Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Σχετικά έγγραφα
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Στοιχεία Κατηγορηματικής Λογικής

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Υπολογισμού και Πολυπλοκότητα

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Στοιχεία Κατηγορηματικής Λογικής

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Στοιχεία Προτασιακής Λογικής

Στοιχεία Κατηγορηματικής Λογικής

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

(Γραμμικές) Αναδρομικές Σχέσεις

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου

Γεννήτριες Συναρτήσεις

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Στοιχεία Προτασιακής Λογικής

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Συνδυαστική Απαρίθμηση

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Σειρά Προβλημάτων 1 Λύσεις

Συνδυαστική Απαρίθμηση

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Συνδυαστική Απαρίθμηση

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

, για κάθε n N. και P είναι αριθμήσιμα.

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 13/3/2018

Συνδυαστική Απαρίθμηση

Αρχή Εγκλεισµού-Αποκλεισµού

Γλώσσες Χωρίς Συμφραζόμενα

Συνδυαστική Απαρίθμηση

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

Π(n) : 1 + a + + a n = αν+1 1

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

Στοιχεία Προτασιακής Λογικής

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Συνδυαστική Απαρίθμηση

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

2 n N: 0, 1,..., n A n + 1 A

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

f(t) = (1 t)a + tb. f(n) =

Γεννήτριες Συναρτήσεις

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια)

Υπολογιστικά & Διακριτά Μαθηματικά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Συνδυαστική Απαρίθμηση

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Συνδυαστική Απαρίθμηση

Θεωρία Γραφημάτων 10η Διάλεξη

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:

Διακριτά Μαθηματικά Ι

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Γλώσσες Χωρίς Συμφραζόμενα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

(Γραμμικές) Αναδρομικές Σχέσεις

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ

Εύρεση ν-στού πρώτου αριθμού

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

HY118-Διακριτά Μαθηματικά

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Σχέσεις Μερικής ιάταξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

(Γραμμικές) Αναδρομικές Σχέσεις

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Ελάχιστο Συνδετικό Δέντρο

Υπολογιστικά & Διακριτά Μαθηματικά

Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

Διακριτά Μαθηματικά Ι

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Συντομότερες ιαδρομές

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας

Δυναμικός προγραμματισμός για δέντρα

Ελάχιστο Συνδετικό Δέντρο

Συντομότερες Διαδρομές

Transcript:

Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική μέθοδος: πεπερασμένος αριθμός περιπτώσεων. Απόδειξη για p q: Ευθέως: αιτιολογούμε ότι συμπέρασμα q έπεται από υπόθεση p. Αντιθετοαναστροφή: αιτιολογούμε ότι η άρνηση της υπόθεσης ( p) έπεται από την άρνηση του συμπεράσματος ( q). Ιδιότητα p q q p Π.χ. αν n 2 άρτιος, τότε n άρτιος. Απαγωγή σε άτοπο: Υποθέτουμε ότι (p q) p q και αιτιολογούμε αντίφαση. Π.χ. το είναι άρρητος (Πυθαγόρας). Μαθηματική Επαγωγή. Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 2 Αποδείξεις Ύπαρξης Μαθηματική Επαγωγή Κατασκευαστικές αποδείξεις ύπαρξης. Αλγόριθμος κατασκευής του ζητούμενου. Μη κατασκευαστικές αποδείξεις ύπαρξης. Αρχή περιστερώνα. Αν m μπάλες σε n κουτιά και m > n, τότε κάποιο κουτί έχει περισσότερες από 1 μπάλες. Επιχειρήματα ισοτιμίας και καταμέτρησης. Κάθε κατευθυνόμενο γράφημα με «πηγή» και χωρίς κύκλους, έχει «καταβόθρα». Κάθε (μη κατευθυνόμενο) γράφημα έχει άρτιο αριθμό κορυφών περιττού βαθμού. Πιθανοτική μέθοδος. Αν κάτι έχει θετική πιθανότητα να επιλεγεί από (κατάλληλο) δειγματοχώρο, τότε υπάρχει. Αποδεικνύουμε ότι «Ρ(n) αληθεύει για κάθε φυσικό n n 0». Δομική επαγωγή: όλαταστοιχεία(αριθμήσιμα) άπειρου συνόλου που ορίζεται αναδρομικά έχουν ιδιότητα Ρ. Αρχή Μαθηματικής Επαγωγής Έστω P(n) μια πρόταση που εξαρτάται από φυσικό αριθμό n. Για νδο Ρ(n) αληθεύει για κάθε φυσικό n n 0, αρκεί νδο: Βάση: το Ρ(n 0 ) αληθεύει. Βήμα: για κάθε n n 0, αν Ρ(n) αληθεύει, τότε P(n+1) αληθεύει. Αρχή Ισχυρής Μαθηματικής Επαγωγής Για νδο Ρ(n) αληθεύει για κάθε n n 0, αρκεί νδο: Βάση: το Ρ(n 0 ) αληθεύει. Βήμα: για κάθε n n 0, αν P(k) αληθεύει για κάθε k {n 0,, n}, τότε P(n+1) αληθεύει. Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 3 Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 4

