ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

Σχετικά έγγραφα
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Ιστορία των Μαθηματικών

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Μεγάλοι μαθηματικοί. και το έργο τους...

Αξιοσημείωτες συνέπειες του Θεμελιώδους Θεωρήματος της Άλγεβρας

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

1 Galois Theory, I. Stewart. Galois theory.

a = a a Z n. a = a mod n.

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

Ιστορία των Μαθηματικών

a b b < a > < b > < a >.

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

1 ο Μαθητικό Συνέδριο Έρευνας και Επιστήμης Μάρτιος 2017

Ιστορία των Μαθηματικών

* * * ( ) mod p = (a p 1. 2 ) mod p.

invariante Eigenschaften spezieller binärer Formen, insbesondere der

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Αριθμοθεωρητικοί Αλγόριθμοι

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Υπολογιστικά & Διακριτά Μαθηματικά

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

α) f(x(t), y(t)) = 0,

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ιστορία της Γραμμικής Άλγεβρας

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΤΡΙΤΟΥ ΚΑΙ ΤΕΤΑΡΤΟΥ ΒΑΘΜΟΥ. Έρευνα Παρουσίαση Μπάμπης Δημητριάδης Μαθηματικός Κέρκυρα 2012

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Ιστορία των Μαθηματικών

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων.

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Ιστορία των Μαθηματικών

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Γ. Ραχωνης. 5-6 Μαθηματικά Λογισμικά. Σαραφόπουλος Ν. 7-8 Καραμπετάκης

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

Εφαρμοσμένη Κρυπτογραφία Ι

Ορισμένες σελίδες του βιβλίου

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2

Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος

Πρόλογος 3. Εισαγωγή 7

ΛΧ1004 Μαθηματικά για Οικονομολόγους

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Εφαρμοσμένη Κρυπτογραφία Ι

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ιστορία των Μαθηματικών

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

a pn 1 = 1 a pn = a a pn a = 0,

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

Αλγεβρικές Δομές και Αριθμοθεωρία

Πρόλογος 3. Εισαγωγή 7


V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

Ιστορία των Μαθηματικών

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

1 m z. 1 mz. 1 mz M 1, 2 M 1

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ της Χριστίνας Φίλη (Επίκουρη καθηγήτρια Ε.Μ.Π )

Δύο λόγια από τη συγγραφέα

Αριθμητική Ανάλυση και Εφαρμογές

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

Transcript:

Εαρινό εξάμηνο 2012 17.05.12 Χ. Χαραλάμπους

(1791-1858) 1858) Peacock: «Treatise on Algebra»(1830) και αργότερα μετά το 1839 την «αριθμητική άλγεβρα» και στην «συμβολική άλγεβρα». «αριθμητική άλγεβρα»: αφορά τις πράξεις σε σύμβολα που αντιπροσωπεύουν θετικούς αριθμούς και οι κανόνες τους γίνονται αυτόματα αποδεκτές, π.χ. a-(b-c)=a-b+c όταν b > c και a > b-c «συμβολική άλγεβρα»: πράξεις σε σύμβολα που δεν αντιπροσωπεύουν κάποιες θετικές ποσότητες, π.χ. a-(b-c)=a-b+c

Euler 1707-1783 Ελβετία, Ρωσία, Γερμανία, Ρωσία 886 βιβλία και εργασίες

«Introduction in analysin infinitorum» 1748 O Euler πήρε τον διαφορικό λογισμό του Leibniz και τη μέθοδο ρυθμών μεταβολής (fluxions) του Newton και τα έκανε μέρος ενός γενικότερου κλάδου των μαθηματικών : της «Ανάλυσης» που ασχολείται με τη μελέτη άπειρων διαδικασιών. Σύγκριση της σημασίας της «Εισαγωγής στην ανάλυση» του Euler με 1. τα «Στοιχεία» του Ευκλείδη: ( συνδυασμός της γεωμετρικής δουλειάς του Ευδόξου και Θεαίτητου) 2. την «Εισαγωγή» του Viete: (συνδυασμός της αλγεβρικής δουλειάς των al Qwarismi και Cardano)

Συμβολισμοί που εισήγαγε ο Euler f(x) (1734) e (1727) π (1737) i (1777) Σ (1755) και άλλα πολλά (1748) φ(m) ( ) : αριθμός φυσικών αριθμών μικρότεροι του m που είναι πρώτοι προς το m

Θεωρία Αριθμών και Euler Απόδειξη (Euler) (Πότε καθιερώθηκε η χρήση της μαθηματικής επαγωγής? ποια είναι η σχέση της με το σύστημα των φυσικών αριθμών?)

