ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 7: Ανάλυση σύνθετων ηλεκτρικών κυκλωμάτων Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας και στην Ανώτατη Εκκλησιαστική Ακαδημία Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
Σκοποί ενότητας (1) Σύντομη εισαγωγή στα συστήματα εξισώσεων Μέθοδοι ανάλυσης κυκλωμάτων 4
Περιεχόμενα ενότητας Συστήματα εξισώσεων στην ανάλυση κυκλωμάτων. Η μέθοδος των ρευμάτων βρόχων. Η μεθοδος των ρευμάτων των κλάδων. 5
Συστήματα εξισώσεων Τα συστήματα εξισώσεων αποτελούνται από μια ομάδα N εξισώσεων οι οποίες περιλαμβάνουν N αγνώστους. N είναι ένας αριθμός με τιμή 2 ή μεγαλύτερη. 6
Η στάνταρ μορφή ενός συστήματος εξισώσεων 2 ης τάξης Ένα σύστημα εξισώσεων 2 ης τάξης γραμμένο σε στάνταρ μορφή είναι: όπου: a 1,1 x 1 + a 1,2 x 2 = b 1 a 2,1 x 1 + a 2,2 x 2 = b 2 τα a είναι οι συντελεστές των αγνώστων μεταβλητών x 1 και x 2 και αντιπροσωπεύουν τις τιμές των συνιστωσών ενός κυκλώματος, όπως, π.χ., τιμές αντιστάσεων και τα b είναι οι σταθερές και αντιπροσωπεύουν τις τιμές των πηγών τάσης. 7
Ένα σύστημα εξισώσεων 2 ης τάξης ΠΑΡΑΔΕΙΓΜΑ 1: Υποθέστε ότι οι παρακάτω δύο εξισώσεις. 2I 1 = 8-5I 2 4I 2-5I 1 + 6 = 0 περιγράφουν ένα ορισμένο κύκλωμα με δύο άγνωστα ρεύματα I 1 και I 2 (οι συντελεστές είναι τιμές αντιστάσεων και οι σταθερές είναι τάσεις στο κύκλωμα). Γράψτε τις εξισώσεις σε στάνταρ μορφή. ΛΥΣΗ Αναδιατάσουμε τις εξισώσεις σε στάνταρ μορφή ως εξής: 2I 1 + 5I 2 = 8-5I 1 + 4I 2 = -6 8
Η στάνταρ μορφή ενός συστήματος εξισώσεων 3 ης τάξης Ένα σύστημα εξισώσεων 3 ης τάξης γραμμένο σε στάνταρ μορφή είναι: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x 3 = b 1 a 2,1 x 1 + a 2,2 x 2 + a 2,3 x 3 = b 2 a 3,1 x 1 + a 3,2 x 2 + a 3,3 x 3 = b 3 9
Ένα σύστημα εξισώσεων 3 ου βαθμού ΠΑΡΑΔΕΙΓΜΑ 2: Υποθέστε ότι οι παρακάτω τρεις εξισώσεις. 4I 3 + 2I 2 + 7I 1 = 0 5I 1 + 6I 2 + 9I 3-7 = 0 8 = I 1 + 2I 2 + 5I 3 περιγράφουν ένα ορισμένο κύκλωμα με τρία άγνωστα ρεύματα I 1, I 2 και I 3. Γράψτε τις εξισώσεις σε στάνταρ μορφή. ΛΥΣΗ Αναδιατάσουμε τις εξισώσεις σε στάνταρ μορφή ως εξής: 7I 1 + 2I 2 + 4I 3 = 0 5I 1 + 6I 2 + 9I 3 = 7 I 1 + 2I 2 + 5I 3 = 8 10
Λύση ενός συστήματος εξισώσεων Λύση με αντικατάσταση. Λύση με ορίζουσες. Λύση με τη βοήθεια υπολογιστή (PC ή χειρός). 11
Λύση ενός συστήματος εξισώσεων με αντικατάσταση Θεωρήστε το παρακάτω σύστημα δύο εξισώσεων. 2x 1 + 6x 2 = 8 (Εξ. 1) 3x 1 + 6x 2 = 2 (Εξ. 2) 12
Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (1/6) Για να δείξουμε τη μέθοδο των οριζουσών στη λύση ενός συστήματος εξισώσεων, ας βρούμε τις τιμές των ρευμάτων I 1 και I 2 στο παρακάτω σύστημα δύο εξισώσεων. 10I 1 + 5I 2 = 15 2I 1 + 4I 2 = 8 Πρώτα, φτιάξτε τη χαρακτηριστική ορίζουσα για τον πίνακα των συντελεστών των άγνωστων ρευμάτων. 13
Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (2/6) 14
Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (3/6) Βήμα 1: Yπολογίστε την τιμή της ορίζουσας των συντελεστών ως εξής: πολλαπλασιάστε τον πρώτο αριθμό της πρώτης στήλης επί το δεύτερο αριθμό της δεύτερης στήλης (10 4 = 40). πολλαπλασιάστε τον δεύτερο αριθμό της πρώτης στήλης επί το πρώτο αριθμό της δεύτερης στήλης (2 5 = 10). αφαιρέστε το δεύτερο γινόμενο από το πρώτο (40 10 = 30). 10 2 5 4 10 4 2 5 30 15
Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (4/6) Βήμα 2: Φτιάξτε την ορίζουσα του I 1, αντικαθιστώντας τους συντελεστές του I 1 στην 1 η στήλη της ορίζουσας των συντελεστών με τους σταθερούς αριθμούς που είναι στο δεξιό μέλος των εξισώσεων. και υπολογίστε την 16
Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (5/6) Βήμα 3: Λύνουμε για το ρεύμα I 1 διαιρώντας την ορίζουσα του I 1 με την ορίζουσα των συντελεστων. 15 5 1 8 10 4 5 20 30 0.667 A 2 4 17
Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (6/6) Βήμα 4: Κατασκευάζουμε την ορίζουσα του I 2, αντικαθιστώντας τους συντελεστές του I 2 στη 2 η στήλης της χαρακτηριστικής ορίζουσας με τους σταθερούς αριθμούς που είναι στο δεξιό μέλος των εξισώσεων. την υπολογίζουμε : και λύνουμε για το ρεύμα I 2 : 18
Ένα παράδειγμα σύστηματος εξισώσεων 2 ης τάξης (1/2) ΠΑΡΑΔΕΙΓΜΑ 3: Λύστε το παρακάτω σύστημα εξισώσεων για τα άγνωστα ρεύματα: 2I 1-5I 2 = 106I 1 + 10I 2 =20. ΛΥΣΗ Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών: Λύνουμε για το ρεύμα I 1 : 19
Ένα παράδειγμα σύστηματος εξισώσεων 2 ης τάξης (2/2) Ομοίως, λύνουμε για το ρεύμα I 2 : 2 10 1 6 20 50 (2)(20) (6)(10) 50 40 60 50 0.4 A 20
Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (1/5) Ας βρούμε τα άγνωστα ρεύματα I 1, I 2 και I 3 στο παρακάτω σύστημα τριων εξισώσεων. I 1 + 3I 2-2I 3 = 7 4I 2 + I 3 = 8-5I 1 + I 2 + 6I 3 = 9 Η στάνταρ μορφή του συστήματος είναι: 1I 1 + 3I 2-2I 3 = 7 0I 1 +4I 2 + 1I 3 = 8-5I 1 + 1I 2 + 6I 3 = 9 Η χαρακτηριστική ορίζουσα των συντελεστών των άγνωστων ρευμάτων. 21
Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (2/5) 22
Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (3/5) Βήμα 1: Ξαναγράψτε τις πρώτες δύο στήλες αμέσως στα δεξιά της ορίζουσας. Βήμα 2: Πολλαπλασιάστε τους τρεις αριθμούς στην κάθε μια από τις τρεις προς τα κάτω διαγωνίους και προσθέστε τα τρία γινόμενο, (1)(4)(6) + (3)(1)(-5) + (-2)(0)(1) = 9. Πολλαπλασιάστε τους τρεις αριθμούς στην κάθε μια από τις τρεις προς τα πάνω διαγωνίους και προσθέστε τα τρία γινόμενο, (-5)(4)(-2) + (1)(1)(1) + (6)(0)(3) = 41. 23
Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (4/5) 24
Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (5/5) Βήμα 4: Λύνουμε για το ρεύμα I 1 διαιρώντας την ορίζουσα του I 1 με την ορίζουσα των συντελεστων. 7 3 2 8 4 1 1 9 1 1 3 6 2 100-32 3.125 A 0 4 1-5 1 6 Με όμοιο τρόπο υπολογίζουμε τα ρεύματα I 2 και I 3. 25
Ένα παράδειγμα σύστηματος εξισώσεων 3 ης τάξης (1/2) ΠΑΡΑΔΕΙΓΜΑ 4: Βρείτε την τιμή του ρεύματος I 2 από το παρακάτω σύστημα εξισώσεων α: 2I 1 + 0.5I 2 + I 3 = 0 0.75I 1 +0I 2 + 2I 3 = 1.5 3I 1 + 0.2I 2 + 0I 3 = -1 ΛΥΣΗ Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών ως εξής: 2 0.75 = (2)(0)(0) + (0.5)(2)(3) + (1)(0.75)(0.2) (3)(0)(1) (0.2)(2)(2) + (0)(0.75)(0.5) = 3.15 0.8 = 2.35 3 0.5 0 0.2 1 2 0 2 0.75 3 0.5 0 0.2 26
Ένα παράδειγμα σύστηματος εξισώσεων 3 ης τάξης (2/2) Υπολογίζουμε την ορίζουσα για το ρεύμα I 2. = (2)(1.5)(0) + (0)(2)(3) + (1)(0.75)( 1) (3)(1.5)(1) ( 1)(2)(2) (0)(0.75)(0) = 0.75 0.5 = 1.25 Τελικά, βρίσκουμε το I 2 διαιρώντας τις δύο ορίζουσες. 27
Μέθοδοι ανάλυσης κυκλωμάτων Η μέθοδος των ρευμάτων βρόχων 28
Η μέθοδος των ρευμάτων βρόχων Εργαζόμαστε με τα ρεύματα βρόχων αντί για τα πραγματικά ρεύματα των κλάδων. I 1, I 2 και Ι 3 : πραγματικά ρεύματα κλάδων. I A και Ι B : ρεύματα βρόχων. Τα ρεύματα βρόχων είναι μαθηματικές ποσότητες. Χρησιμεύουν για την ευκολότερη ανάλυση του κυκλώματος. 29
Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (1/4) Βήμα 1.Σημειώνουμε ένα ρεύμα σε κάθε έναν βρόχο του κυκλώματος. Η διεύθυνση είναι αυθαίρετη (συνηθίζουμε διεύθυνση CW) Μπορεί να μην είναι η πραγματική φορά του ρεύματος Ο αριθμός των ρευμάτων βρόχων πρέπει να είναι επαρκής, όχι μεγαλύτερος. 30
Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (2/4) Βήμα 2. Σημειώνουμε την πολικότητα ( και ) της πτώσης τάσης σε κάθε αντίσταση. Καθορίζεται από τις διευθύνσεις των ρευμάτων βρόχων. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 31
Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (3/4) Βήμα 3.Εφαρμόζουμε το νόμο των τάσεων του Kirchhoff σε κάθε βρόχο. Αν ένα στοιχείο (π.χ., R 2 ) διαρρέεται από περισσότερα από ένα ρεύματα βρόχων, τα περιλαμβάνουμε όλα. Προκύπτει μια εξίσωση για κάθε βρόχο. Για βρόχο Α: V S1 R 1 I A R 2 I A R 2 I B = 0 Για βρόχο Β: V S2 R 2 I B R 2 I A R 3 I B = 0 Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 32
Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (4/4) Βήμα 4. Συνδυάζουμε τους όμοιους όρους. Φέρνουμε το σύστημα των εξισώσεων σε στάνταρ μορφή. Δεν ξεχνάμε: oι άγνωστες ποσότητες είναι τα ρεύματα βρόχων I A και I B. Τέλος, λύνουμε το σύστημα και υπολογίζουμε τα ρεύματα των βρόχων. Συνοπτικός κανόνας για την εφαρμογή των βημάτων 1 4: (Άθροισμα αντιστάσεων στο βρόχο) (ρεύμα βρόχου) (κάθε αντίσταση κοινή σε δύο βρόχους) (ρεύμα γειτονικού βρόχου ) = (τάση πηγής στο βρόχο). 33
Ένα παράδειγμα της μεθόδου των βρόχων (1/4) ΠΑΡΑΔΕΙΓΜΑ 5: Βρείτε τα ρεύματα των κλάδων στο παρακάτω κύκλωμα, χρησιμοποιώντας τη μέθοδο των ρευμάτων βρόχων. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 34
ΛΥΣΗ Ένα παράδειγμα της μεθόδου των βρόχων (2/4) Σημειώνουμε τα ρεύματα βρόχων I A και I B δεξιόστροφα (CW). Οι τιμές των αντιστάσεων είναι σε Ohm και των τάσεων σε Volts. Χρησιμοποιούμε τον κανόνα για να φτιάξουμε τις εξισώσεις των δύο βρόχων: (470 220)I A 220I B = 10. 690I A 220I B = 10 για το βρόχο Α. 220I A (220 820)I B = 5. 220I A 1040I B = 5 για το βρόχο Β. 35
Ένα παράδειγμα της μεθόδου των βρόχων (3/4) 36
Ένα παράδειγμα της μεθόδου των βρόχων (4/4) Βρίσκουμε τα πραγματικά ρεύματα των κλάδων. Στην R1, I 1 = I A = 13.9 ma Στην R3, I 3 = I B = 1.87 ma. Το αρνητικό πρόσημο δηλώνει αντίθετη φορά από αυτή που σχεδιάσαμε αρχικά για το I B. Στην R2, I 2 = I A I B = 13.9 ma ( 1.87 ma) = 15.8 ma. Γνωρίζοντας τα ρεύματα των κλάδων, μπορούμε να βρούμε τις τάσεις από το νόμο του Ohm. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 37
Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (1/6) ΠΑΡΑΔΕΙΓΜΑ 6: Για το κύκλωμα γέφυρας Wheatstone της εικόνας, βρείτε το ρεύμα σε κάθε αντίσταση (ρεύμα κλάδου), χρησιμοποιώντας τη μέθοδο των ρευμάτων βρόχων. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 38
Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (2/6) ΛΥΣΗ Σημειώνουμε τρία δεξιόστροφα (CW) ρεύματα βρόχων I A, I B και I C. Χρησιμοποιώντας τον κανόνα, γράφουμε τις εξισώσεις των τριών βρόχων. 39
Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (3/6) Για το βρόχο Α: (330 300)I A 330I B 300I C = 12 630I A 330I B 300I C = 12 Για το βρόχο B: 330I A (330 360 1000 )I B 1000I C = 0 330I A 1690I B 1000I C = 0 Για το βρόχο C: 300I A 1000I B (300 390 1000 )I C = 0 300I A 1000I B 1690I C = 0 H χαρακτηριστική ορίζουσα των συντελεστών είναι: 630-330 - 300-330 1690-1000 - 300-1000 1690 40
Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (4/6) 41
Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (5/6) 42
Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (6/6) Έχουμε: I A = 35.1 ma I B = 16.2 ma I C = 15.8 ma Το ρεύμα στην αντίσταση R1 είναι: Ι 1 = Ι Α Ι Β = 35.1 ma 16.2 ma = 18.9 ma. Το ρεύμα στην R2 είναι: Ι 2 = Ι Α Ι C = 35.1 ma 15.8 ma = 19.3 ma. Το ρεύμα στην R3 είναι: Ι 3 = Ι B = 16.2 ma. Το ρεύμα στην R4 είναι: Ι 4 = Ι C = 15.8 ma. Το ρεύμα στην RL είναι: Ι L = Ι B Ι C = 16.2 ma 15.8 ma = 0.4 ma. 43
Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (1/5) ΠΑΡΑΔΕΙΓΜΑ 7: Η εικόνα δείχνει ένα κύκλωμα γέφυρας Τ (bridged-t circuit) τριών βρόχων. Κατασκευάστε τη στάνταρ μορφή των εξισώσεων και βρείτε το ρεύμα σε κάθε αντίσταση. ΛΥΣΗ Σημειώνουμε τρία δεξιόστροφα (CW) ρεύματα βρόχων I A, I B και I C. 44
Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (2/5) Χρησιμοποιώντας τον κανόνα, γράφουμε τις εξισώσεις των τριών βρόχων. Οι τιμές των αντιστάσεων είναι σε kω Το ρεύμα θα είναι σε ma Για το βρόχο Α: (15 7.5 22)I A 22I B 7.5I C = 0 44.5I A 22I B 7.5I C = 0 Για το βρόχο B: 22I A (22 8.2)I B 8.2I C = 12 22I A 30.2I B 8.2I C = 12 Για το βρόχο C: 7.5I A 8.2I B (8.2 7.5 10)I C = 0 7.5I A 8.2I B 25.7I C = 0 H χαρακτηριστική ορίζουσα των συντελεστών είναι : 44.5-22 - 7.5-22 30.2-8.2-7.5-8.2 25.7 45
Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (3/5) 46
Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (4/5) 47
Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (5/5) Έχουμε: I A = 0.512 ma. I B = 0.887 ma. I C = 0.432 ma. Το ρεύμα στην αντίσταση R1 είναι: Ι 1 = Ι Α = 0.512 ma. Το ρεύμα στην R2 είναι: Ι 2 = Ι Α Ι B = 0.512 A 0.887 ma = 0.375 ma. Το αρνητικό πρόσημο δηλώνει ότι το ρεύμα Ι 2 είναι στην αντίθετη κατεύθυνση από αυτή του I A : Η θετική πλευρά της αντίστασης R2 είναι η αριστερή πλευρά. Το ρεύμα στην R3 είναι: Ι 3 = Ι A I C = 0.512 A 0.432 ma = 0.08 ma. Το ρεύμα στην R4 είναι: Ι 4 = Ι B Ι C = 0.887 ma 0.432 ma = 0.455 ma. Το ρεύμα στην RL είναι: Ι L = Ι C = 0.432 ma. 48
Η μέθοδος των ρευμάτων των κλάδων Η μέθοδος αυτή χρησιμοποιεί τους νόμους τάσης και ρεύματος του Kirchhoff για να βρει το ρεύμα σε κάθε κλάδο ενός κυκλωματος. Το κύκλωμα (παράδειγμα) έχει δύο ανεξάρτητους βρόχους. Υπάρχουν δύο κόμβοι: κόμβος Α και κόμβος Β. Κλάδος είναι κάθε διαδρομή που συνδέει δύο κόμβους (το κύκλωμα έχει τρεις κλάδους). 49
Η μέθοδος των ρευμάτων των κλάδων: Τα βήματα (1/2) Βήμα 1. Σχεδιάζουμε ένα ρεύμα με αυθαίρετη κατεύθυνση σε κάθε κλάδο του κυκλώματος. Βήμα 2. Σημειώνουμε τις πολικότητες των τάσεων στις αντιστάσεις σύμφωνα με την κατεύθυνση των ρευμάτων κλάδων που επιλέξαμε στο Βήμα 1. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 50
