Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών
Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1
Περιεχόμενα 1 Εισαγωγή Εισαγωγικές Έννοιες - Γραφική Ακολουθία Πράξεις, σχέσεις γραφημάτων Αποστάσεις, διάμετρος και περιφέρεια 2 Συνεκτικότητα 3 Δέντρα 4 Eulerian και Hamiltonian γραφήματα 5 Προβλήματα βελτιστοποίησης σε γραφήματα 6 Επίπεδα γραφήματα
Δύο γραφήματα v 2 v 3 v 2 v 3 v 1 v 4 v 1 v 4 v 6 v 5 v 6 v 5 V(G) = {v 1, v 2, v 3, v 4, v 5, v 6 } και n = V(G) E(G) = {{v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 5 }, {v 5, v 6 }, {v 6, v 1 }, {v 2, v 6 }, {v 3, v 5 }} m = E(G) V(H) = {v 1, v 2, v 3, v 4, v 5, v 6 } και E(H) = E(G) {{v 2, v 5 }, {v 3, v 6 }} N G (v3) = {v2, v5, v4}, N G ({v1, v2, v6}) = {v3, v5}
Ισομορφισμοί Ισομορφισμοί δυο γραφημάτων G και H Υπάρχει μια 1-1 και επί απεικόνιση f : V(G) V(H) τέτοια ώστε {u, v} E(G) {f(u), f(v)} E(H) Συμβολίζουμε τον ισομορφισμό μεταξύ των G και Η ως G H b 2 a c e 3 d 4 1 5 f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4, f(e) = 5
Ισομορφισμοί Παρατήρηση Η σχέση G H: αυτοπαθής, G G συμμετρική, G H H G μεταβατική, G 1 G 2, G 2 G 3 G 1 G 3 b 2 a c e 3 d 4 1 5
Αναπαράσταση Γραφημάτων Πίνακας Γειτνίασης Ένα γράφημα G με V(G) = {v 1, v 2,, v n } μπορεί να αναπαρασταθεί με έναν n n πίνακα A = [a i,j ] όπου v 2 a i,j = v 3 v 5 { 1 αν {v i v j } E(G) 0 αν {v i v j } / E(G) v 1 v 4 A = v 6 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0
Αναπαράσταση Γραφημάτων Πίνακας Προσπτώσεων Για ένα γράφημα G με V(G) = {v 1,, v n } και E(G) = {e 1,, e m } ορίζουμε έναν n m πίνακα B = [b i,j ] όπου κάθε γραμμή αντιστοιχεί σε με κορυφή και κάθε στήλη αντιστοιχεί σε μια ακμή Τα στοιχεία του πίνακα B ορίζονται ως εξής: { 1 αν η ακμή e j προσπίπτει στην κορυφή v i b i,j = 0 αν η ακμή e j δεν προσπίπτει στην κορυφή v i v 2 v 3 v 1 v 4 B = v 6 v 5 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0
Αναπαράσταση Γραφημάτων Πίνακας Γειτνίασης: έχει n 2 στοιχεία και είναι συμμετρικός για μη-κατευθυνόμενα γραφήματα όλες οι διαγώνιες τιμές του είναι μηδενικές (χωρίς βρόγχους) αν θέλουμε να απαντήσουμε στο αν δύο κορυφές v i και v j γειτνιάζουν ή όχι μεταξύ τους, μπορούμε να αποφανθούμε σε χρόνο O(1) εξετάζοντας την τιμή a i,j Παρατήρηση Σε κάθε γράφημα αντιστοιχούν n! διαφορετικοί πίνακες γειτνίασης
Βαθμοί κορυφών Ο βαθμός κορυφής: deg G (v) = N G (v) Ο ελάχιστος και μέγιστος βαθμός του γραφήματος είναι δ(g), Δ(G) Ο μέσος βαθμός d(g) = 1 n v V(G) deg(v) Η πυκνότητα ε(g) = m n απομονωμένη κορυφή βαθμό 0 εκκρεμής κορυφή βαθμό 1 καθολική κορυφή βαθμό n 1 v 2 v 3 v 1 v 4 δ(g) = 2 και Δ(G) = 3 d(g) = 266 και ε(g) = 133 v 6 v 5
Βαθμοί κορυφών, Παρατηρήσεις Θεώρημα 1 v V(G) deg(v) = 2m 2 δ(g) d(g) Δ(G) 3 ε(g) = d(g) 2
Βαθμοί κορυφών, Παρατηρήσεις Θεώρημα 1 v V(G) deg(v) = 2m 2 δ(g) d(g) Δ(G) 3 ε(g) = d(g) 2 Λήμμα Κάθε γράφημα περιέχει άρτιο αριθμό κορυφών περιττού βαθμού
Βαθμοί κορυφών, Παρατηρήσεις Θεώρημα 1 v V(G) deg(v) = 2m 2 δ(g) d(g) Δ(G) 3 ε(g) = d(g) 2 Λήμμα Κάθε γράφημα περιέχει άρτιο αριθμό κορυφών περιττού βαθμού Απόδειξη V(G) = V 1 V 2 με V 1 περιττό βαθμό και V 2 άρτιο βαθμό
Βαθμοί κορυφών, Παρατηρήσεις Θεώρημα 1 v V(G) deg(v) = 2m 2 δ(g) d(g) Δ(G) 3 ε(g) = d(g) 2 Λήμμα Κάθε γράφημα περιέχει άρτιο αριθμό κορυφών περιττού βαθμού Απόδειξη V(G) = V 1 V 2 με V 1 περιττό βαθμό και V 2 άρτιο βαθμό v V(G) deg(v) = v V 1 deg(v) + v V 2 deg(v) = 2m
Βαθμοί κορυφών, Παρατηρήσεις Θεώρημα 1 v V(G) deg(v) = 2m 2 δ(g) d(g) Δ(G) 3 ε(g) = d(g) 2 Λήμμα Κάθε γράφημα περιέχει άρτιο αριθμό κορυφών περιττού βαθμού Απόδειξη V(G) = V 1 V 2 με V 1 περιττό βαθμό και V 2 άρτιο βαθμό v V(G) deg(v) = v V 1 deg(v) + v V 2 deg(v) = 2m v V 2 deg(v) άρτιος αριθμός, v V(G) deg(v) άρτιος αριθμός v V 1 deg(v) άρτιος αριθμός
