Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Σχετικά έγγραφα
Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Μικροβιολογία & Υγιεινή Τροφίμων

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστικά & Διακριτά Μαθηματικά

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστική άλγεβρα Ενότητα 6: Ο αλγόριθμος της διαίρεσης

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ηλεκτρονικοί Υπολογιστές I

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Ιστορία της μετάφρασης

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Εκκλησιαστικό Δίκαιο

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εκκλησιαστικό Δίκαιο

Βασικές Αρχές Φαρμακοκινητικής

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Εισαγωγή στους Αλγορίθμους

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Υπολογιστικά & Διακριτά Μαθηματικά

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Σχεδιασμός & Αξιολόγηση Προγραμμάτων Εκπαίδευσης Ενηλίκων

Ιστορία των Μαθηματικών

Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Εισαγωγή στους Αλγορίθμους

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εφαρμοσμένη Στατιστική

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διοικητική Λογιστική

Ιστορία της μετάφρασης

< a 42 >=< a 54 > < a 28 >=< a 36 >

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Ηλεκτρισμός & Μαγνητισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Μοντέρνα Θεωρία Ελέγχου

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Εκκλησιαστικό Δίκαιο

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Μαθηματική Ανάλυση Ι

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Ενότητα: Περιγραφική Στατιστική 1: Πίνακες - Διαγράμματα

Κβαντική Επεξεργασία Πληροφορίας

Transcript:

Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ομομορφισμοί και Πηλικοδάκτυλιοι Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών

14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς πρώτα ως πολυώνυμα τού F[x], δηλαδή ΜΚΔ(f(x), g(x))= 1, τότε ΜΚΔ(f(x), g(x))= 1 και ως πολυώνυμα τού K[x], όπου K υπέρσωμα τού F 14 Ομομορφισμοί και Πηλικοδάκτυλιοι Ομομορφισμοί Έστω R και S δύο μοναδιαίοι μεταθετικοί δακτύλιοι Υπενθυμίζουμε ότι Ορισμός 141 Ένας ομομορφισμός δακτυλίων από τον δακτύλιο R στον δακτύλιο S είναι μια απεικόνιση ϕ : R S που ικανοποιεί τα (αʹ) a, b R, ϕ(a + b) = ϕ(a) + ϕ(b), (βʹ) a, b R, ϕ(ab) = ϕ(a)ϕ(b), (γʹ) ϕ(1 R ) = 1 S Ονομάζουμε πυρήνα τού ομομορφισμού ϕ : R S, το σύνολο Kerϕ = {r R ϕ(r) = 0 S } Γνωρίζουμε ότι Λήμμα 141 Ο πυρήνας Kerϕ οποιουδήποτε ομομορφισμού ϕ : R S είναι ένα ιδεώδες τού R Υπενθυμίζουμε ότι ένας ομομορφισμός ϕ : R S ονομάζεται (αʹ) μονομορφισμός αν, ο ομομορφισμός ϕ είναι μια «1-1» απεικόνιση, (βʹ) επιμορφισμός αν, ο ομομορφισμός ϕ είναι μια «επί» απεικόνιση, (γʹ) ισομορφισμός αν, ο ομομορφισμός ϕ είναι μια «1-1» και «επί» απεικόνιση, Είναι γνωστά τα εξής: Λήμμα 142 (α ) Ένας ομομορφισμός δακτυλίων ϕ : R S είναι μονομορφισμός, αν και μόνο αν, Kerϕ = {0 R } (β ) Αν ϕ : R S είναι ένας ισομορφισμός,τότε και η αντίστροφη απεικόνιση ϕ 1 : S R, s ϕ 1 (s) = r όταν ϕ(r) = s, είναι επίσης ένας ισομορφισμός δακτυλίων 13 Ν Μ

