Κεφάλαιο 5ο: Ακέραιος προγραμματισμός



Σχετικά έγγραφα
Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Γραμμικός Προγραμματισμός

Προσεγγιστικοί Αλγόριθμοι

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Δομές Δεδομένων και Αλγόριθμοι

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

3.7 Παραδείγματα Μεθόδου Simplex

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.

Ακέραιος Γραµµικός Προγραµµατισµός

z = c 1 x 1 + c 2 x c n x n

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

Ακέραιος Γραµµικός Προγραµµατισµός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Approximation Algorithms for the k-median problem

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ILP-Feasibility conp

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

ΜΕΙΚΤΟΣ ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Προσεγγιστικοί Αλγόριθμοι

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μοντελοποίηση προβληµάτων

Γραμμικός Προγραμματισμός

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Επιχειρησιακή Έρευνα

Μάθημα Επιλογής 8 ου εξαμήνου

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

1.1. Με τι ασχολείται η Αριθμητική Ανάλυση

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Επιχειρησιακή Έρευνα I

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Γραµµικός Προγραµµατισµός (ΓΠ)

ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 4. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/2017

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα I

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Επιχειρησιακή Έρευνα Βασικές Έννοιες Γραμμικού Προγραμματισμού

Επιχειρησιακή έρευνα (ασκήσεις)

Θεωρία Αποφάσεων και Βελτιστοποίηση

Επιχειρησιακή Έρευνα

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΜέθοδοιΜ& ΔύοΦάσεων

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Διδάσκων: Νίκος Λαγαρός

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Βασικές έννοιες και ορισµοί. Ευθεία

Επιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Transcript:

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα θα έχει την εξής μορφή: με περιορισμούς max (min) z = c 1 x + c 2 u A 1 x + A 2 u (, =) b u 0και ακέραιο x 0. Όπου Α 1 είναι ένας mxn 1 πίνακας και Α 2 ένας mxn 2 πίνακας. Όταν n 1 = 0 τότε το πρόβλημα είναι ένα πρόβλημα γραμμικού προγραμματισμού, ενώ αν n 2 = 0 τότε το πρόβλημα είναι ένα πρόβλημα ακεραίου προγραμματισμού. Τέλος αν n 1 0 και n 2 0 τότε το πρόβλημα είναι ένα πρόβλημα μικτού ακεραίου προγραμματισμού. Αν και αρκετοί αλγόριθμοι έχουν αναπτυχθεί για προβλήματα ακεραίου προγραμματισμού, καμμία από αυτές τις μεθόδους δεν είναι αξιόπιστη από υπολογιστική άποψη, ειδικότερα όταν ο αριθμός των μεταβλητών αυξάνει, σε αντίθεση με τον γραμμικό προγραμματισμό όπου προβλήματα με εκατοντάδες μεταβλητές και εκατοντάδες περιορισμούς μπορούν να λυθούν σε λογικό χρονικό διάστημα. Η υπολογιστική αυτή δυσκολία που παρατηρείται στους αλγορίθμους επίλυσης προβλημάτων ακεραίου προγραμματισμού έχει οδηγήσει τους χρήστες να βρούν άλλες μεθόδους επίλυσης τέτοιων προβλημάτων. Μια τέτοια προσέγγιση είναι να λυθεί το πρόβλημα σαν ένα πρόβλημα γραμμικού προγραμματισμού και στη συνέχεια να στρογγυλοποιηθεί η βέλτιστη λύση στις κοντινότερες ακέραιες τιμές. Πάντως, δεν υπάρχει καμμία εγγύηση ότι η στρογγυλοποιημένη λύση θα ικανοποιεί τους περιορισμούς, ειδικότερα στην περίπτωση που υπάρχει ένας ή περισσότεροι περιορισμοί - ισότητες. Από τη θεωρία του γραμμικού προγραμματισμού, μία στρογγυλοποιημένη λύση δεν μπορεί να είναι εφικτή αφού αυτό θα σήμαινε ότι μία βάση (με όλες τις μη βασικές μεταβλητές μηδέν) οδηγεί σε δύο διαφορετικές λύσεις. Η μη εφικτότητα που δημιουργείται από την στρογγυλοποίηση μπορεί να είναι ανεκτή εφόσον οι παράμετροι του προβλήματος δεν είναι σαφής. Αλλά, συνήθως σε ένα πρόβλημα ακεραίου προγραμματισμού υπάρχουν χαρακτηριστικοί τυπικοί περιορισμοί - ισότητες στις οποίες οι παράμετροι είναι σαφής. Ένας τέτοιος περιορισμός είναι ο x 1 + x 2 +... + x n = 1, με x = 0 ή 1 για = 1, 2,..., n. Κάτω από αυτές τις προϋποθέσεις, η στρογγυλοποίηση δεν μπορεί να χρησιμοποιηθεί και τότε ένας αλγόριθμος επίλυσης προβλημάτων ακεραίου προγραμματισμού είναι απαραίτητος. Επί πλέον στην ακαταλληλότητα της στρογγυλοποίησης δίνει έμφαση το γεγονός ότι αν και οι ακέραιες μεταβλητές θεωρούνται κοινώς ως αναπαράσταση ενός διακριτού αριθμού αντικειμένων (μηχανών, ανθρώπων, κ.τ.λ.), διάφοροι κωδικοποιήσεις χρησιμοποιούνται για να 125