Βαθμοί κορυφών, Παρατηρήσεις Θεώρημα 1 v V(G) deg(v) = 2m 2 δ(g) d(g) Δ(G) 3 ε(g) = d(g) 2 Λήμμα Κάθε γράφημα περιέχει άρτιο αριθμό κορυφών περιττού βαθμού Απόδειξη V(G) = V 1 V 2 με V 1 περιττό βαθμό και V 2 άρτιο βαθμό v V(G) deg(v) = v V 1 deg(v) + v V 2 deg(v) = 2m v V 2 deg(v) άρτιος αριθμός, v V(G) deg(v) άρτιος αριθμός v V 1 deg(v) άρτιος αριθμός τα deg(v) στο v V deg(v) είναι περιττά V 1 άρτιο
Γραφική ακολουθία Ορισμός Μια φθίνουσα ακολουθία γ = d 1,, d n όπου d 1 d n καλείται γραφική αν υπάρχει γράφημα G με n κορυφές v 1,, v n και βαθμούς d 1,, d n, αντίστοιχα Το γράφημα G θα λέμε ότι πραγματοποιεί την ακολουθία γ v 2 v 3 v 1 v 4 v 6 v 5 γ = 3, 3, 3, 3, 2, 2 Για κάθε i = 1,, n, ισχύει 0 d i n 1 Το πλήθος των περιττών d i είναι άρτιος αριθμός
Γραφική ακολουθία -- Υπολογισμός Δοθέντος ενός G είναι εύκολο κανείς να βρει την γ κατατάσσοντας τα deg(v) κατά φθίνουσα τάξη Για το αντίστροφο θα πρέπει να εξετάσει κανείς διεξοδικά όλους τους δυνατούς συνδυασμούς για την κατασκευή πιθανών βαθμών Είναι η γ = 1, 1, 1, 1 γραφική; Είναι η γ = 1, 1, 1 γραφική;
Γραφική ακολουθία -- Υπολογισμός Δοθέντος ενός G είναι εύκολο κανείς να βρει την γ κατατάσσοντας τα deg(v) κατά φθίνουσα τάξη Για το αντίστροφο θα πρέπει να εξετάσει κανείς διεξοδικά όλους τους δυνατούς συνδυασμούς για την κατασκευή πιθανών βαθμών Είναι η γ = 1, 1, 1, 1 γραφική; Είναι η γ = 1, 1, 1 γραφική; G v: διαγράφουμε την v μαζί με όλες τις προσκείμενες στην v ακμές Παρατήρηση Στο G v η γραφική ακολουθία προκύπτει διαγράφοντας το d v και μειώνοντας κατά μια μονάδα τους βαθμούς των d v γειτονικών κορυφών της
Γραφική ακολουθία -- Υπολογισμός Παράδειγμα γ = 3, 3, 2, 2, 2, 2 διαγράφουμε την πρώτη κορυφή γ = 2, 1, 1, 2, 2 Αναδιατάσσουμε την γ : 2, 2, 2, 1, 1 διαγράφουμε την γ πρώτη κορυφή = 2, 2, 2, 1, 1 γ = 1, 1, 1, 1
Γραφική ακολουθία -- Υπολογισμός Παράδειγμα γ = 3, 3, 2, 2, 2, 2 διαγράφουμε την πρώτη κορυφή γ = 2, 1, 1, 2, 2 Αναδιατάσσουμε την γ : 2, 2, 2, 1, 1 διαγράφουμε την γ πρώτη κορυφή = 2, 2, 2, 1, 1 γ = 1, 1, 1, 1 Παράδειγμα γ = 3, 2, 2, 2, 2, 2 διαγράφουμε την πρώτη κορυφή γ = 1, 1, 1, 2, 2 Αναδιατάσσουμε την γ : 2, 2, 1, 1, 1 διαγράφουμε την γ πρώτη κορυφή = 2, 2, 1, 1, 1 γ = 1, 0, 1, 1
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική Από όλα τα γραφήματα που πραγματοποιούν την γ, διαλέγουμε το G: V(G) = {v 1,, v n }, όπου deg(v i ) = d i το άθροισμα των βαθμών που είναι γειτονικά με v 1 είναι μέγιστο
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική Από όλα τα γραφήματα που πραγματοποιούν την γ, διαλέγουμε το G: V(G) = {v 1,, v n }, όπου deg(v i ) = d i το άθροισμα των βαθμών που είναι γειτονικά με v 1 είναι μέγιστο Ισχυρισμός: N G (v 1 ) φτιάχνει την υποακολουθία d 2,, d d1 +1
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική Από όλα τα γραφήματα που πραγματοποιούν την γ, διαλέγουμε το G: V(G) = {v 1,, v n }, όπου deg(v i ) = d i το άθροισμα των βαθμών που είναι γειτονικά με v 1 είναι μέγιστο Ισχυρισμός: N G (v 1 ) φτιάχνει την υποακολουθία d 2,, d d1 +1 Έστω ότι δεν ισχύει: v i, v j με d i > d j : {v 1 v i } / E(G), {v 1 v j } E(G)
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική Από όλα τα γραφήματα που πραγματοποιούν την γ, διαλέγουμε το G: V(G) = {v 1,, v n }, όπου deg(v i ) = d i το άθροισμα των βαθμών που είναι γειτονικά με v 1 είναι μέγιστο Ισχυρισμός: N G (v 1 ) φτιάχνει την υποακολουθία d 2,, d d1 +1 Έστω ότι δεν ισχύει: v i, v j με d i > d j : {v 1 v i } / E(G), {v 1 v j } E(G) Επειδή d i > d j, υπάρχει v k : {v k v i } E(G) και {v k v j } / E(G)
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική Από όλα τα γραφήματα που πραγματοποιούν την γ, διαλέγουμε το G: V(G) = {v 1,, v n }, όπου deg(v i ) = d i το άθροισμα των βαθμών που είναι γειτονικά με v 1 είναι μέγιστο Ισχυρισμός: N G (v 1 ) φτιάχνει την υποακολουθία d 2,, d d1 +1 Έστω ότι δεν ισχύει: v i, v j με d i > d j : {v 1 v i } / E(G), {v 1 v j } E(G) Επειδή d i > d j, υπάρχει v k : {v k v i } E(G) και {v k v j } / E(G) G : (--) {v 1 v j }, {v k v i } και (++) {v 1 v i }, {v k v j } G έχει την ίδια ακολουθία βαθμών γ (γιατί?)
