ένα θερµοτροπικό υγρό κρύσταλλο µε την αλληλουχία των φάσεων του σχήµατος: (α) να γίνει η γραφική παράσταση της συνάρτησης Gibbs συναρτήσει της θερµοκρασίας και της πίεσης καθώς και της πρώτης παραγώγου της συνάρτησης Gibbs ως προς T και P. (β) Με χρήση της πρώτης παραγώγου της συνάρτησης Gibbs ως προς T και P, αποδείξτε την εξίσωση Clausius-Clapeyron. (γ) είξτε ότι µία ουσία µε αρνητική κλίση της καµπύλης τήξης (π.χ. νερό), συρρικνώνεται κατά την τήξη. (Ιούνιος 00) 3

[1] Ο συντελεστής Joule-Thomson µ, είναι ένα µέτρο της µεταβολής της θερµοκρασίας στη διάρκεια µιας ελεγχόµενης εκτόνωσης. Παρόµοιο µέτρο της µεταβολής της θερµοκρασίας µε µία ισεντροπική αλλαγή της πίεσης είναι ο συντελεστής µ T S, µ S =. P S Να δειχθεί ότι: V µ S µ =. CP [13] Τα παρακάτω διαγράµµατα δίνουν την εξάρτηση του γραµµοµοριακού όγκου και της γραµµοµοριακής θερµοχωρητικότητας της αµµωνίας (ΝΗ 3 ) από τη θερµοκρασία. Τα αέριο αυτό εισέρχεται σε ένα πείραµα ελεγχόµενης εκτόνωσης Joule-Thomson. (α) Να διερευνηθεί η δυνατότητα ψύξης της αµµωνίας σε Τ=575 και Τ=500 Κ. (β) Κατά τη διάρκεια ενός κύκλου ελεγχόµενης εκτόνωσης η πίεση µεταβάλλεται κατά 100 atm. Να υπολογισθεί η απόδοση του κύκλου (δηλαδή η αντίστοιχη µεταβολή της θερµοκρασίας) σε Τ=575 και Τ=500 Κ. (1atm=1.013x10 5 Pa) (Ιούνιος 004) υ (cm 3 /mol) 100 1150 1100 1050 1000 950 900 850 800 c P (J/mol K) 46 44 4 40 38 750 45 450 475 500 55 550 575 600 T (K) 36 00 50 300 350 400 450 500 550 600 T (K) [14] είξτε ότι στο πείραµα ελεγχόµενης εκτόνωσης Joule-Thomson: (α) Η i =H f ενώ S f >S i T 1 υ (β) = T υ P H c p T P (γ) για van der Waals αέριο µε καταστατική εξίσωση: RT a υ = + R b P T (α και b σταθερές) να υπολογισθεί ο συντελεστής Joule-Thomson και από την γραφική παράσταση σα συνάρτηση της θερµοκρασίας να βρεθεί η θερµοκρασία αναστροφής και να διερευνηθούν οι συνθήκες για θέρµανση και ψύξη (Ιούνιος 001). 4

[15] Ένα αέριο υπακούει στην καταστατική εξίσωση RT υ = + at P και η γραµµοµοριακή θερµοχωρητικότητα υπό σταθερή πίεση δίνεται από την σχέση c P =A+BT+CP, όπου α, Α, Β, C σταθερές (ανεξάρτητες της θερµοκρασίας και πίεσης) και α>0. (α) Είναι δυνατή η θέρµανση του παραπάνω αερίου σε ένα πείραµα ελεγχόµενης εκτόνωσης Joule-Thomson; (β) Να υπολογιστεί η γραµµοµοριακή θερµοχωρητικότητα υπό σταθερό όγκο συναρτήσει των α, R, P και Τ (µόνο). Για ποιες τιµές του συντελεστή α ισχύει ότι c P - c V =R; (Σεπτέµβριος 003) [16] (α) είξτε ότι ένα αέριο για το οποίο ( υ/ Τ) P = υ/t δεν µπορεί να ψυχθεί σε µια συσκευή ελεγχόµενης εκτόνωσης