ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Σχετικά έγγραφα
Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κεφάλαιο 14: Πρόσθεση Στροφορμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Μικροβιολογία & Υγιεινή Τροφίμων

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κβαντική Επεξεργασία Πληροφορίας

Ηλεκτρισμός & Μαγνητισμός

Κβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Ηλεκτρισμός & Μαγνητισμός

Ιστορία της μετάφρασης

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κβαντική Επεξεργασία Πληροφορίας

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Εκκλησιαστικό Δίκαιο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Εφαρμοσμένη Στατιστική

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Ηλεκτρονικοί Υπολογιστές I

Εκκλησιαστικό Δίκαιο

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Μαγνητικά Υλικά Υπεραγωγοί

Ηλεκτρισμός & Μαγνητισμός

Εισαγωγή στους Αλγορίθμους

Κβαντική Φυσική Ι. Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Κλασική Ηλεκτροδυναμική Ι

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή

Εισαγωγή στους Αλγορίθμους

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ηλεκτρισμός & Μαγνητισμός

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Θεωρία Λήψης Αποφάσεων

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Ιστορία της μετάφρασης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Κβαντική Φυσική Ι. Ενότητα 23: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Σχεδιασμός & Αξιολόγηση Προγραμμάτων Εκπαίδευσης Ενηλίκων

Βασικές Αρχές Φαρμακοκινητικής

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Μαγνητικά Υλικά Υπεραγωγοί

Κλασική Ηλεκτροδυναμική Ι

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διπλωματική Ιστορία Ενότητα 2η:

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 1: ΑΤΟΜΑ ΚΑΙ ΔΕΣΜΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Βέλτιστος Έλεγχος Συστημάτων

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Πρόσθεση Στροφορμών

Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2 Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από s 1 =1/2, s 2 =1/2 Σύνοψη - Ασκήσεις

Ολική Στροφορμή J Έστω σωμάτιο με τροχιακή στροφορμή L=(L x, L y, L z ) και spin S=(S x, S y, S z ). Ορίζουμε το άθροισμα J=L+S. Θα δούμε ότι το J ικανοποιεί σχέσεις μετάθεσης στροφορμής Οι σχέσεις μετάθεσης της τροχιακής στροφορμής L εκφράζονται περιεκτικά ως: Αντίστοιχα για το spin έχουμε: Ισχύει ακόμα: (ανεξάρτητες στροφορμές)

Ολική Στροφορμή J Επομένως δείξαμε ότι: Άρα για την ολική στροφορμή J ισχύουν όσα δείξαμε για τα άλλα είδη στροφορμών χρησιμοποιώντας μόνο τις σχέσεις μετάθεσης: Το J 2 =J x2 +J y2 +J z 2 μετατίθεται με μια συνιστώσα (πχ J z ) και έχει κοινό σύστημα ιδιοκαταστάσεων (βάση) με αυτή. όπου το j παίρνει ακέραιες και ημιακέραιες τιμές και το m j παίρνει τις τιμές: +6a

Σχέση J 2 με L 2 και S 2 Έχουμε ότι: x y x y x y x y LxSx LyS y ilxs y ilysx LxSx LyS y ilxs y ilysx 2LxSx LyS y L S L S L il S is L il S is +6b Χρήσιμές σχέσεις μετάθεσης: +6c Το J 2 έχει κοινές ιδιοκαταστάσεις με τα L 2 και S 2 αλλά όχι και με τα L z και S z!

Δύο σετ μετατιθέμενων στροφορμών Το J 2 έχει κοινές ιδιοκαταστάσεις με τα L 2 και S 2 αλλά όχι και με τα L z και S z! Ακόμα το J z =L z +S z έχει κοινές ιδιοκαταστασεις με όλες τις στροφορμές αφου Άρα υπάρχουν δυο σετ μετατιθέμενων μεγεθών Σετ (1): Κοινές ιδιοκαταστάσεις, ταυτόχρονη μέτρηση χωρίς αβεβαιότητα Σετ (2): Κοινές ιδιοκαταστάσεις, ταυτόχρονη μέτρηση χωρίς αβεβαιότητα Όμως το J 2 δεν μπορεί να μετρηθεί ταυτόχρονα με τα L z και S z αφού

