ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Σχετικά έγγραφα


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Déformation et quantification par groupoïde des variétés toriques

Blowup of regular solutions for radial relativistic Euler equations with damping

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

High order interpolation function for surface contact problem

þÿ±½»åã ±½±³ºÎ½ ƱÁ¼ ³  þÿ» Á Æ Á¹±º Í ÅÃÄ ¼±Ä  þÿ ºº± Á¹Ã  ±À±½Î½

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

2 SFI

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Prey-Taxis Holling-Tanner

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Im{z} 3π 4 π 4. Re{z}

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ανώτερα Μαθηματικά ΙI

¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Quick algorithm f or computing core attribute

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Homomorphism in Intuitionistic Fuzzy Automata

p din,j = p tot,j p stat = ρ 2 v2 j,

v w = v = pr w v = v cos(v,w) = v w

Pilloras, Panagiotis. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

Ανώτερα Μαθηματικά ΙI

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

ER-Tree (Extended R*-Tree)

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

Εφαρμοσμένα Μαθηματικά

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Προσομοίωση Δημιουργία τυχαίων αριθμών

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Chitaridou, Kyriaki. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Δυναμικοί τύποι δεδομένων

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

A summation formula ramified with hypergeometric function and involving recurrence relation

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Single-value extension property for anti-diagonal operator matrices and their square

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ανώτερα Μαθηματικά ΙI

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

þÿãä ½ Æ Á» ³¹º À»¹Ä¹º Ä Â þÿ»» ±Â Ä ½ ÀµÁ

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

tan(2α) = 2tanα 1 tan 2 α

Å/ ÅÃ... YD/ kod

ZZ (*) 4l. H γ γ. Covered by LEP GeV

Αρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Transcript:

35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä Õ Å α- Ð Ø Æ Ä ½ Ö Ö» Ï ½ Ó Á Ï α- Ð Ø Æ Ä Ö ¾ Ó MR(2000) Å 90C26; 90C29 É O224 1 Å ËÄÜÅ Ú Ð ±Ô¾ Ý Â«Å ËÄ ÜÅ ¾ÒÛ ÐÅÎ ±Ô¾ Ù Đ ¾  ߱ ² Ç ÉÐ ¾Â ¼ ±«¾ÒÈ º [1 5].  ¾ Ï Đ ¾ ±º ±Ô¾ Ù Sheng [6] ß¼ α- ѹ ÅÉ Ü É ¾ Â Ê α- ѹ ÅÉ ¾ÇÄ Ìß¼ Đ ¾ α- ѹ Å À ¾Å Ö «α- Ñ Ù ¹ Å Đ ¾ ¼ ¾ ÔÂ Ë 2009 10 19 ¹ 2011 7 15 ¹ ƽ»µ (61101208).