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω ότι η ακολουθία γ = d 1,, d n είναι γραφική Από όλα τα γραφήματα που πραγματοποιούν την γ, διαλέγουμε το G: V(G) = {v 1,, v n }, όπου deg(v i ) = d i το άθροισμα των βαθμών που είναι γειτονικά με v 1 είναι μέγιστο Ισχυρισμός: N G (v 1 ) φτιάχνει την υποακολουθία d 2,, d d1 +1 Έστω ότι δεν ισχύει: v i, v j με d i > d j : {v 1 v i } / E(G), {v 1 v j } E(G) Επειδή d i > d j, υπάρχει v k : {v k v i } E(G) και {v k v j } / E(G) G : (--) {v 1 v j }, {v k v i } και (++) {v 1 v i }, {v k v j } G έχει την ίδια ακολουθία βαθμών γ (γιατί?) Το άθροισμα των βαθμών N G (v 1 ) > από το G λόγω d i d j > 0 Άτοπο
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω G γράφημα που πραγματοποιείται από γ Εισάγουμε στο G μια νέα v 1 με ακμές στις d 1 πρώτες κορυφές της γ
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω G γράφημα που πραγματοποιείται από γ Εισάγουμε στο G μια νέα v 1 με ακμές στις d 1 πρώτες κορυφές της γ η κορυφή v 1 έχει βαθμό d 1 οι d 1 πρώτες κορυφές αυξάνουν κατά μια μονάδα τους βαθμούς οι βαθμοί των υπόλοιπων κορυφών παραμένουν ως έχει
Γραφική ακολουθία -- Θεώρημα Θεώρημα Μια γ = d 1,, d n, είναι γραφική αν και μόνο αν η γ = d 2 1,, d d1 +1 1, d d1 +2,, d n, είναι γραφική Απόδειξη ( ) Έστω G γράφημα που πραγματοποιείται από γ Εισάγουμε στο G μια νέα v 1 με ακμές στις d 1 πρώτες κορυφές της γ η κορυφή v 1 έχει βαθμό d 1 οι d 1 πρώτες κορυφές αυξάνουν κατά μια μονάδα τους βαθμούς οι βαθμοί των υπόλοιπων κορυφών παραμένουν ως έχει Επομένως το νέο γράφημα G = G + v πραγματοποιεί την γ
Γραφική ακολουθία -- Αλγόριθμος Υπολογισμού Αλγόριθμος Ακολουθία Είσοδος: μια φθίνουσα ακολουθία n ακεραίων γ Έξοδος: ναι αν η γ είναι γραφική, οχι διαφορετικά 1 Αν υπάρχει d γ : d n τότε οχι 2 Αν υπάρχει d γ : d < 0 τότε οχι 3 Αν d i = 0 για κάθε i = 1,, n τότε ναι 4 Αν χρειάζεται αναδιατάσσουμε την γ έτσι ώστε να είναι φθίνουσα 5 Διαγράφουμε τον πρώτο όρο d 1 της ακολουθίας γ 6 Αφαιρούμε μια μονάδα από τους d 1 υπόλοιπους όρους 7 Θέτουμε n := n 1 8 Επαναλαμβάνουμε από το βημα 1
Γραφική ακολουθία -- Αλγόριθμος Υπολογισμού Αλγόριθμος Ακολουθία Είσοδος: μια φθίνουσα ακολουθία n ακεραίων γ Έξοδος: ναι αν η γ είναι γραφική, οχι διαφορετικά 1 Αν υπάρχει d γ : d n τότε οχι 2 Αν υπάρχει d γ : d < 0 τότε οχι 3 Αν d i = 0 για κάθε i = 1,, n τότε ναι 4 Αν χρειάζεται αναδιατάσσουμε την γ έτσι ώστε να είναι φθίνουσα 5 Διαγράφουμε τον πρώτο όρο d 1 της ακολουθίας γ 6 Αφαιρούμε μια μονάδα από τους d 1 υπόλοιπους όρους 7 Θέτουμε n := n 1 8 Επαναλαμβάνουμε από το βημα 1 Κατασκευή του G το οποίο πραγματοποιεί την γ Παίρνουμε διαδοχικές ακολουθίες γ 1, γ 2,, γ k G k : μηδενικοί όροι της γ k απομονωμένες κορυφές G k 1 : προσθέτουμε την v με d v ακμές της γ k 1 G 1 G
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0 γ 3 = 2, 1, 0, 1, 0 γ 3 = 2, 1, 1, 0, 0
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0 γ 3 = 2, 1, 0, 1, 0 γ 3 = 2, 1, 1, 0, 0 γ 4 = 0, 0, 0, 0
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0 γ 3 = 2, 1, 0, 1, 0 γ 3 = 2, 1, 1, 0, 0 γ 4 = 0, 0, 0, 0 G 4
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0 γ 3 = 2, 1, 0, 1, 0 γ 3 = 2, 1, 1, 0, 0 γ 4 = 0, 0, 0, 0 G 3 G 4
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0 γ 3 = 2, 1, 0, 1, 0 γ 3 = 2, 1, 1, 0, 0 γ 4 = 0, 0, 0, 0 G 2 G 3 G 4
Γραφική ακολουθία -- Παραδείγματα γ = 5, 4, 4, 3, 2, 1, 1 γ 2 = 3, 3, 2, 1, 0, 1 γ 2 = 3, 3, 2, 1, 1, 0 γ 3 = 2, 1, 0, 1, 0 γ 3 = 2, 1, 1, 0, 0 γ 4 = 0, 0, 0, 0 G 1 G 2 G 3 G 4
Κλίκες, μονοπάτια, κύκλοι K 4 K 5 P 4 P 5 C 4 C 5
Κλίκες, μονοπάτια, κύκλοι K 4 K 5 P 4 P 5 C 4 C 5 v 2 v 3 Ορισμένα άχορδα μονοπάτια: P 4 = {v 1, v 2, v 3, v 4 }, v 1 v 4 v 6 v 5 P 4 = {v 1, v 6, v 5, v 4 } Ορισμένα μονοπάτια: P = {v 3, v 4, v 5, v 6 }, P = {v 3, v 5, v 6, v 2 } C 4