αναπαραστήσουν τις ποσοτηκοποιήσεις. Για παράδειγμα, μια απόφαση για χρηματοδότηση ή όχι ενός προγράμματος μπορεί να αναπαρασταθεί από την δυαδική μεταβλητή x = 0 αν το πρόγραμμα απορίπτεται ή x = 1 αν αυτό γίνεται αποδεκτό. Σ αυτή την περίπτωση δεν θα ήταν λογικό να ασχοληθούμε με κλασματικές τιμές της μεταβλητής x, και η χρήση της στρογγυλοποίησης σαν μια προσέγγιση είναι λογικά μη αποδεκτή. Για να δείξουμε την σημαντικότητα των προβλημάτων στα οποία τέτοιες μεταβλητές χρησιμοποιούνται, στην επόμενη παράγραφο παρουσιάζονται χαρακτηριστικές εφαρμογές σ αυτή την περιοχή. 126

5.2 Μοντελοποίηση χαρακτηριστικών προβλημάτων ακεραίου προγραμματισμού 5.2.1 Η επιλογή μεταξύ δύο περιορισμών που αποτελούν μέρος μεγαλύτερου προβλήματος και δεν είναι δυνατον να ισχύουν και οι δύο ταυτόχρονα. Για παράδειγμα, οι περιορισμοί: είτε 3x 1 + 2x 2 18 ή x 1 + 4x 2 16 (1) Έστω Μ ένας πολύ μεγάλος αριθμός, τότε η (1) μπορεί να γραφεί ως εξής: 3x 1 + 2x 2 18 + ym x 1 + 4x 2 16 + (1 - y)m y = 0 ή 1. Παρατήρηση: Εάν y = 0 τότε ο δεύτερος περιορισμός ισχύει για κάθε τιμή των x 1, x 2, άρα δεν ισχύει ο περιορισμός, ενώ εάν y = 1 τότε ο πρώτος περιορισμός ισχύει για κάθε τιμή των x 1, x 2, άρα δεν ισχύει ο περιορισμός, δηλαδή έχουμε: είτε (y = 0) 3x 1 + 2x 2 18 x 1 + 4x 2 16 + Μ ή (y = 1) 3x 1 + 2x 2 18 + Μ x 1 + 4x 2 16. 5.2.2 Έστω ότι σε μια κατάσταση ενός προβλήματος πρέπει μόνο k από τους m περιορισμούς του προβλήματος να ισχύουν. Αυτό το πρόβλημα της επιλογή k περιορισμών από m περιορισμούς μπορεί να διατυπωθεί με τη βοήθεια των μεταβλητών του τύπου 0 ή 1 ως εξής: Έστω m είναι οι δυνατοί περιορισμοί του προβλήματος της μορφής: f 1 (x 1, x 2,..., x n ) b 1 f 2 (x 1, x 2,..., x n ) b 2... f m (x 1, x 2,..., x n ) b m και έστω ότι απαιτείται να ισχύουν k (k m) από αυτούς. Τότε για M πολύ μεγάλο έχουμε: f 1 (x 1, x 2,..., x n ) b 1 + y 1 M f 2 (x 1, x 2,..., x n ) b 2 + y 2 M... 127

f m (x 1, x 2,..., x n ) b m + y m M με m y i i 1 = m - k και y i = 0 ή 1, i = 1, 2,..., m. 5.2.3 Έστω ότι έχουμε μια μή κυρτή εφικτή περιοχή και ζητείται να περιγραφεί αυτή με τη βοήθεια περιορισμών. Για παράδειγμα, έστω ότι έχουμε την παρακάτω μη κυρτή εφικτή περιοχή x 2 3 2 1 1 2 3 x 1 Το πρόβλημα της αναπαράστασης μη κυρτής περιοχής από περιορισμούς μπορεί να διατυπωθεί με τη χρήση μεταβλητών του τύπου 0 ή 1 ως εξής: Έστω η μεταβλητή δ με τιμές 0 ή 1 και Μ ένας πολύ μεγάλος αριθμός τότε για το συγκεκριμένο παράδειγμα μη κυρτής περιοχής έχουμε τους παρακάτω περιορισμούς: x 1-1 δμ x 1-2δ 1 x 2-1 (1 - δ)μ x 2 + δ 2 που αναπαριστούν τη συγκεκριμένη μη κυρτή περιοχή. Συγκεκριμένα, εάν δ = 0 τότε οι περιορισμοί αναπαριστούν την περιοχή x 1 1 και x 2 2 της μη κυρτής περιοχής, ενώ εάν δ = 1 τότε οι περιορισμοί αναπαριστούν την περιοχή x 1 3 και x 2 1 της μη κυρτής περιοχής. 5.2.4 Fixed - Charge problem Σ ένα τυπικό πρόβλημα σχεδιασμού παραγωγής Ν προϊόντων, το κόστος παραγωγής για την παραγωγή του προϊόντος αποτελείται από ένα σταθερό κόστος K που δεν εξαρτάται από τη 128