1092 35 Þ 2 Ã Ì X, Y, Z Ü ÅÈ «X, Y, Z Ê X, Y, Z ¾È S Y, K Z ÆÅ¹ S = { s Y : s (s) 0, s S } Ê S ¾ ¹ s (s) Ê s s ¾ Ü S ¾Ñ ¹Ê S i = { s Y : s (s) > 0, s S \ {θ Y } } ( θ Y Ê Y ¾ «). D X ¾ ¼ F : D 2 Y Ë G : D 2 Z Đ ³ F(D) = F(x). F ¾Æ Ë Æ ÜÊ x D graphf = { (x, y) D Y : x D, y F(x) }, epi D F = { (x, y) D Y : x D, y F(x) + S }. 1.1 [6] η : X X X «É D X η- ž α > 0 É F : D 2 Y α- Ñ S- ž ½ x 1, x 2 D, λ [0, 1], λ α F(x 1 ) + (1 λ α )F(x 2 ) F(x 2 + λη(x 1, x 2 )) + S. 1.2 η : X X X «É D X η- ž α > 0 É F : D 2 Y α- Ñ S- ž ½ θ ints, ¼ x 1, x 2 D, λ [0, 1], ε > 0 εθ + λ α F(x 1 ) + (1 λ α )F(x 2 ) F(x 2 + λη(x 1, x 2 )) + S. 1.3 [7] C X Y, C, (x 0, y 0 ) cl C, C (x 0, y 0 ) ¾ (1, α)- Ù ²¹ T (1,α) C ((x 0, y 0 )) ÜÊ X Y ¾ ¼ ³ (x, y) T (1,α) C ((x 0, y 0 )) ³ Ø h n 0 +, (x n, y n ) C, (x n, y n ) (x 0, y 0 ) (n + ), { xn x 0 (x, y) = lim, y n y } 0 n + h n h α. n 1.4 [8] F : S 2 Y, (x 0, y 0 ) graphf. epi S D α F((x 0, y 0 )) = T (1,α) epi SF ((x 0, y 0 )) ¾ É D α F((x 0, y 0 )) «Ê F (x 0, y 0 ) ¾ α- Ñ Ù 1.5 [6] C X Y. C (1, α)- Å ½ Û¾ (x 1, y 1 ), (x 2, y 2 ) C, λ [0, 1], (λx 1 + (1 λ)x 2, λ α y 1 + (1 λ α )y 2 ) C. Ì N ¾ ¾ Ì ³ Ì A, B D, A + B = {a + b : a A, b B}, A B = {(a, b) : a A, b B}. A R ( R = (, + )), A 0, Û a A, a 0. A B ² a A, b B a b.

6 ³ Ã Ê Æ Ä Ï Á 1093 3 Í À Á 2.1 η : X X X «É D X η- ž F : D 2 Y α- Ñ S- ž epi D F α- Ñ Å Ò µ (x 1, y 1 ), (x 2, y 2 ) epi D F, y 1 F(x 1 )+S, y 2 F(x 2 )+S. ÝÊ D X η- ž Ú x 2 +λη(x 1, x 2 ) D. ÝÊ F : D 2 Y α- Ñ S- ž Ú θ ints, ¼ x 1, x 2 D, λ [0, 1], ε > 0 εθ+λ α F(x 1 )+(1 λ α )F(x 2 ) F(x 2 + λη(x 1, x 2 )) + S. θ ints, ³ S ÆÅ¹ Á εθ ints, Y ¾ ¾ V ¼ εθ + V ints. V ¾ ÐÚ ¹ ¾ ε ¼ 2εθ V. Ý εθ 2εθ = εθ ints. Ú Á λ α y 1 + (1 λ α )y 2 λ α (F(x 1 ) + S) + (1 λ α )(F(x 2 ) + S) =λ α F(x 1 ) + (1 λ α )F(x 2 ) + S =εθ + λ α F(x 1 ) + (1 λ α )F(x 2 ) + S εθ εθ + λ α F(x 1 ) + (1 λ α )F(x 2 ) + S + ints F(x 2 + λη(x 1, x 2 )) + S + S + ints F(x 2 + λη(x 1, x 2 )) + S + ints F(x 2 + λη(x 1, x 2 )) + ints F(x 2 + λη(x 1, x 2 )) + S [x 2 + λη(x 1, x 2 ), λ α y 1 + (1 λ α )y 2 ] epi D F, Õ epi D F α- Ñ Å Á 2.2 [6] C X Y «η ( [6] ¾Â C 3 ) ¾ α- Ñ Å (x 0, y 0 ) clc, T (1,α) C ((x 0, y 0 )) Õ Â«η ¾ α- Ñ Å Á 2.3 X, Y Ü ÅÈ «S Y ÆÅ¹³ int S. D X η- ž F : D 2 Y D α- Ñ S- ž D α F((x 0, y 0 ))(D)+intS Å D α F((x 0, y 0 ))(D) = D α F((x 0, y 0 ))(x). x D Ò λ (0, 1) λ α (0, 1). v 1, v 2 D α F((x 0, y 0 ))(D) + ints, x i D, y i D α F((x 0, y 0 ))(x i ), s i ints ¼ v i = y i + s i, i = 1, 2. s 0 = λ α s 1 + (1 λ α )s 2, ÝÊ int S Å Á s 0 ints. x i D, y i D α F((x 0, y 0 ))(x i ), i = 1, 2. Î (x 1, y 1 ) T (1,α) epi ((x DF 0, y 0 )), (x 2, y 2 ) T (1,α) epi ((x DF 0, y 0 )). F D S- Å ¾ ß 2.1 ß 2.2 T (1,α) epi ((x DF 0, y 0 )) Â«η ¾ α- Ñ Å Á Ú [x 2 + λη(x 1, x 2 ), λ α y 1 + (1 λ α )y 2 ] T (1,α) epi DF ((x 0, y 0 )). λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ) D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S.