Διμερή γραφήματα, πλήρη διμερή Διμερές γράφημα G = (V, E): V(G) = A B με A B = και {x, y} E(G): x A, y B Τα σύνολα A, B ονομάζονται διαμέριση του G Συμβολίζουμε ένα διμερές γράφημα ως G = (A, B, E) Πλήρες διμερές γράφημα G = (A, B, E): για κάθε x A, y B: {x, y} Ε(G) Συμβολίζουμε με K p,q όπου p = A και q = B
Διμερή γραφήματα, πλήρη διμερή Διμερές γράφημα G = (V, E): V(G) = A B με A B = και {x, y} E(G): x A, y B Τα σύνολα A, B ονομάζονται διαμέριση του G Συμβολίζουμε ένα διμερές γράφημα ως G = (A, B, E) Πλήρες διμερές γράφημα G = (A, B, E): για κάθε x A, y B: {x, y} Ε(G) Συμβολίζουμε με K p,q όπου p = A και q = B K 3,4 G = ({ }, { }, E) C 6
Πλέγμα Έστω X = {x 1,, x p } και Y = {y 1,, y q } R p,q = ( { }) X Y, {(x i, y j ), (x k, y l )} i k + j l = 1 Το πλέγμα R 4,5
Πλέγμα Έστω X = {x 1,, x p } και Y = {y 1,, y q } R p,q = ( { }) X Y, {(x i, y j ), (x k, y l )} i k + j l = 1 Το πλέγμα R 4,5 Το γράφημα που αντιστοιχεί σε ένα επίπεδο δισδιάστατο πλέγμα V(R p,q ): τομές των ευθύγραμμων τμημάτων του πλέγματος E(R p,q ): τα ευθύγραμμα τμήματα μεταξύ των κορυφών
Ασκησούλα Ερώτημα Βρείτε προσεκτικά τις τιμές δ(g) και Δ(G) για κάθε τιμή των p, q 1 στις εξής περιπτώσεις: 1 G K p,q 2 G R p,q
Ασκησούλα Ερώτημα Βρείτε προσεκτικά τις τιμές δ(g) και Δ(G) για κάθε τιμή των p, q 1 στις εξής περιπτώσεις: 1 G K p,q 2 G R p,q K 3,4 R 4,5
Το γραμμικό γράφημα Το γραμμικό γράφημα ενός G = (V, E) ορίζεται ως εξής: L(G) = ( E(G), { {e, e } e, e E(G) και e e }) Δηλαδή οι κορυφές του L(G) είναι οι ακμές του G και δύο κορυφές του L(G) ενώνονται με ακμή αν και μόνο αν οι αντίστοιχες ακμές έχουν κοινό άκρο
Το γραμμικό γράφημα Το γραμμικό γράφημα ενός G = (V, E) ορίζεται ως εξής: L(G) = ( E(G), { {e, e } e, e E(G) και e e }) Δηλαδή οι κορυφές του L(G) είναι οι ακμές του G και δύο κορυφές του L(G) ενώνονται με ακμή αν και μόνο αν οι αντίστοιχες ακμές έχουν κοινό άκρο e 2,3 e 3,4 v 2 v 3 v 1 v 4 e 1,2 e 2,6 e 3,5 e 4,5 v 6 v 5 e 1,6 e 5,6 G L(G)
Συμπλήρωμα γραφήματος Συμπλήρωμα G ενός γραφήματος G = (V, E): ίδιο σύνολο κορυφών ακριβώς εκείνες τις ακμές που δεν υπάρχουν στο G a b a b a b a b d c c d d c d c C 4 C 4 2K 2 K 1,3 K 1,3
Συμπλήρωμα γραφήματος Συμπλήρωμα G ενός γραφήματος G = (V, E): ίδιο σύνολο κορυφών ακριβώς εκείνες τις ακμές που δεν υπάρχουν στο G a b a b a b a b d c c d d c d c C 4 C 4 2K 2 K 1,3 K 1,3 Παρατήρηση Για κάθε γράφημα G, ισχύει G G
Συμπλήρωμα γραφήματος Συμπλήρωμα G ενός γραφήματος G = (V, E): ίδιο σύνολο κορυφών ακριβώς εκείνες τις ακμές που δεν υπάρχουν στο G a b a b a b a b d c c d d c d c C 4 C 4 2K 2 K 1,3 K 1,3 Παρατήρηση Για κάθε γράφημα G, ισχύει G G Ασκησούλα Έστω G G Δείξτε ότι n = 1, 0 mod 4
Πράξεις κορυφών και ακμών Πράξεις κορυφών Διαγραφή κορυφής G v Σύμπτυξη κορυφής G/v (μόνο όταν N(v) = {a, b}) Πράξεις ακμών Διαγραφή ακμής G e Σύμπτυξη ακμής G/e Υποδιαίρεση ακμής G e a b a a b d c d c d c C 4 C 4 b C 4 {b, c} P 4 a b a a w b w d c d c C 4 /{d, c} K 3 C 4 /b K 3 C 4 {a, b} C 5
Πράξεις μεταξύ γραφημάτων Πράξεις μεταξύ ξένων (V(G) V(H) = ) γραφημάτων G, H: ένωση G H: καμία ακμή μεταξύ τους σύνδεση G H: προσθήκη όλων των ακμών μεταξύ τους γινόμενο G H C 4 P 3 C 4 P 3 C 4 P 3
Γινόμενο G H -- Συμβολισμοί {V(G) V(H), {{(u, x), (v, x)} {u, v} E(G) E(H)}} αντικαθιστούμε κάθε κορυφή του G την με H H v για κάθε {u, v} του G εισάγουμε ακμές μεταξύ H u, H v που ενώνουν κορυφές των H u και H v σε 1-1 = C 4 P 3
Γινόμενο G H -- Συμβολισμοί {V(G) V(H), {{(u, x), (v, x)} {u, v} E(G) E(H)}} αντικαθιστούμε κάθε κορυφή του G την με H H v για κάθε {u, v} του G εισάγουμε ακμές μεταξύ H u, H v που ενώνουν κορυφές των H u και H v σε 1-1 = C 4 P 3 Έστω ένα γράφημα G και ένας θετικός ακέραιος k 0 Τότε, k G = G G }{{} k φορές G (k) = G G }{{} k φορές G [k] = G } {{ G } k φορές
Σχέσεις γραφημάτων Έστω G και H δύο γραφήματα υπογράφημα: V(H) V(G) και E(H) E(G) επαγόμενο υπογράφημα: V(H) V(G) και v V(H) ισχύει Ν H (v) = N G (v) παραγόμενο υπογράφημα: V(H) = V(G) και E(H) E(G)
