Γεωµετρικη Θεωρια Ελεγχου

Σχετικά έγγραφα
Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου

Κλασικη ιαφορικη Γεωµετρια

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.

x (t) u (t) = x 0 u 0 e 2t,

Κλασικη ιαφορικη Γεωµετρια

= x. = x1. math60.nb

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Η τροχιά του δυναµικού συστήµατος µε αρχική συνθήκη X γράφεται

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

ΑΝΑΛΛΟΙΩΤΑ ΣΥΝΟΛΑ, ΟΡΙΑΚΑ ΣΥΝΟΛΑ

dx cos x = ln 1 + sin x 1 sin x.

4 Συνέχεια συνάρτησης

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

Θεωρία Βέλτιστου Ελέγχου Ασκήσεις

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής

website:

Συνήθεις Διαφορικές Εξισώσεις

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Βέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )

Κλασικη ιαφορικη Γεωµετρια

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών

Δυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

Θεωρητική μηχανική ΙΙ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μαθηματικά Και Στατιστική Στη Βιολογία

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα

Έλεγχος «Ελάχιστης Ενέργειας»

4 Συνέχεια συνάρτησης

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

b proj a b είναι κάθετο στο

Μοντέρνα Θεωρία Ελέγχου

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

W = 6.34 kn (2) F = u 2 f = u2 i + 2a(x f x i ) a = u2 f u2 i 2x f. F = d U(x) (5)

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

Χάος και Φράκταλ. ιδάσκων: Α.Μπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α 1) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών x x e = c τείνει 2 1)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

και αναζητούμε τις λύσεις του:

Κανονικ ες ταλαντ ωσεις

x(t) 2 = e 2 t = e 2t, t > 0

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μοντέρνα Θεωρία Ελέγχου

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Κίνηση στερεών σωμάτων - περιστροφική

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων

Μάθημα: Θεωρία Δικτύων


ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

Μερικές Διαφορικές Εξισώσεις

m 2 (ż2 + R 2 θ2 )dt ż = a/t + ζ, θ = η m 2 ( ζ 2 + R 2 η 2 )dt m

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

5 Γενική µορφή εξίσωσης ευθείας

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

Έλεγχος «Ελάχιστης Ενέργειας»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων.

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

Σεµινάριο Αυτοµάτου Ελέγχου

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Πεπερασμένες Διαφορές.

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

ΣΑΕ 2. Συστήματα Αυτομάτου Ελέγχου II. Σημειώσεις από τις παραδόσεις *

Transcript:

Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο επίπεδο µε σηµείο ισορροπίας στο (0, 0) το οποίο ενώ έχει γειτονιά N ɛ (0) τέτοια ώστε x N ɛ (0) lim t φ(x, t) = 0, δεν είναι ευσταθές κατά Lyapunov. Εξηγήστε γιατί τέτοια παραδείγµατα είναι κατ ανάγην µη-γραµµικά. 2. Το σύστηµα του Duffing: Το σύστηµα ẏ = ζy + x x 3, ζ 0 στο επίπεδο είναι η κανονική µορφή της αυτόνοµης.ε. ẍ + ζẋ + x 3 x = 0. Περιγράφει ένα σύστηµα µε απόσβεση που κινείται σε συµµετρικό δυναµικό µε δύο ελάχιστα (γιατί ;) (αʹ) Θα µελετήσουµε πρώτα την περίπτωση ζ = 0. Το σύστηµα είναι συντηρητικό (Χαµιλτονιανό), της µορφής ẋ = y, ẏ = U(x). Επαληθεύστε ότι ισχύει αυτό, δώστε την Χαµιλτονιανή συνάρτηση H(x, y) και το διάγραµµα ϱοής (πορτρέτο κίνησης ή ϕάσεων). (ϐʹ) Τώρα περνάµε στην περίπτωση ζ > 0. Βρείτε τα σηµεία ισορροπίας και την (τοπική) τους συµπεριφορά. είξτε ότι, κατάλληλα µετατοπισµένη, η H είναι συνάρτηση Lyapunov για κάθε ένα από τα δύο σηµεία ισορροπίας που είναι ευσταθή. ώστε το ακριβές σύνολο όπου ισχύει η συνάρτηση Lyapunov και εξηγήστε γιατί αποτελεί υποσύνολο της περιοχής έλξης κάθε Σ.Ι. είξτε ότι εάν τρέξουµε τα σύνολα αυτά προς τα πίσω (σε αρνητικό χρόνο) ϑα πάρουµε τη συνολική περιοχή έλξης. Προσπαθήστε να δώσετε ένα διάγραµµα των περιοχών αυτών για διάφορες τιµές του ζ. Πόσες καµπύλες/τροχιές αποτελούν το διαχωριστικό σύνολο των δύο περιοχών έλξης ; 3. Οι εξισώσεις Lorenz: Οπως είναι γνωστό το παρακάτω απλό σύστηµα σε τρεις διαστάσεις που µελετήθηκε το 1963 από τον E. Lorenz παρουσιάζει χαοτική συµπεριφορά για κάποιες τιµές των παραµέτρων του. ẋ = σ(y x) ẏ = ρx y xz ż = βz + xy, (σ, ρ, β > 0) Προς το παρόν, ϑα δούµε κάποια ϐασικά χαρακτηριστικά του..