Η μέθοδος των ρευμάτων των κλάδων: Τα βήματα (2/2) Βήμα 3. Εφαρμόζουμε τον κανόνα των τάσεων του Kirchhoff γύρω από κάθε κλειστό βρόχο (αλγεβρικό άθροισμα των τάσεων ίσο με μηδέν). Βήμα 4. Εφαρμόζουμε τον κανόνα των ρευμάτων του Kirchhoff στον ελάχιστο αριθμό κόμβων έτσι ώστε να να περιλαμβάνονται όλα τα ρεύματα των κλάδων (αλγεβρικό άθροισμα των ρευμάτων σε ένα κόμβο ίσο με μηδέν). Βήμα 5. Λύνουμε το σύστημα των εξισώσεων που προκύπτει από τα βήματα 3 και 4. 51
Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (1/5) ΠΑΡΑΔΕΙΓΜΑ 8: Χρησιμοποιήστε τη μέθοδο των ρευμάτων των κλάδων για να βρείτε το ρεύμα κάθε κλάδου στο παρακάτω κύκλωμα. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 52
Ένα παράδειγμα της μεθόδου ΛΥΣΗ των ρευμάτων των κλάδων (2/5) Βήμα 1. Σχεδιάζουμε τα ρεύματα των κλάδων με αυθαίρετη κατεύθυνση. Βήμα 2. Σημειώνουμε τις πολικότητες των τάσεων στις αντιστάσεις. Βήμα 3. Εφαρμόζουμε τον κανόνα των τάσεων του Kirchhoff γύρω από τον αριστερό βρόχο (διατρέχοντάς τον, π.χ., δεξιόστροφα), 10 470I 1 220I 2 = 0 470I 1 220I 2 = 10 και γύρω από το δεξιό βρόχο (διατρέχοντάς τον, π.χ., αριστερόστροφα), 5 820I 3 220I 2 = 0 820I 3 220I 2 = 5 53
Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (3/5) Βήμα 4. Εφαρμόζουμε τον κανόνα των ρευμάτων του Kirchhoff, π.χ., στον κόμβο Α. I 1 I 2 I 3 = 0 Βήμα 5. Λύνουμε το σύστημα των εξισώσεων με αντικατάσταση. Πρώτα, λύνουμε την εξίσωση των ρευμάτων ως προς I 1 I 1 = I 2 I 3 και αντικαθιστούμε στην εξίσωση του αριστερού βρόχου 470I 1 220I 2 = 10. 470(I 2 I 3 ) 220I 2 = 10 470I 2 470I 3 220I 2 = 10 690I 2 470I 3 = 10 54
Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (4/5) 55
Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (5/5) Aντικαθιστώντας την τιμή του I 3 στην εξίσωση του δεξιού βρόχου, έχουμε: Τέλος, αντικαθιστώντας τα I 2 και I 3 στην εξίσωση των ρευμάτων, βρίσκουμε: I 1 = I 2 I 3 = 0.0158 0.00187 = 0.0139 A = 13.9 ma. Πρόβλημα:Βρείτε τα ρεύματα των κλάδων λύνοντας το σύστημα των εξισώσεων με τη μέθοδο των οριζουσών. 56
ΠΡΟΒΛΗΜΑΤΑ (1/3) Χρησιμοποιώντας τη μέθοδο των ρευμάτων των κλάδων, βρείτε το ρεύμα μέσω κάθε αντίστασης στο κύκλωμα της Εικ. Π.1. (Απ.: I 1 = 150 ma, I 2 = 50 ma, I 3 = 100 ma) Προσδιορίστε την τάση στα άκρα της πηγής ρεύματος Is (σημεία Α και Β) της Εικ. Π.1. (Απ.: V AB = V A V B = 1.85 V) 57
ΠΡΟΒΛΗΜΑΤΑ (2/3) Χρησιμοποιώντας τη μέθοδο των βρόχων, βρείτε τα ρεύματα των κλάδων στην Εικ. Π.3. (Απ.: I 1 = 5.1 ma, I 2 = 3.5 ma, I 3 = 1.6 ma) 58
ΠΡΟΒΛΗΜΑΤΑ (3/3) Προσδιορίστε τις τάσεις και τις πολικότητές τους σε κάθε αντίσταση στο κύκλωμα της Εικ. Π.3. (Απ.: V 1 = 5.1 V, V 2 = 2.9 V, V 3 = 0.9 V) 59
Βιβλιογραφία T.L. Floyd, Electric Circuits Fundamentals, 8 th ed. Pearson. 60