1094 35 Þ λ α v 1 + (1 λ α )v 2 =λ α y 1 + (1 λ α )y 2 + S 0 λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ) + ints D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S + ints D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + ints D α F((x 0, y 0 ))(D) + ints. Á D α F((x 0, y 0 ))(D) + ints Å Á 2.4 ( ) D X η- ž S Y ÆÅ¹³ int S. ½ F : D 2 Y D α- Ñ S- ž ¾ (i) Ë (ii) ³ à (i) x D, ¼ D α F((x 0, y 0 ))(x) ( ints) ; (ii) y S \ {0}, ¼ D α F((x 0, y 0 ))(x), y 0, x D. Ò (i) Ë (ii) à [2] ¾ß 1.1 x D, y S \ {0}, µ D α F((x 0, y 0 ))(x) ( ints) ¼ 0 y, µ < 0, Á (i) Ë (ii) à (i) D α F((x 0, y 0 ))(x) ( ints) =, x D. (3.1) 0 D α F((x 0, y 0 ))(D) + ints. ½ 0 D α F((x 0, y 0 ))(D) + ints, x D, y D α F((x 0, y 0 ))(x) ¼ 0 y + ints, y ints, ÐÚ¼¹ y D α F((x 0, y 0 ))(x) (int S), (3.1) Ú 0 D α F((x 0, y 0 ))(D) + ints. ß 2.3 D α F((x 0, y 0 ))(D) + ints Å Ú Å y S \ {0} ¼ y + εθ, y 0, θ ints, ε > 0, y D α F((x 0, y 0 ))(D). (3.2) (3.2) ε + ¼ θ, y 0, θ ints. Û¾ θ S = cls = clints, θ, y 0. Ý y S \ {0}. (3.2) ε 0, y, y 0, y D α F((x 0, y 0 ))(D). Ý (ii) 4 ÏÆ ß º ÍÀ (VOP) min F(x), s.t. x A