Πρόβλημα: να σχεδιάσουμε έναν περίπατο που θα περνάει από όλες τις γέφυρες μία και μόνο μία φορά

οι κορυφές του γραφήματος είναι τα κομμάτια της γης οι ακμές του είναι οιγέφυρες Απάντηση του Euler: δεν μπορεί να σχεδιαστεί τέτοιος περίπατος. Η τοπολογία που είναι??

Carl Friedrich Gauss (1777 1855) 18 Pi Princeps mathematicorum ti Αναφερόταν στα Μαθηματικά ως η «Βασίλισσα των Επιστημών» Θεωρία Αριθμών, Στατιστική, Ανάλυση, Διαφορική Γεωμετρία, Αστρονομία, Ηλεκτροστατική, Οπτική, Γεωδαισία, κ.α. Δίδαξε στο πανεπιστήμιο του Göttingen

Θεωρία Αριθμών (1798) Ο Gauss συγκέντρωσε έργο μαθηματικών όπως Fermat, Euler, Lagrange, Legendre και δικά του πρωτότυπα αποτελέσματα με συστηματικό τρόπο, συμπληρώνοντας κενά και διορθώνοντας αποδείξεις. Επέκτεινε τη θεωρία αριθμών στην αλγεβρική θεωρία αριθμών.

όρισε τις κλάσεις ισοδυναμίας απέδειξε τον νόμο της τετραγωνικής αντιστροφής (theorema aureum) όταν p,q είναι περιττοί πρώτοι: εκτός αν ο Gauss έδωσε 8 διαφορετικές αποδείξεις για αυτό το θεώρημα

Ποια κανονικά n-γωνα είναι κατασκευάσιμα με κανόνα και διαβήτη? Απάντηση n πρέπει να είναι γινόμενο δύναμης του 2 και πρώτων του Fermat, (ικανή ή (Gauss 1801) και αναγκαία συνθήκη). (πρώτοι του Fermat είναι πρώτοι της μορφής π.χ. 3, 5, 17, 257, 6537, (υπάρχουν άλλοι? ) (γνωστό από αρχαιότητα ότι το τρίγωνο και το πεντάγωνο είναι κατασκευάσιμα) Ο Gauss έδειξε (θεωρητικά) ότι το κανονικό 17-γωνο είναι κατασκευάσιμο (1796) και το γενίκευσε to 1801 αφού πρώτα όρισε ως περιόδους ειδικά αθροίσματα ριζών της μονάδας, πχ. που είναι όπου

17-γωνο κατασκευάσιμο Gauss 1796 (κατασκευή από τον Erchinger ~1800) O Gauss έδειξε ότι οι ρζ ρίζες της δίνονται με ριζικά

πόσο είναι το άθροισμα όλων των αριθμών από το 1 έως το 100? Σε δευτερόλεπτα η απάντηση από τον μικρό Gauss: 5050 1 2 3 4 50 100 99 98 97 51 --------------------------------------------------- 101 101 101 101 101 50 x 101 =5050 (Γενίκευση: το άθροισμα όλων των αριθμών από το 1 έως το n όταν n άρτιος? 1 2 3 n/2 n n-1 n-2 n/2+1 --------------------------------------------------- n+1 n+1 n+1 n+1 άρα το άθροισμα είναι n/2 (n+1)

ΘΘΑ (4 αποδείξεις 1799 πρώτη, 1849 η τελευταία) Οι ακέραιοι του Gauss: a+bi όπου a,b ακέραιοι. προσοχή 5=(1+2i)(1 2i) δεν είναι πρώτος σε αυτό το σύνολο! Η ιδιότητα της μοναδικής παραγοντοποίησης ήταν γνωστή από την αρχαιότητα, βλ. «Στοιχεία» (Ευκλείδης). Ο Gauss μελέτησε την ιδιότητα της μοναδικής παραγοντοποίσης σε συστήματα αριθμών μεγαλύτερα από τους ακεραίους--- γιατί κατάλαβε ότι πιθανόν να υπάρχουν συστήματα αριθμών που να μην την ικανοποιούν!