Σχέσεις γραφημάτων Έστω G και H δύο γραφήματα υπογράφημα: V(H) V(G) και E(H) E(G) επαγόμενο υπογράφημα: V(H) V(G) και v V(H) ισχύει Ν H (v) = N G (v) παραγόμενο υπογράφημα: V(H) = V(G) και E(H) E(G) Έστω S V(G) Θα γράφουμε ως G[S] το επαγόμενο υπογράφημα: (S, {{u, v} u, v S και {u, v} E(G)}) Με άλλα λόγια για το γράφημα G[S] ισχύει G[S] = G {V(G) S}
Σχέσεις γραφημάτων Παραδείγματα Για τα επαγόμενα υπογραφήματα ισχύουν τα ακόλουθα: Το γράφημα C 4 P 3 περιέχει ως παραγόμενο υπογράφημα το C 4 C 4 C 4 Κάθε κύκλος C n με n 3 έχει ως επαγόμενο γράφημα ένα P n 1 Για p, q 2 το γράφημα K p,q έχει ένα επαγόμενο υπογράφημα ισόμορφο του C 4
Σχέσεις γραφημάτων Παραδείγματα Για τα επαγόμενα υπογραφήματα ισχύουν τα ακόλουθα: Το γράφημα C 4 P 3 περιέχει ως παραγόμενο υπογράφημα το C 4 C 4 C 4 Κάθε κύκλος C n με n 3 έχει ως επαγόμενο γράφημα ένα P n 1 Για p, q 2 το γράφημα K p,q έχει ένα επαγόμενο υπογράφημα ισόμορφο του C 4 Κανονικό ή τακτικό γράφημα Αν όλες οι κορυφές έχουν τον ίδιο βαθμό δ(g) = Δ(G)
Σχέσεις γραφημάτων Παραδείγματα Για τα επαγόμενα υπογραφήματα ισχύουν τα ακόλουθα: Το γράφημα C 4 P 3 περιέχει ως παραγόμενο υπογράφημα το C 4 C 4 C 4 Κάθε κύκλος C n με n 3 έχει ως επαγόμενο γράφημα ένα P n 1 Για p, q 2 το γράφημα K p,q έχει ένα επαγόμενο υπογράφημα ισόμορφο του C 4 Κανονικό ή τακτικό γράφημα Αν όλες οι κορυφές έχουν τον ίδιο βαθμό δ(g) = Δ(G) Ασκησούλα 1 Ποια είναι τακτικά γραφήματα: K n, P n, C n, K p,q 2 Δείξτε ότι για ένα r-τακτικό γράφημα: rn = 2m
Περίπατος - Περιήγηση Περίπατος W στο G: ακολουθία (ενδεχομένως επαναλαμβανόμενων) κορυφών W = [v 1,, v r ]: 1 i < r, {v i v i+1 } E(G) μήκος ενός περιπάτου είναι το πλήθος των κορυφών μείον ένα Περιήγηση W στο G: ένας περίπατος που αρχίζει και τελειώνει (έχει ως άκρα) με την ίδια κορυφή: κυκλική διάταξη W = [v 1,, v r, v 1 ] v 2 v 3 v 1 v 4 W = [v 3, v 5, v 4, v 3, v 2, v 6 ] με μήκος 5 P = {v 3, v 4, v 5, v 6 } με μήκος 3 v 6 v 5
Περίπατος - Περιήγηση Περίπατος W στο G: ακολουθία (ενδεχομένως επαναλαμβανόμενων) κορυφών W = [v 1,, v r ]: 1 i < r, {v i v i+1 } E(G) μήκος ενός περιπάτου είναι το πλήθος των κορυφών μείον ένα Περιήγηση W στο G: ένας περίπατος που αρχίζει και τελειώνει (έχει ως άκρα) με την ίδια κορυφή: κυκλική διάταξη W = [v 1,, v r, v 1 ] v 2 v 3 v 1 v 4 W = [v 3, v 5, v 4, v 3, v 2, v 6 ] με μήκος 5 P = {v 3, v 4, v 5, v 6 } με μήκος 3 v 6 v 5 Παρατήρηση Κάθε μονοπάτι ορίζει έναν περίπατο χωρίς επαναλαμβανόμενες κορυφές Αντίστροφα, κάθε περίπατος χωρίς επαναλαμβανόμενες κορυφές ορίζει ένα μονοπάτι
Περίπατος - Μονοπάτι Λήμμα Το G περιέχει έναν (x, y)-περίπατο αν και μόνο αν περιέχει ένα (x, y)- μονοπάτι
Περίπατος - Μονοπάτι Λήμμα Το G περιέχει έναν (x, y)-περίπατο αν και μόνο αν περιέχει ένα (x, y)- μονοπάτι Απόδειξη ( ) Προηγούμενη Παρατήρηση
Περίπατος - Μονοπάτι Λήμμα Το G περιέχει έναν (x, y)-περίπατο αν και μόνο αν περιέχει ένα (x, y)- μονοπάτι Απόδειξη ( ) Προηγούμενη Παρατήρηση ( ) αν (x, y)-περίπατο W τότε (x, y)-μονοπάτι P με κορυφές μόνο από W Έστω W = [v 1,, v r ] ένας περίπατος ελαχίστου μήκους με v 1 = x και v r = y για το οποίο δεν ισχύει
Περίπατος - Μονοπάτι Λήμμα Το G περιέχει έναν (x, y)-περίπατο αν και μόνο αν περιέχει ένα (x, y)- μονοπάτι Απόδειξη ( ) Προηγούμενη Παρατήρηση ( ) αν (x, y)-περίπατο W τότε (x, y)-μονοπάτι P με κορυφές μόνο από W Έστω W = [v 1,, v r ] ένας περίπατος ελαχίστου μήκους με v 1 = x και v r = y για το οποίο δεν ισχύει v r εμφανίζεται μόνο μια φορά στο W (αλλιώς W δεν είναι ελάχιστο)
Περίπατος - Μονοπάτι Λήμμα Το G περιέχει έναν (x, y)-περίπατο αν και μόνο αν περιέχει ένα (x, y)- μονοπάτι Απόδειξη ( ) Προηγούμενη Παρατήρηση ( ) αν (x, y)-περίπατο W τότε (x, y)-μονοπάτι P με κορυφές μόνο από W Έστω W = [v 1,, v r ] ένας περίπατος ελαχίστου μήκους με v 1 = x και v r = y για το οποίο δεν ισχύει v r εμφανίζεται μόνο μια φορά στο W (αλλιώς W δεν είναι ελάχιστο) Θεωρούμε W = [v 1,, v r 1 ] και επαγωγικά υποθέτουμε ότι ισχύει: (v 1, v r 1 )-μονοπάτι P