ποσότητα του προϊόντος που παράγεται και από ένα μεταβλητό κόστος c ανά μονάδα προϊόντος που παράγεται. Έτσι, αν x είναι οι μονάδες του προϊόντος που παράγονται η συνάρτηση του κόστους παραγωγής του προϊόντος μπορεί να γραφεί ως εξής: K c x, x 0 Ci ( x ) 0, x 0. Η αντικειμενική συνάρτηση του προβλήματος τότε θα έχει την μορφή: minimize z = N 1 C ( x ) και θα είναι μία μη γραμμική συνάρτηση του x, αφού οι συναρτήσεις C (x ) είναι δικλαδικές. Αυτό έχει ως αποτέλεσμα η αντικειμενική συνάρτηση να μην είναι εύχρηστη από αναλυτική άποψη. Το πρόβλημα μπορεί να γίνει περισσότερο εύχρηστο από αναλυτική άποψη με την εισαγωγή των βοηθητικών δυαδικών μεταβλητών: 0, x 0 y. 1, x 0 Τότε ο αντικειμενικός σκοπός του προβλήματος μπορεί να γραφεί ως εξής: minimize z = c x K y N 1 x (1 - y ) = 0 y = 0 ή 1 x 0. Ο πρώτος περιορισμός μπορεί να αντικατσταθεί από τον περιορισμό x y Μ όπου Μ είναι ένα γνωστό πεπερασμένο άνω φράγμα των x. 5.2.5 Το πρόβλημα του ταξιδιώτη Ένας ταξιδιώτης διαθέτει ένα σακίδιο που μπορεί να χωρέσει αντιεκείμενα μέχρι ένα ορισμένο βάρος b. Πριν ξεκινήσει για το ταξίδι του ο ταξιδιώτης πρέπει να αποφασίσει μεταξύ απαραίτητων αντικειμένων ποια θα πάρει μαζί του αφού δεν μπορεί να υπερβεί το βάρος b που αντέχει το σακίδιό του. Κάθε αντικείμενο έχει ένα βάρος α και μία αξία για τον ταξιδιώτη c. Ο σκοπός του ταξιδιώτη είναι να μεγιστοποιήσει την ολική αξία των αντικειμένων που θα πάρει μαζί του. Το πρόβλημα του ταξιδιώτη μπορεί να διατυπωθεί ώς πρόβλημα ακεραίου προγραμματισμού με την εισαγωγή μίας δυαδικής μεταβλητής της μορφής: x 0, εαν το αντικειμενο δεν επιλεχτηκε 1, εαν το αντικειμενο επιλεχτηκε. 129

Τότε το πρόβλημα μπορεί να διατυπωθεί ως εξής: max z = N 1 c x N α 1 x b x = 0 ή 1, = 1, 2,..., N όπου Ν ο αριθμός των διαθέσιμων αντικειμένων. 5.2.6 Set covering problem (Το πρόβλημα της εύρεσης του καλύμματος ενός συνόλου) Έστω S ένα σύνολο αντικειμένων S = {1, 2, 3,..., m} και L μία δεδομένη κλάση υποσυνόλων του S. Κάθε υποσύνολο στη κλάση L σχετίζεται με ένα κόστος. Το πρόβλημα είναι να καλυφθούν όλα τα μέλη του S με το ελάχιστο κόστος, από τα μέλη της L. Για παράδειγμα, έστω ότι το σύνολο των αντικειμένων είναι το S = {1, 2, 3, 4, 5} και η κλάση υποσυνόλων του S είναι η L = {(1, 2), (1, 3, 5), (2, 4, 5), (3), (1), (4, 5)} με όλα τα μέλη της L να έχουν το ίδιο κόστος α.. Το {(1, 2), (1, 3, 5), (2, 4, 5)} είναι ένα κάλυμμα του S αλλά δεν ξέρουμε αν είναι το κάλυμμα με το ελάχιστο κόστος. Το πρόβλημα της εύρεσης του καλύμματος του συνόλου S με το ελάχιστο κόστος από τα μέλη της L με τη χρήση της δυαδικής μεταβλητής δi 1, 0, εαν το i μελος της L ανηκει στο καλυμμα του S εαν το i μελος της L δεν ανηκει στο καλυμμα του S διατυπώνεται ως εξής: minimize z = δ 1 + δ 2 + δ 3 + δ 4 + δ 5 + δ 6 δ 1 +δ 2 +δ 5 1 δ 1 +δ 3 1 δ 2 +δ 4 1 δ 3 +δ 6 1 δ 2 +δ 3 +δ 6 1 Οι περιορισμοί εξασφαλίζουν ότι κάθε μέλος του S είναι καλυμμένο. 130