(αʹ) Βρείτε τα σηµεία ισορροπίας του και την εξάρτησή τους από τις παραµέτρους. (ϐʹ) είξτε ότι ο κάθετος άξονας z είναι αναλλοίωτη ευθεία για το σύστηµα και περιγράψτε τη δυναµική πάνω του. Επίσης, δείξτε ότι το σύστηµα έχει τη συµµετρία (x, y, z) ( x, y, z). (γʹ) είξτε ότι i. για 0 < ρ < 1, το σηµείο ισορροπίας στο 0 είναι ολικά ασυµπτοτικά ευσταθές, κάνοντας χρήση της συνάρτησης Lyapunov V (x, y, z) = ρx 2 + σ(y 2 + z 2 ). ii. για ρ > 1, το Σ.Ι. 0 έχει µονοδιάστατη ασταθή πολλαπλότητα W u (0). 4. Το απλό εκκρεµές είναι το σύστηµα, σε κανονική µορφή, ẏ = αy sin x (1) και περιγράφει ένα απλό εκκρεµές, αλλά και τη δυναµική ενός περιστρεφόµενου σώ- µατος γύρω από έναν άξονα. Για µηδενική απόσβεση α = 0 το σύστηµα είναι Χαµιλτονιανό. Για ϑετική απόσβεση α > 0, τα Σ.Ι. δεν µετακινούνται, αλλά αλλάζει η ευστάθειά τους. (αʹ) ώστε τυπικά πορτρέτα κίνησης για διάφορες ϑετικές τιµές του α και περιγράψτε τις ποιοτικές αλλαγές στην δυναµική συµπεριφορά που παρατηρούνται. (ϐʹ) Εφαρµόζεται τώρα µία σταθερή ϱοπή T στο σύστηµα, ώστε το σύστηµα είναι ẏ = αy sin x + T. Τα σηµεία ισορροπίας µετακινούνται. i. Θεωρούµε πρώτα την περίπτωση 0 < T < 1. Με κατάλληλη αναφορά στο αντίστοιχο Χαµιλτονιανό σύστηµα (δηλαδή για α = 0, για το οποίο και κάνετε το πορτρέτο κίνησης), δείξτε πως η περιοχή έλξης παραµένει µεν σταθερή, αλλά είµαστε πολύ κοντά σε αστάθεια, καθώς το ευσταθές σηµείο πλησιάζει το σάγµα και χρειάζεται µικρή ενέργεια για να ϐγούµε (και τί γίνεται µετά ;) ii. είξτε ότι για T > 1 δεν υπάρχουν σηµεία ισορροπίας. Το σύστηµα παρ όλα αυτά παραµένει ευσταθές λόγω των αποσβέσεων. ώστε το πορτρέτο κίνησης και δείξτε ότι υπάρξει ευσταθής οριακός κύκλος στον κύλινδρο (αυστηρή απόδειξη γίνεται µε χρήση του ϑεωρήµατος των Poincaré-Bendixson, που αν ϑέλετε µπορείτε να µελετήσετε στα ϐιβλία σας). 5. (αʹ) Μελετήστε το σύστηµα στο επίπεδο (2) ẋ = 2x x 2, ẏ = y + xy. Βρείτε τα ΣΙ, τον τύπο τους, καθώς και τις ευσταθείς και ασταθείς πολλαπλότητες καθενός από αυτά.

