Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Σχετικά έγγραφα
Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

/ / 38

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

P (M = n T = t)µe µt dt. λ+µ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

200, δηλαδή : 1 p Y (y) = 0, αλλού

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

Διαδικασίες Markov Υπενθύμιση

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Στατιστική Ι-Θεωρητικές Κατανομές Ι

H επίδραση των ουρών στην κίνηση ενός δικτύου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

P (M = 9) = e 9! =

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Λύσεις 4ης Ομάδας Ασκήσεων

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

3. Προσομοίωση ενός Συστήματος Αναμονής.

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

Απλα Συστήματα Αναμονής Υπενθύμιση

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00)

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

DEPARTMENT OF STATISTICS

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

p q 0 P =

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

Y = X 1 + X X N = X i. i=1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Λύσεις 2ης Ομάδας Ασκήσεων

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015

α n z n = 1 + 2z 2 + 5z 3 n=0

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ίκτυα Επικοινωνίας Υπολογιστών

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

Transcript:

ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες: 2 2 2 2 2 2 12 Βαθμός: Το ανά χείρας φύλλο εξέτασης περιέχει 6 σελίδες και 6 ερωτήματα. Παρατηρήστε πως το σύνολο των βαθμών των θεμάτων είναι 12 ενώ για την επίτευξη μέγιστης δυνατής βαθμολογίας αρκούν 10 βαθμοί. Καλή επιτυχία! Ερώτημα 1 (2 μονάδες) Απαντήστε στις παρακάτω ερωτήσεις σημειώνοντας ΣΩΣΤΟ ή ΛΑΘΟΣ. (αʹ) Αν μία τυχαία μεταβλητή Τ είναι εκθετικά κατανεμημένη, τότε Pr{T > 2 T 1} = Pr{T > 1}. (αʹ) ΣΩΣΤΟ (βʹ) Ο νόμος του Little ισχύει ακόμα και για ουρές που δεν μπορούν να περιγραφούν με διαδικασίες Markov. (βʹ) ΣΩΣΤΟ (γʹ) Αν τόσο ο ρυθμός αφίξεων όσο και ο ρυθμός εξυπηρέτησης σε ένα σύστημα αναμονής διπλασιαστούν, ο μέσος χρόνος απόκρισης θα μείνει ο ίδιος. (γʹ) ΛΑΘΟΣ (δʹ) Αν σε ένα σύστημα που μπορεί και εξυπηρετεί 3 πελάτες το λεπτό, φθάνουν 3 κατά μέσο όρο πελάτες το λεπτό, η ουρά του θα μένει πάντα άδεια. (δʹ) ΛΑΘΟΣ (εʹ) Κατά την εφαρμογή της μεθόδου Lagrange για την εύρεση της MaxEnt κατανομής, δεδομένης της μέσης τιμής και της διασποράς, χρησιμοποιούμε 3 πολλαπλασιαστές. (εʹ) ΣΩΣΤΟ Ερώτημα 2 (2 μονάδες) Σε κάθε μία από τις παρακάτω ερωτήσεις επιλέξτε τη σωστή απάντηση. (αʹ) Ποιο είναι το μεγαλύτερο δυνατό μήκος της ουράς σε ένα M/G/2/3 σύστημα αναμονής? 0 1 2 3 5 (βʹ) Σε ένα Birth/Death μοντέλο μίας ουράς, Ο χρόνος μεταξύ διαδοχικών αφίξεων έχει ακολουθεί γεωμετρική κατανομή. Ο αριθμός των πελατών που εξυπηρετούνται δεν μπορεί να υπερβεί τον αριθμό 1.

Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 2 από 6 28/02/15 Ο αριθμός των πελατών στο σύστημα ακολουθεί την εκθετική κατανομή. Ο ρυθμός αφίξεων είναι ο ίδιος για όλες τις καταστάσεις Κανένα από τα παραπάνω (γʹ) Σε ένα M/M/1 σύστημα αναμονής, αν ο ρυθμός αφίξεων (λ) = ρυθμός εξυπηρέτησης (μ), τότε π = 1 στη μόνιμη κατάσταση. π i > 0 για κάθε i. Η ουρά δεν ορίζει birth-death διαδικασία. Δεν υπάρχει λύση μόνιμης κατάστασης. π = 0 στη μόνιμη κατάσταση. (δʹ) Ποια από τις παρακάτω κατανομές έχει τη μέγιστη εντροπία? π = [1/4, 1/2, 1/8, 1/8] π = [1/4, 1/4, 1/4, 1/4] π = [1/2, 0, 1/2, 0] π = [0, 1, 0, 0] (εʹ) Άνθρωποι καταφθάνουν σε έναν τηλεφωνικό θάλαμο σύμφωνα με μία διαδικασία Poisson με έναν ρυθμό λ ανθρώπων την ώρα, ενώ η διάρκεια της κάθε κλήσης είναι εκθετικά κατανεμημένη τυχαία μεταβλητή με μέση τιμή 2 λεπτά. Θεωρείστε πως η πολιτική της τηλεφωνικής εταιρείας είναι να εγκαθιστά επιπλέον τηλεφωνικούς θαλάμους αν οι πελάτες περιμένουν στην ουρά κατά μέσο όρο 3 ή περισσότερα λεπτά. Πόσοι πελάτες πρέπει να φθάνουν την ώρα ώστε να δικαιολογηθεί η εγκατάσταση δεύτερου τηλεφωνικού θαλάμου? 18 9.8 2 0.3 Δεν έχουμε επαρκή στοιχεία για την απάντηση. Ερώτημα 3 (2 μονάδες) Απαντήστε σύντομα στις παρακάτω ερωτήσεις. (αʹ) Θεωρείστε το παρακάτω μητρώο πιθανοτήτων μετάβασης μιας αλυσίδας Markov διακριτού χρόνου: α 0.6 0.3 0.8 0.1 β 0.1 γ 0.9 Ποια η τιμή των παραμέτρων α, β, γ? (αʹ) α = β = 0.1, γ = 0 (βʹ) Θεωρείστε το παρακάτω μητρώο πιθανοτήτων μετάβασης μιας αλυσίδας Markov διακριτού χρόνου: α 1 α 0.8 0.2 Για ποια τιμή του α η οριακή κατανομή της αλυσίδας Markov είναι η π = [2/3, 1/3]? (βʹ) α = 0.6 (γʹ) Σχεδιάστε μία αλυσίδα που έχει 3 καταστάσεις, εκ των οποίων η μία δέχεται επισκέψεις το πολύ πεπερασμένο αριθμό φορών και οι άλλες δύο άπειρο αριθμό φορών (με πιθανότητα 1). Λύση: Η αλυσίδα θα πρέπει να αποτελείτε από μία μεταβατική κατάσταση και από δύο επαναληπτικές. Για παράδειγμα: 0.9 0.4 1 2 0.6 3 0.1 0.2 0.8

Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 3 από 6 28/02/15 (δʹ) Μία αλυσίδα Markov παίρνει τις τιμές 1, 2, 3, 4. Από την i μπορεί να προχωρήσει σε οποιαδήποτε j > i με ίση πιθανότητα. Η κατάσταση 4 είναι απορροφητική. Αρχίζοντας από την κατάσταση 1, πόσα βήματα θα χρειαστούν κατά μέσο όρο για να φτάσουμε στην κατάσταση 4? Λύση: Η αλυσίδα που περιγράφει η εκφώνηση είναι η παρακάτω: 1 2 3 4 Για να βρούμε τον μέσο αριθμό βημάτων που θα χρειαστούν για να φτάσουμε στην κατάσταση 4, λύνουμε την αναδρομή, όπως είδαμε και στο μάθημα. Συγκεκριμένα, έχουμε: 1 1 μ = 1 3 1 + 1 3 (1 + μ ) + 1 3 (1 + μ ) μ = 1 2 1 + 1 2 (1 + μ ) μ = 1 Οπότε με πίσω αντικατάσταση λύνουμε το σύστημα και βρίσκουμε: μ = (δʹ) 11/6 Ερώτημα 4 (2 μονάδες) Θεωρείστε ένα M/G/1 σύστημα αναμονής στο οποίο οι πελάτες φθάνουν με ρυθμό 6 πελάτες την ώρα. Θεωρείστε τα εξής δύο σενάρια: i. Ο χρόνος εξυπηρέτησης είναι ακριβώς 5 λεπτά/πελάτη. ii. O χρόνος εξυπηρέτησης είναι κανονικά κατανεμημένη τυχαία μεταβλητή με μέση τιμή 4 λεπτά και διασπορά 4 λεπτά. Κατά πόσο τοις εκατό μικρότερη είναι η ουρά στο δεύτερο σενάριο? (Υπενθυμίζεται ο τύπος της διασποράς μίας τυχαίας μεταβλητής: Var[X] = E[X ] (E[X]) ) Λύση: Η κατανομή του χρόνου εξυπηρέτησης στο πρώτο σενάριο είναι ντετερμινιστική. Συνεπώς θα ισχύει: Var[X ] = 0 E[X ] = (E[X ]) = 25 λεπτά Επίσης, μ = [X ] = 0.2 πελάτες/λεπτό και λ = 6 πελάτες/ώρα = 0.1 πελάτες/λεπτό. Συνεπώς, το utilization του συστήματος θα είναι ρ = λ μ =. Οπότε για το μέσο αριθμό πελατών στην ουρά στο σενάριο 1 έχουμε: E[N Q ] = λ E[X ] 2(1 ρ ) = 1 4

Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 4 από 6 28/02/15 Αντίστοιχα στο δεύτερο σενάριο έχουμε Var[X ] = 4 λεπτά E[X ] = 4 λεπτά + 16 λεπτά = 20 λεπτά Επίσης, μ = = 0.25 πελάτες/λεπτό και το utilization θα είναι, ρ [X ] = λ μ = 0.4. Συνεπώς αντικαθιστώντας στον παραπάνω τύπο παίρνουμε E[N Q ] = λ E[X ] 2(1 ρ ) = 1 6 Παρατηρούμε λοιπόν πως η ουρά στο 2ο σενάριο είναι μικρότερη κατά = 1/12 1/4 33% Ερώτημα 5 (2 μονάδες) Θεωρείστε το κλειστό δίκτυο συστημάτων αναμονής εκθετικής εξυπηρέτησης που φαίνεται στο παρακάτω σχήμα: Οι μέσοι ρυθμοί εξυπηρέτησης των συστημάτων Q, Q και Q είναι μ = 0.5, μ = 1 και μ = 0.5 αντίστοιχα. (αʹ) Αν το σύστημα έχει συνολικά 3 χρήστες, να χρησιμοποιήσετε τον αλγόριθμο MVA και να βρείτε το μέσο αριθμό πελατών, N i σε κάθε σύστημα Q i, i = 1, 2, 3. Λύση: Από το νόμο εξαναγκασμένης ροής για αυτήν την περίπτωση έχουμε: λ = 0.6λ λ = 0.5λ + 0.2λ + 0.4λ Το οποίο δίνει: λ = 1.667λ και λ = 1.389λ. Επιλέγοντας το Q σαν σύστημα αναφοράς παίρνουμε τα Visit ratios V = 1 V = 1.667 V = 1.389

Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 5 από 6 28/02/15 Χρησιμοποιώντας τα παραπάνω, τα βήματα του MVA θα έχουν ως εξής: (1) m = 0 N = 0 N = 0 N = 0 (2) m = 1 W = 2 W = 1 W = 2 λ = +.+(.) = 0.155 N = 0.31 N = 0.258 N = 0.431 (3) m = 2 W = 2.62 W = 1.258 W = 2.862 λ =.+(..)+(..) = 0.23 N = 0.603 N = 0.482 N = 0.914 (4) m = 3 W = 3.206 W = 1.482 W = 3.828 λ =.+(..)+(..) = 0.273 N = 0.875 N = 0.674 N = 1.451 Άρα ο μέσος αριθμός πελατών σε κάθε σύστημα θα είναι: N = 0.875, N = 0.674, N = 1.451 (βʹ) Θεωρείστε το ίδιο σύστημα με M χρήστες, όπου το M πολύ μεγάλο. Πώς θα κατανεμηθούν οι M χρήστες στα τρία συστήματα αναμονής? Λύση: Παρατηρήστε πως αν επιλέξουμε λ = μ = 0.5, τότε οι σχετικές χρησιμοποιήσεις των συστημάτων θα είναι u = 1, u = 0.833, u = 1.389. Συνεπώς παρατηρούμε πως το bottleneck του συστήματος είναι το σύστημα Q. Αυτό σημαίνει πως για αρκετά μεγάλο M, θα υπάρχει πάντα ένας ή περισσότεροι πελάτες στο Q και συνεπώς ο ρυθμός αναχωρήσεων από το σύστημα αυτό θα προσεγγίζει τον ρυθμό εξυπηρέτησής του, μ = 0.5. Συνεπώς, για μεγάλο M, έχουμε: λ = μ = 0.5 Χρησιμοποιώντας αυτό μαζί με το νόμο εξαναγκασμένης ροής, παίρνουμε: λ = 0.5/1.389 = 0.36 Άρα για M, θα έχουμε: Πραγματικό Throughput: (λ, λ, λ ) = (0.36, 0.60, 0.50) Πραγματικό Utilization: (ρ, ρ, ρ ) = (0.72, 0.60, ρ 1) Συνεπώς με χρήση του αποτελέσματος: λ = 1.667 0.36 = 0.6 [1] N i = ρ i 1 ρ i παίρνουμε τελικά, N = 2.57 N = 1.5 N = (M 4.07)

Α.Α.Π.Σ Τελική Εξέταση - Σελίδα 6 από 6 28/02/15 Ερώτημα 6 (2 μονάδες) Θεωρείστε την αλυσίδα Markov με το παρακάτω διάγραμμα μετάβασης: (αʹ) Να βρεθεί η πιθανότητα Pr{X = 4 X = 2}. Λύση: Η πιθανότητα μετάβασης 2-βημάτων από την κατάσταση 2 στην κατάσταση 4 μπορεί να βρεθεί απαριθμώντας όλες τις δυνατές ακολουθίες. Είναι οι {2 1 4} and {2 4 4}. Οπότε, Pr{X = 4 X = 2} = 1 3 1 6 + 1 3 1 = 7 18 (βʹ) Υπάρχουν οι πιθανότητες μόνιμης κατάστασης? Αν ναι, υπολογίστε τες αν όχι εξηγήστε γιατί. Λύση: Οι πιθανότητες μόνιμης κατάστασης δεν υπάρχουν επειδή η αλυσίδα δεν είναι αμείωτη. Οι οριακές πιθανότητες θα εξαρτώνται από την αρχική κατάσταση. (γʹ) Ποια είναι η πιθανότητα να επισκεφτούμε τελικά την κατάσταση 4, δεδομένου πως η αρχική κατάσταση είναι Χ = 1? Λύση: Για να βρούμε την πιθανότητα απορρόφησης στην κατάσταση 4, λύνουμε την αναδρομή των πιθανοτήτων όπως είδαμε και στο μάθημα, προσέχοντας πως a = 1 και a = 0, αφού η κατάσταση αυτή είναι επίσης απορροφητική. Συγκεκριμένα, έχουμε: a = 1 6 a + 1 4 a + 1 3 a + 1 4 a = 1 6 + 1 4 a + 1 4 a [2] a = 1 3 a + 1 3 a + 1 3 a = 1 3 a + 1 3 [3] Οπότε λύνοντας το σύστημα των [2] και [3], βρίσκουμε: a =.