Όροι Γεωμετρικής Προόδου Να δείξετε ότι για κάθε n 0, 1+2+...+2 n = 2 n+1 1. Πρόταση P(n) «1+2+ +2 n = 2 n+1 1». Βάση: Αληθεύει για n = 0: 2 0 = 1 = 2 1. αληθεύει Ρ(n), δηλ. ότι 1+2+ +2 n = 2 n+1 1. Επαγωγικό βήμα: Θδο αληθεύει Ρ(n+1), δηλ. ότι 1+2+ +2 n + 2 n+1 = 2 n+2 1. Αρμονικοί Αριθμοί Αρμονικός αριθμός τάξης k: Να δείξετε ότι για κάθε n 0, Συνεπώς Άνω φράγμα, πρόταση P(n) Βάση: Αληθεύει για n = 0: Η 1 = 1 = 1+0. αληθεύει Ρ(n), δηλ. ότι Νδο για κάθε r 1 και n 0, Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 5 Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 6 Αρμονικοί Αριθμοί Διαιρετότητα Επαγωγικό βήμα: Θδο αληθεύει Ρ(n+1), δηλ. ότι Να δείξετε ότι για κάθε n 1, το n 3 +2n διαιρείται από το 3. Βάση: Αληθεύει για n = 1: Το 3 διαιρείται από το 3. Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) n 1, το n 3 + 2n διαιρείται από το 3. Επαγωγικό βήμα: Θδο το (n+1) 3 + 2(n+1) διαιρείται από το 3. Πράγματι, όπου και οι δύο όροι διαιρούνται από το 3 (ο 1 ος λόγω της επαγωγικής υπόθεσης). Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 7 Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 8

Πληθάριθμος Δυναμοσυνόλου Λάθος Χρώμα! Νδο για κάθε (πεπερασμένο) σύνολο Αμεn στοιχεία, το δυναμοσύνολο του Α έχει 2 n στοιχεία. Μαθηματική επαγωγή στο n (πληθικόαριθμόσυνόλουα). Βάση: Αληθεύει για n = 0: Ρ( ) = { } και Ρ( ) = 2 0. αληθεύει ότι για κάθε σύνολο Α με Α = n, Ρ(Α) = 2 n. Επαγωγικό βήμα: Θδο σύνολο Α με Α = n+1, Ρ(Α) = 2 n+1. Α (αυθαίρετα επιλεγμένο) σύνολο με n+1 στοιχεία. Θεωρούμε x Α και A x = A {x} με A x = n. Κάθε υποσύνολο του A είτε περιέχει το x είτε όχι. Σε κάθε υποσύνολο S A x αντιστοιχούν δύο υποσύνολα του Α: το S και το S {x}. Άρα Ρ(Α) = 2 Ρ(Α x ) = 2 2 n = 2 n+1. Να βρείτε το λάθος στον παρακάτω επαγωγικό συλλογισμό. Θδο για κάθε n 1, σε κάθε σύνολο n αυτοκινήτων, όλα τα αυτοκίνητα έχουν το ίδιο χρώμα. Βάση: Ισχύει για n = 1. Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) n 1, σε κάθε σύνολο n αυτοκινήτων, όλα έχουν το ίδιο χρώμα. Επαγωγικό βήμα: Θδο σε κάθε σύνολο n+1 αυτοκινήτων, όλα έχουν το ίδιο χρώμα. Σύνολο με n+1 αυτοκίνητα: Α = {α 1, α 2,..., α n, α n+1 } Από επαγ. υπόθεση, τα n πρώτα αυτοκίνητα έχουν ίδιο χρώμα, και n τελευταία αυτοκίνητα έχουν ίδιο χρώμα: Αφού σύνολο n πρώτων και σύνολο n τελευταίων αυτοκινήτων έχουν κοινά στοιχεία, όλα τα αυτοκ. στοαέχουνίδιοχρώμα! Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 9 Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 10 Λάθος Χρώμα! Επαγωγικό βήμα: Θδοσεκάθεσύνολοn+1 αυτοκινήτων, όλα έχουν το ίδιο χρώμα. Σύνολο με n+1 αυτοκίνητα: Α = {α 1, α 2,..., α n, α n+1 } Από επαγ. υπόθεση, τα n πρώτα αυτοκίνητα έχουν ίδιο χρώμα, και n τελευταία αυτοκίνητα έχουν ίδιο χρώμα: Αφού σύνολο n πρώτων και σύνολο n τελευταίων αυτοκινήτων έχουν κοινά στοιχεία, όλα τα αυτοκ. στοαέχουνίδιοχρώμα! Για n = 1, τα δύο σύνολα δεν έχουν κοινά στοιχεία! Εδώ ισχύει ότι Ρ(1) και ότι Ρ(n) P(n+1) για κάθε n 2. Δεν ισχύει ότι Ρ(1) Ρ(2): αυτό καθιστά συμπέρασμα αβάσιμο! Κάποτε χρήσιμο να αποδείξουμε ισχυρότερη πρόταση Ρ (n). Είναι δυνατό να μην ισχύει ότι P(n) Ρ(n+1), αλλά να ισχύει P (n) Ρ (n+1), για ισχυρότερη πρόταση Ρ (n). Σκακιέρα τάξης n με μαύρο στο κέντρο: τετράγωνη σκακιέρα με 2 n 2 n τετράγωνα, όλα λευκά εκτός από ένα μαύρο στο κέντρο. Ν.δ.ο. για κάθε n 0, λευκά τετράγωνα σκακιέρας τάξης n με μαύρο στο κέντρο καλύπτονται από πλακίδια σχήματος L (μη επικαλυπτόμενα). Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 11 Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 12