Η ϑεωρία της δοµικής ευστάθειας λέει ότι, γενικά, κάθε ασταθής πολλαπλότητα ενός ΣΙ (ή οριακού κύκλου) τέµνει την ευσταθή πολλαπλότητα άλλου ΣΙ ή ΟΚ εγκάρσια. είξτε ότι στο παράδειγµα αυτό η τοµή δεν είναι εγκάρσια. Είναι λοιπόν ϕυσικό να αναµένουµε ότι µικρές διαταραχές καταστρέφουν την µη-εγκάρσια αυτή τοµή. Περιγράψτε τρόπους να γίνει αυτό. Υπόδειξη : επιλέξτε σηµείο πάνω στην τροχιά που συνδέει τα ΣΙ και µε χρήση του Κυτίου Ροής (Flow Box) αλλάξτε τοπικά το Π. (ϐʹ) Αναγνωρίστε παρόµοιες µη-εγκάρσιες τοµές αναλλοίωτων πολλαπλοτήτων στις Χα- µιλτονιανές περιπτώσεις των συστηµάτων Duffing και απλού εκκρεµούς. Συζητήστε κατά πόσο µπορούµε να ϕέρουµε τα συστήµατα αυτά σε γενική ϑέση, µένοντας όµως στην κατηγορία των Χαµιλτονιανών συστηµάτων ( είτε σχετικά και την επόµενη Ασκηση.) 6. Χαµιλτονιανοί πίνακες : Ο πίνακας γραµµικοποίησης σε ΣΙ Χαµιλτονιανού συστήµατος στο επίπεδο, ẋ = H y, είναι [ 2 H x y και εποµένως έχει µηδενικό ίχνος. 2 H x 2 ẏ = H x, 2 H y 2 2 H x y (αʹ) είξτε ότι η γραµµικοποίηση αυτή δίνει πάντα ή κεντρο ή σάγµα (µε ίσες σε απόλυτη τιµές ιδιοτιµές). (ϐʹ) Ενας τετραγωνικός πίνακας A διάστασης m = 2n λέγεται Χαµιλτονιανός εάν ικανοποιεί την ταυτότητα όπου J είναι ο πίνακας A T J + JA = 0 J = ] [ 0 In I n 0 είξτε ότι κάθε τέτοιος A έχει µηδενικό ίχνος. (γʹ) είξτε ότι εάν λ είναι ιδιοτιµή Χαµιλτονιανού πίνακα A, τότε και λ είναι ιδιοτιµή (Υπόδειξη : χρήση της ορίζουσας ταυτότητας ( ) και ϑεώρηση του χαρακτηριστικού πολυωνύµου c A (λ).) (δʹ) Βρείτε την γενική µορφή Χαµιλτονιανού πίνακα σε δύο διαστάσεις, m = 2, και δείξτε ότι οι ιδιοτιµές του είναι ή λ = ±iω ή λ 2 = λ 1. Θεωρούµε τώρα µικρές διαταραχές του A εντός του συνόλου των Χαµιλτονιανών πινάκων. είξτε ότι εφόσον οι ιδιοτιµές είναι µη-µηδενικές, το διαταραγµένο σύστηµα έχει ΣΙ του ίδιου τύπου µε το αρχικό (κέντρο ή συµµετρικό σάγµα). 7. Βέλτιστος έλεγχος και Χαµιλτονιανά συστήµατα : Συνοπτικά, έαν έχουµε αφινικό σύστηµα ελέγχου ẋ = f(x) + g(x)u, x R n, u R m,, ( ) ].