Περίπατος - Μονοπάτι Λήμμα Το G περιέχει έναν (x, y)-περίπατο αν και μόνο αν περιέχει ένα (x, y)- μονοπάτι Απόδειξη ( ) Προηγούμενη Παρατήρηση ( ) αν (x, y)-περίπατο W τότε (x, y)-μονοπάτι P με κορυφές μόνο από W Έστω W = [v 1,, v r ] ένας περίπατος ελαχίστου μήκους με v 1 = x και v r = y για το οποίο δεν ισχύει v r εμφανίζεται μόνο μια φορά στο W (αλλιώς W δεν είναι ελάχιστο) Θεωρούμε W = [v 1,, v r 1 ] και επαγωγικά υποθέτουμε ότι ισχύει: (v 1, v r 1 )-μονοπάτι P Προσθέτουμε την ακμή {v r 1, v r } στο P και δημιουργούμε το ζητούμενο (x, y)-μονοπάτι P
Απόσταση Απόσταση dist(x, y): το μήκος του μικρότερου (συντομότερου) (x, y)-μονοπατιού Αν δεν υπάρχει τέτοιο μονοπάτι τότε dist(x, y) = v 2 v 3 v 1 v 4 v 6 v 5 dist(v 3, v 6 ) = 2 με συντομότερα μονοπάτια τα P = {v 3, v 5, v 6 } και P = {v 3, v 2, v 6 } dist(v 1, v 4 ) = 3 με ένα συντομότερο μονοπάτι το P = {v 1, v 2, v 3, v 4 }
Απόσταση Απόσταση dist(x, y): το μήκος του μικρότερου (συντομότερου) (x, y)-μονοπατιού Αν δεν υπάρχει τέτοιο μονοπάτι τότε dist(x, y) = v 2 v 3 v 1 v 4 v 6 v 5 dist(v 3, v 6 ) = 2 με συντομότερα μονοπάτια τα P = {v 3, v 5, v 6 } και P = {v 3, v 2, v 6 } dist(v 1, v 4 ) = 3 με ένα συντομότερο μονοπάτι το P = {v 1, v 2, v 3, v 4 } Τριγωνική ανισότητα Για κάθε τριάδα κορυφών u, v, w ενός γραφήματος G ισχύει: dist(u, v) + dist(v, w) dist(u, w)
Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη
Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη ( ) Έστω G = (A, B, E) διμερές Θεωρούμε ότι στο G υπάρχει ένας περιττός κύκλος C k = {v 1,, v k }
Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη ( ) Έστω G = (A, B, E) διμερές Θεωρούμε ότι στο G υπάρχει ένας περιττός κύκλος C k = {v 1,, v k } Θεωρούμε ότι v 1 A Έπεται ότι v 2 B, v 3 A v i A όταν i περιττό και v i B όταν i άρτιο
Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη ( ) Έστω G = (A, B, E) διμερές Θεωρούμε ότι στο G υπάρχει ένας περιττός κύκλος C k = {v 1,, v k } Θεωρούμε ότι v 1 A Έπεται ότι v 2 B, v 3 A v i A όταν i περιττό και v i B όταν i άρτιο Άρα v k A επειδή το k είναι περιττό v 1, v k A, {v 1, v k } E άτοπο (διμερή)
Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη ( ) Έστω G δεν περιέχει περιττούς κύκλους και έστω v V(G) A: dist(v, a) είναι περιττό για κάθε a A B: dist(v, b) είναι άρτιο για κάθε b A (v A)
Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη ( ) Έστω G δεν περιέχει περιττούς κύκλους και έστω v V(G) A: dist(v, a) είναι περιττό για κάθε a A B: dist(v, b) είναι άρτιο για κάθε b A (v A) Θέλουμε να δείξουμε ότι G = (A, B, E) είναι διμερές Έστω ότι υπάρχει ακμή {a i, a j } με a i, a j A
οπότε, C A = περιττό + 1 + περιττό = περιττό και καταλήγουμε σε άτοπο Χαρακτηρισμός Διμερή Γραφημάτων Λήμμα Ένα γράφημα είναι διμερές αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους Απόδειξη ( ) Έστω G δεν περιέχει περιττούς κύκλους και έστω v V(G) A: dist(v, a) είναι περιττό για κάθε a A B: dist(v, b) είναι άρτιο για κάθε b A (v A) Θέλουμε να δείξουμε ότι G = (A, B, E) είναι διμερές Έστω ότι υπάρχει ακμή {a i, a j } με a i, a j A Τότε όμως θα υπάρχει κύκλος C A στο G: C A = {v,, a }{{} i, a j,, v} }{{} περιττό περιττό
Δυνάμεις γραφημάτων Δύναμη ενός γραφήματος G: G k = (V(G), {{u, v} dist(u, v) k}) Προφανώς G 1 G P 3 5 : P 2 5 : P 5 :
Δυνάμεις γραφημάτων Δύναμη ενός γραφήματος G: G k = (V(G), {{u, v} dist(u, v) k}) Προφανώς G 1 G P 3 5 : P 2 5 : P 5 : Έστω ένα γράφημα G και μια κορυφή v που δεν είναι καθολική στο G Τι πρέπει να ισχύει στο G για να γίνει η v καθολική στο G 2 ;
Εκκεντρότητα - Διάμετρος - Ακτίνα Εκκεντρότητα κορυφής: ecc(v) = max u V(G) dist(v, u) Διάμετρος γραφήματος: dia(g) = max v V(G) ecc(v) Ακτίνα γραφήματος: rad(g) = min v V(G) ecc(v) cent(g): σύνολο των κεντρικών κορυφών rad(g) = ecc(v) far(g): σύνολο των απόκεντρων κορυφών dia(g) = ecc(v)