6 ³ Ã Ê Æ Ä Ï Á 1095 A = { x X : G(x) ( K) }, F(A) = F(x). x A 4.1 [2] x 0 A Ê (VOP) ¾ Ô ºÈ y 0 F(x 0 ) ¼ (F(A) y 0 ) ( ints) =. Á 4.2 D X η- ž F : D 2 Y, G : D 2 ÊÅ Ý Z Ù ¾ Đ x 0 A Ê (VOP) ¾ Ô z 0 G(x 0 ) ( K), ϕ (x) = D α F((x 0, y 0 ))(x) (D α G((x 0, z 0 ))(x) + G(x 0 ) ( K)) : D 2 Y Z Ê α- Ñ S K- ž (s, k ) S K, ³ (s, k ) (θ Y, θ Z ) ( θ Y Ê Y ¾ «), ¼ [ inf s (D α F((x 0, y 0 ))(x)) + k (D α G((x 0, z 0 ))(x)) ] 0, (4.3) x D ³ k (G(x 0 ) ( K)) = {0}, (4.4) s (D α F((x 0, y 0 ))(x)) = s (y), k (D α G((x 0, z 0 ))(x)) = y D α F((x 0,y 0))(x) z D α G((x 0,z 0))(x) k (z), D α F((x 0, y 0 ))(x) (D α G(x 0, z 0 )(x) + G(x 0 ) ( K)) = (y, z). y D α F((x 0,y 0))(x),z D α G(x 0,z 0)(x)+G(x 0) ( K) Ò Ü 4.1 º y F(x 0 ), ¼ (F(A) y 0 ) ( ints) =. ϕ (X) = ϕ (x). ϕ (X) [ (ints intk) ] =. x X ϕ (X) [ (int S intk) ], y D α F((x 0, y 0 ))(x), z D α G((x 0, z 0 ))(x), z 0 G(x 0) ( K) ¼ (y, z + z 0) int(s K). z D α G((x 0, z 0 ))(x), Æ {t n }, t n 0, x n X, z n G(x n ) + K, x n x 0, z n z 0, ¼ (x, z) = lim n (t n(x n x 0 ), t α n(z n z 0 )). Ú z n z 0 +z 0 intk, z n z 0 z 0 intk K(n N). µ z n = z n+k n G(x n )+ K, k n K, z n G(x n)(n N), z n K k n z n K, Ú G(x n ) ( K), x n A (n N). y D α F((x 0, y 0 ))(x) ints, Ú t n, x n A, y n F(x n ) + S, ¼ (x, y) = lim n (t n(x n x 0 ), t α n (y n y 0 )).

1096 35 Þ Ú M N, y n {y 0 } ints, n M. (F(A) y 0 ) ( ints) = Á φ (X) [ (ints intk)] =. ß 2.4 (s, k ) S K, ³ (s, k ) (θ Y, θ Z ) ¼ s ( D α F((x 0, y 0 ))(x)) + k (D α G((x 0, z 0 ))(x) + G(x 0 ) ( K)) 0, x D. (4.5) (4.5) µ x = θ Y, ¼¹ k (G(x 0 ) ( K)) 0. x 0 A, k ¾ Ü k (G(x 0 ) ( K)) 0. Ý (4.4) (4.4) ²¼ (4.5) ¼ (4.3) Ê 4.3 D X η- ž F : D 2 Y Ê Ù ¾ α- Ñ S- Å É G : D 2 Z Ê Ù ¾ α- Ñ K- Å É x 0 A Ê (VOP) ¾ Ô z 0 G(x 0 ) ( K), (s, k ) S K, ³ (s, k ) (θ Y, θ Z ), ¼ inf x D [s (D α F((x 0, y 0 ))(x)) + k (D α G((x 0, z 0 ))(x))] 0 (4.6) ³ k (G(x 0 ) ( K)) = {0}, (4.7) s (D α F((x 0, y 0 ))(x)) = s (y), k (D α G((x 0, z 0 ))(x)) = y D α F((x 0,y 0))(x) z D α G((x 0,z 0))(x) k (z). Ò φ (x) = D α F((x 0, y 0 ))(x) (D α G((x 0, z 0 ))(x) + G(x 0 ) ( K)). x i D, y i D α F((x 0, y 0 ))(x i ). ß 2.1 ß 2.2 T (1,α) T (1,α) epi DG (x 0, z 0 ) α- Ñ Å Á Õ Ë [x 2 + λη(x 1, x 2 ), λ α y 1 + (1 λ α )y 2 ] T (1,α) epi DF (x 0, y 0 ), [x 2 + λη(x 1, x 2 ), λ α z 1 + (1 λ α )z 2 ] T (1,α) epi DG (x 0, z 0 ), λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ) epi DF (x 0, y 0 ) Ë D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S (4.8) λ α D α G((x 0, z 0 ))(x 1 ) + (1 λ α )D α G((x 0, z 0 ))(x 2 ) D α G((x 0, z 0 ))(x 2 + λη(x 1, x 2 )) + K. (4.9)