Δύο σετ μετατιθέμενων στροφορμών Άρα υπάρχουν δυο σετ μετατιθέμενων μεγεθών Σετ (1): Κοινές ιδιοκαταστάσεις, ταυτόχρονη μέτρηση χωρίς αβεβαιότητα Σετ (2): Κοινές ιδιοκαταστάσεις, ταυτόχρονη μέτρηση χωρίς αβεβαιότητα Βάση (1):

Δύο σετ μετατιθέμενων στροφορμών Βάση (1): Οι ιδιοκαταστάσεις του σετ (1) είναι και ιδιοκαταστασεις του J z Επομένως για το m j του σετ (2) ισχύει η σύνδεση με το σετ (1):

Δύο σετ (βάσεις) μετατιθέμενων Βάση (1): στροφορμών m,m s >, J,m j > Βάση (2): όπου

Σύνδεση των δύο βάσεων: Άτομο Υδρογόνου Βάση (1) στο άτομο υδρογόνου: Ιδιοκατάσταση των Μετάβαση σε βάση (2): +6d όπου α, β σταθερές που θα προσδιοριστούν με χρήση των και

Εύρεση α και β 2 J Y Y L S L S L S L S Y Y 2 2 2 lm lm1 z z lm lm1 2 2 3 2 1/ 2 2 j j 1 Ylm Ylm 1 l l 1 Ylm Ylm mylm l l 1 m m 1 Ylm 1 4 2 3 2 1/ 2 2 l l 1 Ylm 1 Ylm 1 m 1Ylm 1 l l 1 mm 1 Ylm 4 3 1/ 2 j j 1 l l 1 m l l 1 m m 1 0 4 3 1/ 2 j j 1 l l 1 m 1 l l 1 m m 1 0 4

Εύρεση α και β Άρα έχουμε: 3 1/ 2 j j 1 l l 1 m l l 1 mm 1 0 4 3 1/ 2 j j 1 l l 1 m 1 l l 1 mm 1 0 4 +6e που γράφεται και ως: όπου με λύση 1/ 2 l ml m 1 xm1 x m l ml m 1 l ml m 1 x mx m 1 1/ 2 2 2 2 2 l lm l lm m m x xm x xm m m 1 x x 1 l l

Εύρεση α και β Επομένως έχουμε Για την μία λύση: Όμοια δείχνουμε: Γενικά ισχύει: 1 x x 1 1/ 2 l m l m 1 xm1 1/ 2 x m l ml m 1 l l x l x l1 3 3 0 2 0 4 4 2 2 2 2 x l j j l l l j j l l 2 1 1 4l 8l 3 1 2 l 1 j0 1 j j l 2 2 2 1 x l 1 j l +6h 2 j j j min 1 2 j j j max 1 2 +6f +6i (δείτε και Τραχανά Κβαντομηχανική ΙΙ) Η απόδειξη γίνεται με χρήση της σχέσης m j =m j1 +m j2 και εύρεση όλων των δυνατών m J που αντιστοιχούν σε ζεύγος m j1,m j2. Μετά, από τα m j βρίσουμε και τα αντίστοιχα j. +6g

Σύνδεση βάσεων: Συντελεστές Glebsch-Gordon l ml m 1 1/ 2 x m x l 1 j l 2 +6j l ml m 1 1/ 2 x m x l1 1 j l 2 +6k aγνοούμε τους κοινούς δείκτες l, 1/2 Συντελεστές Glebsch-Gordon

Σύνδεση βάσεων: Συντελεστές Glebsch-Gordon +6l Συντελεστές Glebsch-Gordon

Ειδική Περίπτωση l=1 Συντελεστές Glebsch-Gordon +6m +6n

Ειδική Περίπτωση l=1 Συντελεστές Glebsch-Gordon

Ειδική Περίπτωση s 1 =s 2 =1/2 Αντί για θεωρούμε Βάση (1): Βάση (2):