Εκκεντρότητα - Διάμετρος - Ακτίνα Εκκεντρότητα κορυφής: ecc(v) = max u V(G) dist(v, u) Διάμετρος γραφήματος: dia(g) = max v V(G) ecc(v) Ακτίνα γραφήματος: rad(g) = min v V(G) ecc(v) cent(g): σύνολο των κεντρικών κορυφών rad(g) = ecc(v) far(g): σύνολο των απόκεντρων κορυφών dia(g) = ecc(v) 2 2 3 3 2 2 far(g) = { }, cent(g) = { }
5 4 Εκκεντρότητα - Διάμετρος - Ακτίνα Εκκεντρότητα κορυφής: ecc(v) = max u V(G) dist(v, u) Διάμετρος γραφήματος: dia(g) = max v V(G) ecc(v) Ακτίνα γραφήματος: rad(g) = min v V(G) ecc(v) cent(g): σύνολο των κεντρικών κορυφών rad(g) = ecc(v) far(g): σύνολο των απόκεντρων κορυφών dia(g) = ecc(v) 5 2 2 3 3 2 2 far(g) = { }, cent(g) = { } 4 5 4 3 3 5
Εκκεντρότητα - Διάμετρος - Ακτίνα - Παρατηρήσεις Παρατήρηση Κάθε κορυφή της κλίκας K n είναι κεντρική και απόκεντρη Το ίδιο ισχύει και για το K p,q με p, q 2 Θεώρημα ṛad(g) dia(g) 2 rad(g) Απόδειξη?? Έστω v cent(g), και έστω x, y V(G) Θνδο dist(x, y) 2 rad(g)??
Εκκεντρότητα - Διάμετρος - Ακτίνα - Παρατηρήσεις Παρατήρηση Κάθε κορυφή της κλίκας K n είναι κεντρική και απόκεντρη Το ίδιο ισχύει και για το K p,q με p, q 2 Θεώρημα ṛad(g) dia(g) 2 rad(g) Απόδειξη?? Έστω v cent(g), και έστω x, y V(G) Θνδο dist(x, y) 2 rad(g)?? Πόρισμα (`όλοι κέντρο και απόκεντρο ή κανένας') Είτε cent(g) = far(g) = V(G) είτε cent(g) far(g) = Απόδειξη Έστω x cent(g) far(g): dia(g) = ecc(x) και rad(g) = ecc(x)
Εκκεντρότητα - Διάμετρος - Ακτίνα - Παρατηρήσεις Παρατήρηση Κάθε κορυφή της κλίκας K n είναι κεντρική και απόκεντρη Το ίδιο ισχύει και για το K p,q με p, q 2 Θεώρημα ṛad(g) dia(g) 2 rad(g) Απόδειξη?? Έστω v cent(g), και έστω x, y V(G) Θνδο dist(x, y) 2 rad(g)?? Πόρισμα (`όλοι κέντρο και απόκεντρο ή κανένας') Είτε cent(g) = far(g) = V(G) είτε cent(g) far(g) = Απόδειξη Έστω x cent(g) far(g): dia(g) = ecc(x) και rad(g) = ecc(x) Αν cent(g) far(g) τότε rad(g) = dia(g)
Εκκεντρότητα - Διάμετρος - Ακτίνα - Παρατηρήσεις Παρατήρηση Κάθε κορυφή της κλίκας K n είναι κεντρική και απόκεντρη Το ίδιο ισχύει και για το K p,q με p, q 2 Θεώρημα ṛad(g) dia(g) 2 rad(g) Απόδειξη?? Έστω v cent(g), και έστω x, y V(G) Θνδο dist(x, y) 2 rad(g)?? Πόρισμα (`όλοι κέντρο και απόκεντρο ή κανένας') Είτε cent(g) = far(g) = V(G) είτε cent(g) far(g) = Απόδειξη Έστω x cent(g) far(g): dia(g) = ecc(x) και rad(g) = ecc(x) Αν cent(g) far(g) τότε rad(g) = dia(g) v V(G): rad(g) ecc(v) dia(g)
Εκκεντρότητα - Διάμετρος - Ακτίνα - Παρατηρήσεις Παρατήρηση Κάθε κορυφή της κλίκας K n είναι κεντρική και απόκεντρη Το ίδιο ισχύει και για το K p,q με p, q 2 Θεώρημα ṛad(g) dia(g) 2 rad(g) Απόδειξη?? Έστω v cent(g), και έστω x, y V(G) Θνδο dist(x, y) 2 rad(g)?? Πόρισμα (`όλοι κέντρο και απόκεντρο ή κανένας') Είτε cent(g) = far(g) = V(G) είτε cent(g) far(g) = Απόδειξη Έστω x cent(g) far(g): dia(g) = ecc(x) και rad(g) = ecc(x) Αν cent(g) far(g) τότε rad(g) = dia(g) v V(G): rad(g) ecc(v) dia(g) v V(G): ecc(v) = rad(g) = dia(g) cent(g) = far(g)
Περίμετρος - Περιφέρεια Ως προς τα μήκη των κύκλων ενός γραφήματος G: Το μέγιστο μήκος ενός κύκλου καλείται περίμετρος, crm(g) Το ελάχιστο μήκος ενός κύκλου καλείται περιφέρεια, gir(g)
Περίμετρος - Περιφέρεια Ως προς τα μήκη των κύκλων ενός γραφήματος G: Το μέγιστο μήκος ενός κύκλου καλείται περίμετρος, crm(g) Το ελάχιστο μήκος ενός κύκλου καλείται περιφέρεια, gir(g) v 2 v 3 v 1 v 4 v 6 v 5 crm(g) = 6 και gir(g) = 3 Ένας άχορδος κύκλος είναι ο C = (v 2, v 3, v 5, v 6, v 2 ) C 4
Περίμετρος - Περιφέρεια: δ(g) crm(g) 1 Θεώρημα Για κάθε γράφημα G ισχύει ότι δ(g) crm(g) 1 Απόδειξη
Περίμετρος - Περιφέρεια: δ(g) crm(g) 1 Θεώρημα Για κάθε γράφημα G ισχύει ότι δ(g) crm(g) 1 Απόδειξη Θα βρούμε έναν κύκλο με μέγεθος δ(g) + 1
Περίμετρος - Περιφέρεια: δ(g) crm(g) 1 Θεώρημα Για κάθε γράφημα G ισχύει ότι δ(g) crm(g) 1 Απόδειξη Θα βρούμε έναν κύκλο με μέγεθος δ(g) + 1 Έστω P = (v 1,, v k ) ένα μονοπάτι του G με μέγιστο μήκος
Περίμετρος - Περιφέρεια: δ(g) crm(g) 1 Θεώρημα Για κάθε γράφημα G ισχύει ότι δ(g) crm(g) 1 Απόδειξη Θα βρούμε έναν κύκλο με μέγεθος δ(g) + 1 Έστω P = (v 1,, v k ) ένα μονοπάτι του G με μέγιστο μήκος Ισχύει N(v 1 ) P (ΓΙΑΤΙ?)