6 ³ Ã Ê Æ Ä Ï Á 1097 λ α (D α F((x 0, y 0 ))(x 1 ) (D α G((x 0, z 0 ))(x 1 ) + G(x 0 ) ( K))) + (1 λ α )(D α F((x 0, y 0 ))(x 2 ) (D α G((x 0, z 0 ))(x 2 ) + G(x 0 ) ( K))) =(λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 )) (λ α D α G((x 0, y 0 ))(x 1 ) + G(x 0 ) ( K)) + (1 λ α )(D α G((x 0, y 0 ))(x 2 ) + G(x 0 ) ( K)) =(λ α D α F((x 0, y 0 ))(x 1 ) + (1 λ α )D α F((x 0, y 0 ))(x 2 ))) (λ α D α G((x 0, y 0 ))(x 1 ) + (1 λ α )D α G((x 0, y 0 ))(x 2 ) + G(x 0 ) ( K)). (4.10) Ý (4.8), (4.9) Ë (4.10) ¼ λ α φ (x 1 ) + (1 λ α )φ (x 2 ) ( D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) + S) (D α G((x 0, z 0 ))(x 2 + λη(x 1, x 2 )) + G(x 0 ) ( K) + K ) =D α F((x 0, y 0 ))(x 2 + λη(x 1, x 2 )) (D α G((x 0, z 0 ))(x 2 + λη(x 1, x 2 )) + G(x 0 ) ( K)) + S K. Ú φ (x) α- Ñ S K- Å É 4.2 м Ë Ì [1] Jahn J, Raul R. Contingent Epiderivalives and Set-valued Optimization. Math. Meth. Oper. Res., 1997, 46: 193 211 [2] Li Z. A Theorem of the Alternative and Its Application to the Optimization of Set-valued Maps. J. Optim. Theory Appl., 1999, 100(2): 365 375 [3] Li Z F. Benson Proper Efficieny in the Vector Optimization of Set-valued Maps. J. Optim. Theory Appl., 1998, 98(3): 623 649 [4] Yang X M, Yang X Q, Chen G Y. Theorems of the Alternative and Optimization with Set-valued Maps. J. Optim. Theory Appl., 2000, 107(3): 627 640 [5] Lin L J. Optimization of Set-valued Functions. J. Math. Anal. Appl., 1994, 186: 30 51 [6] Sheng B H, Liu S Y. Kuhn-tucker Condition and Wolfe Duality of Preinvex Set-valued Optimization. Appl. Math. Mech. (Engl. Ed.), 2006, 27(12): 1655 1664 [7] Sheng B H, Liu S Y. The Generalized Optimality Conditions of Set-valued Optimization with Benson Proper Efficiency. Acta Math. Sci., 2003, 46(3): 611 620 [8] Sheng B H, Liu S Y. The Optimality Conditions of Nonconvex Set-valued Vector Optimization. Acta Math. Sci. B, 2002, 22(1): 47 55

1098 35 Þ The Derivative Type Optimality Conditions of Subpreinvex Set-valued Optimization ZHU Jianguang (College of Science, Shandong University of Science and Technology, Qingdao 266590) (E-mail: jgzhu980@yahoo.com.cn) Hao Binbin (College of Science, China University of Petroleum, Qingdao 266555) (E-mail: bbhao981@yahoo.com.cn) Abstract In this paper, the concept of α-order cone subpreinvex of set-valued maps is introduced, and a derivative type theorem of the alternative for cone subpreinvex set-valued maps by the α order tangent derivative; using this theorem, the derivative type necessary optimality condition of set-valued maps are given. Key words set-valued optimization; α order tangent derivative; cone subpreinvex; theorem of the alternative; weak efficient solution MR(2000) Subject Classification 90C26; 90C29 Chinese Library Classification O224