Ειδική Περίπτωση s 1 =s 2 =1/2 Συντελεστές Glebsch-Gordon Κατάσταση Triplet Κατάσταση Singlet

Σύνοψη Για την περιγραφή συστημάτων που συνθέτονται από υποσυστήματα με στροφορμή μπορούν να χρησιμοποιηθούν δύο βάσεις καταστάσεων: η βάση των επιμέρους στροφορμών και η βάση της ολικής στροφορμής Οι δύο βάσεις συνδέονται με χρήση των συντελεστών Glebsch-Gordon. Οι συντελεστές Glebsch-Gordon δίνουν την πιθανότητα μέτρησης τιμών για τις επιμέρους στροφορμές όταν έχει μετρηθεί αρχικά η ολική στροφορμή (οπότε αρχικά το σύστημα περιγράφεται από ιδιοκατάσταση της ολικής στροφορμής). Οι συντελεστές Glebsch-Gordon υπολογίστηκαν σε απλές περιπτώσεις συστημάτων όπου η μία από τις δύο επιμέρους στροφορμές αντιστοιχεί σε spin ½.

Άσκηση 1 Ηλεκτρόνιο σε άτομο υδρογόνου βρίσκεται στην κατάσταση Βρείτε τις πιθανές τιμές και τις αντίστοιχες πιθανότητες που αντιστοιχούν σε μέτρηση των μεγεθών L 2, L z, S 2, S z, J 2, J z. Ποια είναι η πυκνότητα πιθανότητας να βρεθεί το σωμάτιο στην θέση r, θ, φ; Ποια είναι η αντίστοιχη πυκνότητα πιθανότητας να βρεθεί το σωμάτιο σε θέση r με spin πάνω; Έχουμε και για τις δύο καταστάσεις που υπερτίθενται l=1. Επομένως για το L 2 θα μετρηθεί η τιμή ћ 2 1(1+1)=2 ћ 2 με πιθανότητα 1. Για το L z θα μετρήσουμε 0 με πιθανότητα 1/3 και ћ με πιθανότητα 2/3. Έχουμε και για τις δύο καταστάσεις που υπερτίθενται s=1/2. Επομένως για το S 2 θα μετρηθεί η τιμή ћ 2 1/2(1/2+1)=3/4 ћ 2 με πιθανότητα 1. Για το J 2 θα πρέπει να εκφράσουμε την κατάσταση στην βάση (2) j,m j >. Έχουμε: (1) (1) 1/ 3 2 / 3 1/ 3 2 / 3 R Y Y R 21 1,0 1,1 21 1 1 0, 1, 2 2 (2) (2) (2) (2) R21 1/ 3 2 / 3 3 1 1/ 3 1 1 2 / 3 1/ 3 3 1 2 / 3 1 1,,,, 2 2 2 2 2 2 2 2 R 2 2 1 (2) (2) 21 3 1 1 1 3,, 2 2 3 2 2

Άσκηση 1 Για το J 2 θα πρέπει να εκφράσουμε την κατάσταση στην βάση (2) j,m j >. Έχουμε: (1) (1) 1/ 3 2 / 3 1/ 3 2 / 3 R Y Y R 21 1,0 1,1 21 1 1 0, 1, 2 2 (2) (2) (2) (2) R21 1/ 3 2 / 3 3 1 1/ 3 1 1 2 / 3 1/ 3 3 1 2 / 3 1 1,,,, 2 2 2 2 2 2 2 2 R 2 2 1 (2) (2) 21 3 1 1 1 3,, 2 2 3 2 2 R 2 2 1 (2) (2) 21 3 1 1 1 3,, 2 2 3 2 2 Για το J 2 θα μετρήσουμε ћ 2 3/2(3/2+1)=15/4 ћ 2 με πιθανότητα 8/9 και μετρήσουμε ћ 2 1/2(1/2+1)=3/4 ћ 2 με πιθανότητα 1/9 R 2 2 1 (2) (2) 21 3 1 1 1 3,, 2 2 3 2 2 Για το J z θα μετρήσουμε ½ ћ με πιθανότητα 1. Η πυκνότητα πιθανότητας να βρεθεί το σωμάτιο στην θέση r, θ, φ είναι: 2 21 1,0 1,1 P r,, R 1/ 3 Y 2/3 Y r sin 2 2 2 2 Η πυκνότητα πιθανότητας να βρεθεί το σωμάτιο στην θέση r, θ, φ με spin πάνω είναι: 2 2 2 2,, 1/ 3 sin P r R Y r 21 1,0