Περίμετρος - Περιφέρεια: δ(g) crm(g) 1 Θεώρημα Για κάθε γράφημα G ισχύει ότι δ(g) crm(g) 1 Απόδειξη Θα βρούμε έναν κύκλο με μέγεθος δ(g) + 1 Έστω P = (v 1,, v k ) ένα μονοπάτι του G με μέγιστο μήκος Ισχύει N(v 1 ) P (ΓΙΑΤΙ?) deg(v 1 ) = N(v 1 ) δ(g) G[N[v 1 ]] κύκλο μεγέθους δ(g) + 1
Περίμετρος - Περιφέρεια: δ(g) crm(g) 1 Θεώρημα Για κάθε γράφημα G ισχύει ότι δ(g) crm(g) 1 Απόδειξη Θα βρούμε έναν κύκλο με μέγεθος δ(g) + 1 Έστω P = (v 1,, v k ) ένα μονοπάτι του G με μέγιστο μήκος Ισχύει N(v 1 ) P (ΓΙΑΤΙ?) deg(v 1 ) = N(v 1 ) δ(g) G[N[v 1 ]] κύκλο μεγέθους δ(g) + 1 δ(g) + 1 crm(g)
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n )
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n ) Επαγωγικά ως προς το n: Βάση: κάθε γράφημα με n 3 και m 3 έχει κύκλο
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n ) Επαγωγικά ως προς το n: Βάση: κάθε γράφημα με n 3 και m 3 έχει κύκλο Υπόθεση: ισχύει για κάθε γράφημα G με V(G) n 1
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n ) Επαγωγικά ως προς το n: Βάση: κάθε γράφημα με n 3 και m 3 έχει κύκλο Υπόθεση: ισχύει για κάθε γράφημα G με V(G) n 1 Επαγωγικό βήμα: για V(G) = n:
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n ) Επαγωγικά ως προς το n: Βάση: κάθε γράφημα με n 3 και m 3 έχει κύκλο Υπόθεση: ισχύει για κάθε γράφημα G με V(G) n 1 Επαγωγικό βήμα: για V(G) = n: Αν δ(g) 2 τότε από το Θεώρημα (δ(g) crm(g) 1) ισχύει
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n ) Επαγωγικά ως προς το n: Βάση: κάθε γράφημα με n 3 και m 3 έχει κύκλο Υπόθεση: ισχύει για κάθε γράφημα G με V(G) n 1 Επαγωγικό βήμα: για V(G) = n: Αν δ(g) 2 τότε από το Θεώρημα (δ(g) crm(g) 1) ισχύει Αν δ(g) 1 τότε υπάρχει κορυφή v με deg(v) 1 Το G v έχει n 1 κορυφές και ε(g v) 1
Περίμετρος - Περιφέρεια: ε(g) 1 κύκλος Λήμμα Κάθε γράφημα G με πυκνότητα ε(g) 1 περιέχει κύκλο Απόδειξη Πρέπει νδο αν m n τότε το γράφημα έχει κύκλο (ε(g) = m n ) Επαγωγικά ως προς το n: Βάση: κάθε γράφημα με n 3 και m 3 έχει κύκλο Υπόθεση: ισχύει για κάθε γράφημα G με V(G) n 1 Επαγωγικό βήμα: για V(G) = n: Αν δ(g) 2 τότε από το Θεώρημα (δ(g) crm(g) 1) ισχύει Αν δ(g) 1 τότε υπάρχει κορυφή v με deg(v) 1 Το G v έχει n 1 κορυφές και ε(g v) 1 Εφαρμόζουμε επαγωγικά την Υπόθεση στο G v κύκλος στο G v που παραμένει και στο G
Σύνοψη Κεφαλαίου 1 G = (V, E) n = V(G) m = E(G) N(v) deg G (v) deg(v) = 0 deg(v) = 1 deg(v) = n 1 δ(g), Δ(G) ε(g) = m n K n, P n, C n K p,q G[S] G Συμβολισμοί ecc(v) dia(g), rad(g) cent(g) far(g) dist(u, v) crm(g) gir(g)
Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας
Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Λέκτορας Χάρης Παπαδόπουλος «Θεωρία Γραφημάτων» Έκδοση: 10 Ιωάννινα 2014 Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourseuoigr/course/viewphp?id=1139 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 40 [1] ή μεταγενέστερη [1] https://creativecommonsorg/licenses/by-sa/40/