π(x) είναι ο αριθμός των πρώτων αριθμών που είναι μικρότεροι του x τότε η συνάρτηση π(x) πλησιάζει ασυμπτωτικά τη συνάρτηση x/(log x) Απόδειξη: 1896 Hadamard, d Poussin (ανεξάρτητα)

Gauss και μη Ευκλείδια γεωμετρία ( σύνδεση του 5 ο αξιώματος ξώ του Ευκλείδη και της έρευνας του Gauss, γεωμετρίες των Bolyai 1823, Lobachevsky 1829, Riemann) 1828

1796-1814 19 σελίδες, 146 εγγραφές (περισσότερες από αυτές σημαντικές μαθηματικές ανακαλύψεις) δημοσιοποιήθηκε το 1898

Πίσω στην Άλγεβρα... Έως το τέλος του 18 ου αιώνα, άλγεβρα ήταν η μελέτη πολυωνυμικών εξισώσεων (κλασσική άλγεβρα). Το 20 ο αιώνα η άλγεβρα έγινε η μελέτη αφηρημένων συστημάτων, συστημάτων που καθορίζονται από αξιώματα (μοντέρνα έ άλγεβρα). ) Η μετάβαση έγινε τον 19 ο αιώνα. Τότε εμφανίστηκαν και αναγνωρίσθηκαν οι δομές για ομάδες, για αντιμεταθετικούς και μη δακτυλίους, για σώματα και για διανυσματικούς χώρους.

Οι τομείς αυτοί αναπτύχθηκαν παράλληλα και αλληλοεπιρρεάζοντας ο ένας τον άλλον. Για παράδειγμα η θεωρία Galois αφορά ομάδες και σώματα. η αλγεβρική θεωρία αριθμών εμπλέκει ομάδες, αντιμεταθετικούς δακτυλίους, σώματα. η θεωρία αναπαραστάσεων συνδυάζει ομάδες, μη αντιμεταθετικούς δακτυλίους, γραμμική άλγεβρα.

Η θεωρία ομάδων οφείλει την εξέλιξή της στις επόμενες πηγές: Κλασσική άλγεβρα (Lagrange 1770) * Θεωρία αριθμών (Gauss, 1801)* Γεωμετρία (Klein, 1874, πρόγραμμα του Erlangen) Ανάλυση (Lie 1874, Poincare και Klein, 1876)

Joseph-Louis Lagrange 1736-1813 Carl Friedrich Gauss 1777-1855 Felix Klein 1777-1855

Marius Sophus Lie 1842-1899 Henri Poincare 1854-1912

Κλασσική Άλγεβρα και Lagrange Μέθοδοι για την εύρεση ριζών πολυωνυμικών εξισώσεων. όταν ο βαθμός του πολυωνύμου είναι: 2: μέθοδοι ήταν γνωστές από την εποχή των Βαβυλωνίων (1600 π.χ.) 3 και 4: μέθοδοι δόθηκαν στα μισά του 16 ου αιώνα. 5: ένα από τα κύρια προβλήματα για τους επόμενους δύο αιώνας ήταν η εύρεση αλγεβρικής λύσης. To θέμα της εργασίας «Reflexions sur la resolution algebriques des equations» Lagrange (1770)

Ο Lagrange ανέλυσε τις διάφορες μεθόδους για την αλγεβρική επίλυση των πολυωνυμικών εξισώσεων βαθμού 3 και 4 που είχαν δοθεί (πέρα από τους Ιταλούς) από τους Viete, Descartes, Euler, Bezout. Αντιλήφθηκε ότι το κοινό στοιχείο αυτών των μεθόδων είναι η αναγωγή του προβλήματος σε ένα πρόβλημα εύρεσης ριζών μίας βοηθητικής πολυωνυμικής εξίσωσης: όταν η αρχική εξίσωση έχει βαθμό 3 η βοηθητική επιλύουσα εξίσωση έχει βαθμό 2. όταν η αρχική εξίσωση έχει βαθμό 4 η βοηθητική επιλύουσα εξίσωση έχει βαθμό 3.

Ο Lagrange g απέδειξε ότι ο βαθμός k της επιλύουσας διαιρεί το n!. (αντιστοιχεί στο Θεώρημα του Lagrange.) Επίσης απέδειξε ότι αναγκαία συνθήκη για την επίλυση της εξίσωσης βαθμού n είναι η ύπαρξη κάποιας επιλύσουσας βαθμού <n. Όταν επιχείρησε για την εξίσωση βαθμού 5 βρήκε μόνο επιλύουσες βαθμού 6. Η συνέχεια με Ruffini, Abel και Galois

Niels Abel 1802-1829 Paolo Ruffini 1765-1822