Βάση: Ρ(0) ισχύει (δενυπάρχουνλευκάτετράγωνα). Επαγωγικό βήμα: Σκακιέρα τάξης n+1 με μαύρο στο κέντρο: ένωση 4 σκακιέρων τάξης n με μαύρο στο κέντρο, 3 μαύρα γίνονται λευκά, 1 μαύρο μετακινείται στο κέντρο. Βάση: Ρ(0) ισχύει (δενυπάρχουνλευκάτετράγωνα). Επαγωγικό βήμα: Ρ(0) Ρ(1), Ρ(1) Ρ(2): 3 νέα λευκά καλύπτονται με 1 πλακίδιο. Ρ(2) Ρ(3); Λευκά όχι γειτονικά, μετακινήσεις επηρεάζουν διάταξη πλακιδίων! Χρήση επαγωγικής υπόθεσης όχι προφανής! Δυσκολία λόγω περιορισμού ότι μαύρο στο κέντρο! Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 13 14 Σκακιέρα τάξης n: τετράγωνη σκακιέρα με 2 n 2 n τετράγωνα, όλα λευκά εκτός από ένα μαύρο (οπουδήποτε). Ν.δ.ο. για κάθε n 0, λευκά τετράγωνα σκακιέρας τάξης n καλύπτονται από πλακίδια σχήματος L (μη επικαλυπτόμενα). Πρόταση Ρ (n) ισχυρότερη από αρχική P(n). Βάση: Ρ (0) ισχύει τετριμένα. Επαγωγική υπόθεση: για (αυθαίρετα επιλεγμένο) n 0, αληθεύει ότι λευκά τετράγωνα οποιασδήποτε σκακιέρας τάξης n καλύπτονται από πλακίδια σχήματος L. Σκακιέρα τάξης n+1: 4 σκακιέρες τάξης n (τεταρτημόρια). 1 με μαύρο τετράγωνο σε αντίστοιχη θέση. 3 με μαύρα τετράγωνα σε άκρα, ώστε γειτονικά κεντρικά τετράγωνα σε σκακιέρα n+1. Από επαγωγική υπόθεση, λευκά τετράγωνα σε τεταρτημόρια καλύπτονται από πλακίδια L. Νέα λευκά τετράγωνα σχηματίζουν L: καλύπτονται με πλακίδιο. 15

Νδο. για κάθε n 1, Επαγωγική υπόθεση S n 2 δεν συνεπάγεται ότι S n+1 2. Ευκολότερο νδ (επαγωγικά) ότι για κάθε n 1, Παράδειγμα Ισχυρής Επαγωγής Νδο κάθε τμήμα τουλ. 18 φοιτητών χωρίζεται σε ομάδες 4 ή 7 φοιτητών. Για κάθε φυσικό n 18, υπάρχουν φυσικοί κ n, λ n : n = 4κ n + 7λ n. Βάση: επαλήθευση για n = 18, 19, 20, 21. Επαγωγική υπόθεση: για (αυθαίρετα επιλεγμ.) φυσικό n 21, ισχύει ότι για κάθε φυσικό m, 21 m n: Υπάρχουν φυσικοί κ m, λ m : m = 4κ m + 7λ m. Επαγωγικό βήμα: Θδο υπάρχουν φυσικοί κ n+1, λ n+1 : n+1 = 4κ n+1 +7λ n+1. Επαγ. υπόθεση για n 3, και κ n+1 = κ n-3 + 1 και λ n+1 = λ n-3 : Αρκεί βάση για n = 18; Γιατί n 21 στην υπόθεση; Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 17 Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 18 Και Άλλο Λάθος! Θδοόλοιοιφυσικοίαριθμοίείναιάρτιοι(;)! Βάση: ισχύει ότι το 0 είναι άρτιος. Επαγωγική υπόθεση: για (αυθαίρετα επιλεγμένο) φυσικό n 0, ισχύει ότι για κάθε m, 0 m n, το m είναι άρτιος. Επαγωγικό βήμα: Θδο το n+1 είναι άρτιος. Επαγωγική υπόθεση: το n και το 1 είναι άρτιοι. Άρα n+1 άρτιος, ως άθροισμα δύο άρτιων! Απόδειξη βήματος δεν ισχύει για n = 0! Χρησιμοποιεί ότι το 1 είναι άρτιος χωρίς απόδειξη (στη βάση) και χωρίς να εμπίπτει στην επαγωγική υπόθεση! Διακριτά Μαθηματικά (Άνοιξη 2009) Μαθηματική Επαγωγή 19