Άσκηση 2 Δυο σωμάτια με spin ½ αλληλεπιδρούν σύμφωνα με την Χαμιλτονιανή: H A s1 s2 όπου Α δεδομένη σταθερά. Βρείτε τις ενεργειακές ιδιοτιμές του συστήματος και τον αντίστοιχο εκφυλισμό. Το ολικό spin του συστήματος είναι της μορφής: 2 S s s s s 2 s s 2 2 2 1 2 1 2 1 2 A 2 2 2 Άρα η Χαμιλτονιανή εκφράζεται συναρτήσει του ολικού spin ως: H S s1 s2 και οι ιδιοτιμές δύνονται από την σχέση: A A 1 1 1 1 2 2 1 1 3/ 2 2 2 2 2 E S S s s s s S S Οι δυνατές τιμές του S είναι 0 και 1 με εκφυλισμούς (2S+1) (1 και 3 αντίστοιχα). 2

Άλυτες Ασκήσεις 1. Θεωρήστε δύο ηλεκτρόνια σε κατάσταση s=0 (singlet). a. Μέτρηση της z συνιστώσας του spin του ενός ηλεκτρονίου δίνει την τιμή S z =ћ/2. Ποια η πιθανότητα να μετρηθεί η ίδια συνιστώσα του άλλου ηλεκτρονίου στην τιμή ћ/2. b. Μέτρηση της y συνιστώσας του spin του ενός ηλεκτρονίου δίνει την τιμή S y =ћ/2. Ποια η πιθανότητα να μετρηθεί η x συνιστώσα του spin του άλλου ηλεκτρονίου στην τιμή S x =-ћ/2. c. Αν το ηλεκτρόνιο 1 είναι στην κατάσταση cosα 1 χ + +sinα 1 e iβ1 χ - και το ηλεκτρονιο 2 στην κατάσταση cosα 2 χ + +sinα 2 e iβ2 χ - ποια είναι η πιθανότητα να βρεθεί το σύστημα σε κατάσταση ολικού spin s=1 (triplet)? 2. Βρείτε τους συντελεστές Glebsch-Gordon για l,1/2,j,m-1/2.

Άλυτες Ασκήσεις 3. Αποδείξτε τις σχέσεις που δεν αποδείξαμε (ή που σχεδόν αποδείξαμε) στην διάλεξη: x x l l1

Άλυτες Ασκήσεις 4. Αποδείξτε τις σχέσεις που δεν αποδείξαμε (ή που σχεδόν αποδείξαμε) στην διάλεξη:

Άλυτες Ασκήσεις 5. Αποδείξτε τις σχέσεις που δεν αποδείξαμε (ή που σχεδόν αποδείξαμε) στην διάλεξη: 6. Σύστημα νετρονίου πρωτονίου με μηδενική τροχιακή στροφορμή διέπεται από το δυναμικό: όπου σ 1 (σ 2 ) το διάνυσμα των πινάκων Pauli που αντιστοιχεί στο νετρόνιο (πρωτόνιο). Α. Δείξτε ότι:

Άλυτες Ασκήσεις 6. Σύστημα νετρονίου πρωτονίου με μηδενική τροχιακή στροφορμή διέπεται από το δυναμικό: όπου σ 1 (σ 2 ) το διάνυσμα των πινάκων Pauli που αντιστοιχεί στο νετρόνιο (πρωτόνιο). Α. Δείξτε ότι: Β. Βρείτε την μέση τιμή του δυναμικού στην κατάσταση ολικού spin s=1 (triplet) και ολικού spin s=0 (singlet).

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php?id=1213.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος. «Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=1213.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/.