Σημείωση: Οι συντελεστές της αντικειμενικής θα μπορούσαν να είναι 1, όπως και οι αριθμοί στα δεξιά μέλη των περιορισμών στην περίπτωση που μερικά στοιχεία του S θα πρέπει να καλυφθούν περισσότερες από μία φορές. 5.2.7 Set packing problem (Το πρόβλημα της εύρεσης του περιβλήματος ενός συνόλου) Έστω S να είναι πάλι ένα σύνολο αντικειμένων S = {1, 2, 3,..., m} και L μία δεδομένη κλάση υποσυνόλων του S. Κάθε υποσύνολο στη κλάση L σχετίζεται με μία αξία. Το πρόβλημα είναι να πακεταριστούν όσο το δυνατόν περισσότερα μέλη της L έτσι ώστε να μεγιστοποιηθεί η ολική αξία αλλά να μην υπάρχει επικάλυψη. Για παράδειγμα, έστω ότι το σύνολο των αντικειμένων είναι το S = {1, 2, 3, 4, 5, 6} και η κλάση υποσυνόλων του S είναι η L = {(1, 2, 5), (1, 3), (2, 4), (3, 6), (2, 3, 6)} με όλα τα μέλη της L να έχουν το ίδιο κόστος α.. Το {(1, 2, 5), (3, 6)} είναι ένα περίβλημα του S αλλά δεν ξέρουμε αν είναι το περίβλημα με τη μέγιστη αξία. Το πρόβλημα της εύρεσης του περιβλήματος του συνόλου S με τη μέγιστη αξία από τα μέλη της L με τη χρήση της δυαδικής μεταβλητής δi 1, 0, εαν το i μελος της L ανηκει στο περιβλημα του S εαν το i μελος της L δεν ανηκει στο περιβλημα του S διατυπώνεται ως εξής: maximize z = δ 1 + δ 2 + δ 3 + δ 4 + δ 5 δ 1 +δ 2 1 δ 1 +δ 3 +δ 5 1 δ 2 +δ 4 +δ 5 1 δ 3 1 δ 1 1 δ 4 +δ 5 1 Οι περιορισμοί εξασφαλίζουν ότι κάθε μέλος του S είναι επικαλύπτεται από δύο μέλη της L. 5.2.8 Set partitioning problem (Το πρόβλημα του διαμερισμού ενός συνόλου) Έστω S ένα σύνολο αντικειμένων S = {1, 2, 3,..., m} και L μία δεδομένη κλάση υποσυνόλων του S όπως και στα προηγούμενα προβλήματα. Το πρόβλημα είναι να καλύπτονται όλα τα μέλη του S από τα μέλη του L αλλά συγχρόνως να μην υπάρχει επικάλυψη. Τότε έχουμε συνδυασμό των δύο προηγούμενων περιπτώσεων. Σ αυτή την περίπτωση η αντικειμενική μπορεί να είναι max ή min ανάλογα με την περίπτωση. 131

Για παράδειγμα, έστω ότι το σύνολο των αντικειμένων είναι το S = {1, 2, 3, 4, 5} και η κλάση υποσυνόλων του S είναι η L = {(1, 2), (1, 3, 5), (2, 4, 5), (3), (1), (4, 5)}. με όλα τα μέλη της L να έχουν το ίδιο κόστος α.. Το πρόβλημα της διαμέρισης του συνόλου S με το ελάχιστο κόστος από τα μέλη της L με τη χρήση της δυαδικής μεταβλητής δi 1, 0, εαν το i μελος της L ανηκει στο καλυμμα του S εαν το i μελος της L δεν ανηκει στο καλυμμα του S διατυπώνεται ως εξής: minimize z = δ 1 + δ 2 + δ 3 + δ 4 + δ 5 + δ 6 δ 1 +δ 2 +δ 5 = 1 δ 1 +δ 3 = 1 δ 2 +δ 4 = 1 δ 3 +δ 6 = 1 δ 2 +δ 3 +δ 6 = 1 Οι περιορισμοί εξασφαλίζουν ότι κάθε μέλος του S είναι καλυμμένο αλλά δεν υπάρχει επικάλυψη. 132