Joule-Thomson. (β) Η καµπύλη αναστροφής του 4 He δίνεται από τη σχέση: P= 1+ 5.44T 0.13T (Τ σε Κ και P σε atm). Είναι δυνατή η ψύξη αερίου που βρίσκεται στους 39 Κ µε χρήση 4 He; Ποια τα όρια της θερµοκρασίας για να είναι δυνατή η ψύξη; (γ) Ποια η µέγιστη πίεση και η αντίστοιχη θερµοκρασία του σηµείου της καµπύλης αναστροφής; (Σεπτέµβριος 001) [17] (α) το αέριο µε καταστατική εξίσωση P(υ-b)=RT διαφέρει από ένα ιδανικό αέριο (µε καταστατική εξίσωση Pυ=RT) ως προς τις διαστάσεις των µορίων του που δεν είναι αµελητέες. Υποδείξτε (µε πλήρη ανάλυση) το κατάλληλο πείραµα µε το οποίο µπορούµε να διακρίνουµε αν ένα αέριο είναι ιδανικό ή σχεδόν ιδανικό (P(υ-b)=RT) καθώς και πειράµατα που δεν είναι δυνατόν να διακρίνουν το είδος του αερίου. (β) Με τη χρήση ενός αναπτύγµατος Virial (Pυ=RT+B P+C P, µε τους συντελεστές Virial να είναι συναρτήσεις της θερµοκρασίας µόνο), αποδείξτε ότι για πραγµατικά αέρια ο συντελεστής Joule-Thomson µπορεί να είναι θετικός, µηδέν ή αρνητικός. Από τι εξαρτάται το πρόσηµο του συντελεστή και ποια η συνθήκη αναστροφής; (Ιούνιος 003) [18] (α) Αποδείξτε την εξίσωση Clausius-Clapeyron µε χρήση ενός απειροελάχιστου κύκλου Carnot. (β) Υπολογίστε την ενθαλπία εξάτµισης του νερού (σε J/g) από τα παρακάτω δεδοµένα: θερµοκρασία: 100 o C, dp/dt=0.036 atm/k, πυκνότητα νερού: 0.96 g/cm 3 και πυκνότητα υδρατµών: 5.973x10-4 g/cm 3 (1atm=1.01x10 5 N/m =1.01x10 5 Pa). (Ιούνιος 003) [19] (α) Με χρήση ενός απειροελάχιστου κύκλου Carnot ενός απλού υγρού να S P αποδείξετε την τρίτη εξίσωση Maxwell: = V T T V (β) Ο µόλυβδος τήκεται σε ατµοσφαιρική πίεση στους 600 Κ ενώ η πυκνότητά του ελαττώνεται από 11.01 σε 10.65 g/cm 3 και η ενθαλπία τήξης είναι 4.5 J/g. Να υπολογίσετε το σηµείο τήξης σε πίεση 1.013x10 7 Pa. (1atm=1.013x10 5 Pa) (Ιούνιος 001). 5

[0] Να αποδειχθεί η εξίσωση των Clausius-Clapeyron από την εξίσωση Maxwell: P T V S = V T [1] Αποδείξτε ότι κατά τη διάρκεια µιας µετάβασης πρώτης τάξης: (α) η εντροπία ολόκληρου του συστήµατος είναι γραµµική συνάρτηση του όγκου (β) η µεταβολή της εσωτερικής ενέργειας δίνεται από τη σχέση: d lnt U = H 1 d ln P (Ιούνιος 004) [] 0.10 0.08 Ισότροπη P=1MPa P=0 MPa P=40 MPa P=60 MPa 0.06 Νηµατική P=90 MPa V (cm 3 /g) 0.04 0.0 Σµηκτική T ΣΝ (P) T NI (P) P=10 MPa P=160 MPa 0.00-0.0 80 100 10 140 160 180 T ( 0 C) Ένας θερµοτροπικός υγρός κρύσταλλος εµφανίζει 3 φάσεις (σµηκτική, νηµατική, ισότροπη) και ο ειδικός όγκος παρουσιάζει την εξάρτηση από την Τ και P του σχήµατος. (α) Να γίνει η γραφική παράσταση της εντροπίας συναρτήσει της θερµοκρασίας (για ατµοσφαιρική πίεση). (β) Αν η µεταβολή της ενθαλπίας είναι 3 και J/g κατά τις µεταβάσεις Σµηκτική- Νηµατική και Νηµατική-Ισότροπη, αντίστοιχα, να ελεγχθεί αν κατά τις µεταπτώσεις ισχύει η εξίσωση Clausius-Clapeyron. (γ) Να κατασκευαστεί το διάγραµµα φάσεων της ουσίας (Σεπτέµβριος 00) 6