µε g(x) n m πίνακα σταθερού ϐαθµού m και ϑεωρήσουµε συναρτησιακό κόστους µε Lagrangian L(x, u) (ϑετικά ορισµένη στο u), σχηµατίζουµε την Χαµιλτονιανή H(x, u, p) = (f(x) + g(x)u) p L(x, u), όπου p R n δυϊκες µεταβλητές ( πολλαπλασιαστές Lagrange. ) Η αρχή του µεγίστου (ή ελαχίστου) του Pontryagin οδηγεί στην ϐέλτιστη Χαµιλτονιανή H (x, p) = sup H(x, u, p). u Συνήθως, αυτό µας δίνει τον ϐέλτιστο έλεγχο ως συνάρτηση των x και p, u (x, p). Εάν κάποιες επιπλέον συνθήκες ισχύουν, τότε οι ϐέλτιστες λύσεις (x(t), p(t)) είναι οι τροχιές του Χαµιλτονιανού συστήµατος για την συνάρτηση H. (αʹ) Βρείτε τον ϐέλτιστο έλεγχο u και την H για γραµµικά συστήµατα, ẋ = Ax + Bu, rank B = m και για Lagrangian L(x, u) = 1 2 xt Rx + 1 2 ut Qu, R 0, Q > 0 και δώστε τις Χαµιλτονιανές του εξισώσεις (που πρέπει να είναι γραµµικές!) (ϐʹ) Μελετήστε το σύστηµα σε µία διάσταση ẋ = ax + bu (b 0) και ϐρείτε τις λύσεις (x, p) για την ασταθή περίπτωση a > 0. 8. Θεωρούµε το σύστηµα ελέγχου στο επίπεδο, όπου είναι διαθέσιµα δύο σταθερά Π X = + 2 x y και Y = 2 + και επιτρέπεται να προχωρούµε µε το ένα ή το άλλο x y Π, ή µε τα αντίστροφά τους, δηλαδή µόνο µε τις ϱοές φ X και φ Y των X και Y. (αʹ) είξτε ότι το προσβάσιµο σύνολο R(0, T ) των σηµείων που µπορούµε να ϕτάσουµε σε χρόνο T από το αρχικό σηµείο 0 είναι το {x R 2 : Bx 1 c}, όπου x 1 = x + y είναι η 1-νόρµα και B κατάλληλος 2 2 πίνακας. Βρείτε τον B και τη σταθερά c. (ϐʹ) Εάν τώρα περιορίσουµε τον χώρο κατάστασης στο κλειστό τετράγωνο µε κέντρο το 0 και πλάτος 2 (δεν επιτρέπεται να ϐγούµε από αυτόν), δείξτε ότι κάθε σηµείο του εσωτερικού του είναι προσβάσιµο, αλλά για κάποια σηµεία στο σύνορο, δεν µπορούµε να ϕτάσουµε µε πεπερασµένο αριθµό αλλαγών ϱοής. Ποιά είναι τα σηµεία αυτά ; 9. Εξετάστε το ακόλουθο πρόβληµα : δίνεται γραµµικό σύστηµα ẋ = Ax στο R n, µε το 0 ασυµπτωτικά ευσταθές. Η απλούστερη µορφή υποψήφιας συνάρτησης Lyapunov για το 0 είναι V (x) = 1 2 xt Qx, µε Q = Q T > 0 (ϑετικά ορισµένο, συµµετρικό.) Γιατί ; είξτε ότι πάντα υπάρχει τέτοιος Q και µάλιστα µε dv dt ορισµένο συµµετρικό πίνακα. ώστε ένα (µη-διαγώνιο!) παράδειγµα στο R 3. = x T P x, µε P επίσης ϑετικά

10. Σταθεροποίηση του σαγµατικού σηµείου του εκκρεµούς : Θα αναλύσουµε κάποιες µε- ϑόδους εξισορρόπησης του εκκρεµούς στην κάθετη προς τα πάνω ϑέση (χωρίς να ισχυριζόµαστε ότι είναι ιδιαίτερα χρήσιµες στην πράξη.) Οι εξισώσεις είναι, όπως και πριν : ẏ = αy sin x για α ϑετικό και µικρό (π.χ. α = 0.3). (αʹ) Θεωρούµε έλεγχο που επεισέρχεται στην εξίσωση για την γωνία, δηλαδή ϑεωρούµε την νέα πρώτη εξίσωση : ẋ = y + u 1 (x). Βρείτε έλεγχο u 1 (x) = kx + c ο οποίος να σταθεροποιεί το σαγµατικό σηµείο (x, y) = (π, 0), δηλαδή να έχει το σηµείο αυτό ως ολικό ελκυστή (ασυµπτ. ευσταθές ΣΙ). Είναι δυνατό αυτό εάν το σύστηµα είναι χωρίς απώλειες (δηλ. α = 0); (ϐʹ) Επαναλάβετε για έλεγχο στην γωνιακή ταχύτητα, δηλαδή µε νέα δεύτερη εξίσωση : πάλι µε u 2 = kx + c. ẏ = αy sin(x) + u 2 (x), Και στις δύο περιπτώσεις, δώστε κατάλληλα πορτρέτα κίνησης του ελεγχόµενου συστή- µατος που επιλέξατε. ΕΚ, 26-2-17