1 Π Έ Πηλικοδάκτυλιοι Έστω I ένας ιδεώδες ενός μεταθετικού μοναδιαίου δακτυλίου R Θεωρούμε το σύνολο R/I = {a + I a } των αριστερών πλευρικών κλασεων τής I εντός τής R Κατόπιν, θεωρούμε την πηλικοομάδα (R/I, +) τής αβελιανής ομάδας R και την αντιστοιχία : R/I R/I R/I, (a I, b + I) ab + I Η είναι μια καλά ορισμένη απεικόνιση και η τριάδα (R/I, +, ) αποτελεί έναν μεταθετικό δακτύλιο με ουδέτερο στοιχείο ως προς την πρόσθεση το 0 R + I και μοναδιαίο στοιχείο ως προς τον πολλαπλασιασμό το 0 R + I Ο δακτύλιος (R/I, +, ) ονομάζεται ο πηλικοδακτύλιος τού R ως προς το ιδεώδες I Είναι γνωστό ότι Λήμμα 143 (α ) Η απεικόνιση π I : R R/I, r π I (r) := r + I είναι ένας επιμορφισμός δακτυλίων με Kerπ I = I (β ) Αν L είναι το σύνολο των ιδεωδών τού R/I και K είναι το σύνολο των ιδεωδών J τού R που περιέχουν το I, δηλαδή με J I, τότε η αντιστοιχία K L, J J/I := {j + I j J} αποτελεί μια «1-1» και «επί» απεικόνιση Δηλαδή, κάθε ιδεώδες M τού R/I είναι τής μορφής M = J/I, όπου J ιδεώδες τού R με I J Συνήθως, ο επιμορφισμός π I : R R/I ονομάζεται ο κανονικός επιμορφισμός Πρώτο Θεώρημα Ισομορφισμού Δακτυλίων Θεώρημα 141 Αν ϕ : R S είναι ένας ομομορφισμός δακτυλίων και I είναι ένα ιδεώδες τού R με I Kerϕ, τότε υπάρχει μοναδικός ομομορφισμός ϕ : R/I S με ϕ π I = ϕ Επιπλέον, (α ) Kerϕ = Kerϕ/I και (β ) ο ϕ είναι επιμορφισμός, αν και μόνο αν, ο ϕ είναι επιμορφισμός Απόδειξη (Περιγραφή) Αποδεικνύεται ότι η αντιστοιχία ϕ : R/I S, r + I ϕ(r + I) := ϕ(r) είναι ένας καλά ορισμένος ομομορφισμός δακτυλίων επειδή I Kerϕ Τώρα, r R είναι ϕ π I (r) = ϕ(r + I) = ϕ(r) και επομένως ϕ π I = ϕ Αν ψ : R/I S είναι ένας ομομορφισμός δακτυλίων με ψ π I = ϕ, τότε ψ π I = ϕ π I και γι αυτό r + I R/I, ψ(r + I) = ψ π I (r) = ϕ π I (r) = ϕ(r + I) Ν Μ 14

15 Π Ι Συνεπώς, ψ = ϕ (α ) Έχουμε: r + I Kerϕ ϕ(r + I) = 0 S ϕr = 0 S r Kerϕ Ώστε, Kerϕ = Kerϕ/I (β ) Αν ο ϕ είναι επιμορφισμός, τότε είναι και ο ϕ ένας επιμορφισμός, αφού ισούται με τη σύνθεση τού ϕ με τον επιμορφισμό π I Αντίστροφα, αν ο π I (r) = ϕ π I είναι ένας επιμορφισμός, τότε είναι επιμορφισμός και ο ϕ, αφού γενικά αν μια σύνθεση α β δύο απεικονίσεων είναι «επί», τότε και η α είναι «επί» Παρατηρήσεις 141 (αʹ) Τη συγκεκριμένη ιδιότητα τού ϕ στο Θεώρημα 141, τη R R/I δηλώνουμε λέγοντας ότι ο ϕ συμπληρώνει το διάγραμμα R R/I μεταθετικό διάγραμμα ϕ π I C! ϕ ϕ π I C (βʹ) Στο προηγούμενο Θεώρημα 141 επιλέγοντας ως I τον ίδιο τον πυρήνα Kerϕ διαπιστώνουμε ότι ο επαγόμενος ομομορφισμός ϕ : R/I S είναι ένας μονομορφισμός, αφού έχει ως πυρήνα το Kerϕ/Kerϕ (γʹ) Τέλος, δοθέντος τού ομομορφισμού ϕ : R S, θεωρούμε τον επαγόμενο επιμορφισμό δακτυλίων ϕ : R ϕ(r), r ϕ(r) Παρατηρούμε ότι Kerϕ = Kerϕ Έτσι, επιλέγοντας ως I = Kerϕ και εφαρμόζοντας το Θεώρημα 141 στον ομομορφισμό ϕ έχουμε ότι ο δακτύλιος R/Kerϕ είναι ισόμορφος με τον δακτύλιο ϕ(r) στο 15 Πρώτα και μεγιστοτικά Ιδεώδη Έστω (R, +, ) ένας μοναδιαίος μεταθετικός δακτύλιος και I R ένα γνήσιο ιδεώδες τού R Ορισμός 151 Το γνήσιο ιδεώδες I τού R ονομάζεται πρώτο αν, a, b R με ab I έπεται είτε a I είτε b I Το γνήσιο ιδεώδες I τού R ονομάζεται μεγιστοτικό αν, για κάθε ιδεώδες J τού R με I J έπεται ή I = J ή J = R Υπενθυμίζουμε την πολύ σημαντική 15 Ν Μ

Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος «Αλγεβρικές Δομές ΙΙ Ομομορφισμοί και Πηλικοδάκτυλιοι» Έκδοση: 10 Ιωάννινα 2014 Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourseuoigr/course/viewphp?id=1299 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 40 [1] ή μεταγενέστερη [1] https://creativecommonsorg/licenses/by-sa/40/