[3] (α) Αποδείξτε ότι στα διαγράµµατα φάσεων µιας καθαρής ουσίας η γραµµή ισορροπίας υγρού-ατµού έχει πάντα θετική κλίση. (β) Η τάση ατµών του διοξειδίου του θείου στην υγρά και τη στερεά κατάσταση δίνονται αντίστοιχα από τις εξισώσεις logp=1,716-1871/t και logp=10,443-146/t (η P σε atm) Υπολογίστε τη θερµοκρασία και την πίεση του τριπλού σηµείου του διοξειδίου του θείου. (Ιούνιος 005) [4] Η λανθάνουσα θερµότητα τήξης της µορφής του πάγου Ι, είναι 3.34x10 5 J/Kg στους 0 0 C και σε ατµοσφαιρική πίεση. Αν η µεταβολή του ειδικού όγκου κατά την τήξη είναι 9.05x10-5 m 3 /Kg, να υπολογιστεί η µεταβολή του σηµείου τήξης εξ αιτίας της µεταβολής της πίεσης. [5] Όταν οι δυο φάσεις µιας καθαρής ουσίας συνυπάρχουν σε ισορροπίας ισχύει: CV dp = TV ks dt όπου dp/dt είναι η κλίση της γραµµής συνύπαρξης των δυο φάσεων. Να αποδειχθεί η παραπάνω έκφραση. ίνεται ότι η µεταβολή είναι πρώτης τάξης και ότι σε µεταβολές πρώτης τάξης η θερµοχωρητικότητα υπό σταθερό όγκο όπως και η αδιαβατική συµπιεστότητα δεν απειρίζονται.. (Σεπτέµβριος 005) [6] Ένα ισότροπο και οµοιογενές µαγνητικό υλικό όγκου V µαγνητικής επιδεκτικότητα; χ (Μ=χΗ, όπου Μ και Η είναι η µαγνήτιση και η µαγνητική ένταση, αντίστοιχα) τίθεται σε οµοιογενές µαγνητικό πεδίο Η. Το υλικό ακολουθεί τον νόµο του Curie, χ=c/t, όπου C είναι µια σταθερά. (α) Να εκλεγούν οι κατάλληλες θερµοδυναµικές συντεταγµένες και να βρεθεί το έργο για την αύξηση της µαγνήτισης (µαγνητικό έργο) (β) Να βρεθεί το έργο που γίνεται κατά τη διάρκεια µιας αντιστρεπτής ισόθερµης µεταβολής της κατάστασης του υλικού (γ)υπολογίστε την εντροπία S(H,T) συναρτήσει της S(0,Τ) και στη συνέχεια το ( Τ/ Η) s. Που µπορεί να χρησιµεύσει το παραπάνω αποτέλεσµα; (Σεπτέµβριος 001) [7] Ένα ισότροπο διηλεκτρικό υλικό εισάγεται στους οπλισµούς ενός πυκνωτή. Η ολική πόλωση του υλικού ακολουθεί την καταστατική εξίσωση P=χEV, όπου V είναι ο όγκος, Ε είναι η ένταση του ηλεκτρικού πεδίου και το χ εξαρτάται µόνο από τη θερµοκρασία. (α) Να εκλεγούν οι κατάλληλες θερµοδυναµικές συντεταγµένες και να βρεθεί το έργο για την αύξηση της ολικής πόλωσης (ηλεκτρικό έργο) (β) Να βρεθεί το έργο κατά τη διάρκεια µιας ηµιστατικής ισόθερµης µεταβολής της κατάστασης του υλικού. (Σεπτέµβριος 00) 7