= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα
|
|
- Τυρώ Διαμαντόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Συνέλιξη και Συστήµατα Σε αυτό το PDF, η ϐηµατική συνάρτηση ut) συµβολίζεται µε ɛt) 1. Εστω τα σήµατα του Σχήµατος 1. Να υπολογίσετε τη συνέλιξη yt) = xt) ht). Σχήµα 1: Σχήµα Άσκησης 1 Επιλέγουµε να παίξουµε µε το xt), καθ ότι ευκολότερο. Η ανάκλαση και η µετατόπιση του σήµατος ϕαίνεται στο Σχήµα. και άρα ϑα έχουµε τις παρακάτω περιπτώσεις : Σχήµα : Μετατόπιση και ανάκλαση για Άσκηση 1. 0, t < 0 Σχήµα 3αʹ) 4βʹ) 0 t T T t T τ T dτ = τ T τ T dτ + τ T t = t 0 T T, για t 0 και t T 0 0 t T Σχήµα 3βʹ) τ )dτ = t T T + 3t 3T, για t T < T και t T T t < T Σχήµα 4αʹ) τ τ ) T T = t t T T 3t + 9T, για t < 3T και t T T t < 3T Σχήµα ) dτ =
2 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις αʹ) 1η περίπτωση Άσκησης 1 ϐʹ) η περίπτωση Άσκησης 1 Σχήµα 3: Περιπτώσεις Άσκησης 1 - Ι αʹ) 3η περίπτωση Άσκησης 1 ϐʹ) 4η περίπτωση Άσκησης 1 Σχήµα 4: Περιπτώσεις Άσκησης 1 - ΙΙ 0, t 3T Σχήµα 5αʹ) αʹ) 5η περίπτωση Άσκησης 1 Σχήµα 5: Περιπτώσεις Άσκησης 1 - ΙΙΙ Άρα τελικά ϑα είναι : που είναι και το Ϲητούµενο. yt) = + 3t 3T, T t < T 0, t < 0 και t 3T t T, 0 t T t t T T 3t + 9T, T t < 3T 1). Εστω τα σήµατα xt) = Ae t, ht) = ɛt 3) ɛt 5)) που ϕαίνονται στο Σχήµα 6. Υπολογίστε τη συνέλιξη των δυο σηµάτων. Επιλέγουµε να παίξουµε µε το ht), καθ ότι ευκολότερο. Η ανάκλαση και η µετατόπιση του σήµατος ϕαίνεται στο Σχήµα 7. Οπότε, ϑα έχουµε τις παρακάτω περιπτώσεις :
3 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 3 Σχήµα 6: Σχήµα Άσκησης Σχήµα 7: Ανάκλαση και µετατόπιση του σήµατος Άσκησης 3 t 5 0 t 5 3 t 5 Ae τ dτ = Ae t 3 e t 5 ), για t 3 0 t 3 Σχήµα 8αʹ) Ae τ dτ + Άρα τελικά ϑα έχουµε που είναι και το Ϲητούµενο. 3 0 Ae τ dτ = AA e t 5 e 3 t ), για t 5 και t > 3 3 < t 5 Σχήµα 8βʹ) Ae τ dτ = Ae 5 t e 3 t ), για t 5 > 0 t > 5 Σχήµα 9αʹ) Ae t 3 e t 5 ), t 3 yt) = AA e t 5 e 3 t ), 3 < t 5 Ae 5 t e 3 t ), t > 5 ) αʹ) 1η περίπτωση Άσκησης ϐʹ) η περίπτωση Άσκησης Σχήµα 8: Περιπτώσεις Άσκησης - Ι
4 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 4 αʹ) 3η περίπτωση Άσκησης Σχήµα 9: Περιπτώσεις Άσκησης - ΙΙ 3. Εστω τα σήµατα { 0, αλλού xt) = 1 t, t 1 { t ht) =, 0 t 1 0, αλλού Υπολογίστε τη συνέλιξη των δυο σηµάτων. Επιλέγουµε να παίξουµε µε το ht), καθ ότι ευκολότερο στη σχεδίαση. Η ανάκλαση και η µετατόπιση του σήµατος ϕαίνεται στο Σχήµα 10. Άρα ϑα έχουµε τις παρακάτω περιπτώσεις : Σχήµα 10: Ανακλασµένο και µετατοπισµένο σήµα Άσκησης 3 0, t τ t τ) dτ = t ln τ t tτ t 1 1 τ t τ) dτ = t ln τ t tτ t t 1 t τ t 1 t 1 + τ Επιβεβαιώστε εσείς σχηµατικά ότι τα παραπάνω είναι σωστά! :-) =, για t < και t > 1 1 < t < t =, για t 1 1 t t 1 4. Εστω το σήµα xt) = δt) 3δt 4) και το σήµα ht) που ϕαίνεται στο Σχήµα 11. Βρείτε το αποτέλεσµα της συνέλιξης των δυο σηµάτων.
5 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 5 Σχήµα 11: Σχήµα Άσκησης 4 Η συνέλιξη µε συναρτήσεις έλτα απλά παράγει αντίγραφα των σηµάτων µε τα οποία συνελίσσεται, µετατοπισµένα στη ϑέση της συνάρτησης έλτα, πολλαπλασιασµένα µε το πλάτος της. Ούτε ολοκληρώµατα, ούτε µετατοπίσεις, ούτε αναστροφές, ούτε τίποτα! :-) Γίνεται όµως ευρεία χρήση των ιδιοτήτων της συνάρτησης έλτα, όπως η Άρα ϑα είναι απλά xt) δt t 0 ) = xt t 0 ) yt) = ht) δt) 3δt 4)) = ht) δt) 3ht) δt 4) = ht) 3ht 4) Το αποτέλεσµα της συνέλιξης ϕαίνεται στο Σχήµα 1. Σχήµα 1: Σήµα συνέλιξης ht) xt) Άσκησης 4 5. Να υπολογιστεί η συνέλιξη των σηµάτων xt) = ɛt) yt) = e t ɛt) Τα δυο σήµατα είναι όπως στο Σχήµα 13. Παίζουµε µε το xt). Το ανεστραµµένο και ανακλασµένο σήµα ϕαίνεται στο Σχήµα 14. ιακρίνουµε δυο περιπτώσεις, οι οποίες ϕαίνονται στα Σχήµατα 15αʹ και 15βʹ.
6 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 6 Σχήµα 13: Σήµατα Άσκησης 5 Σχήµα 14: Μετατοπισµένο σήµα Άσκησης 5 c xy t) = 0, t 0 c xy t) = e τ ɛt)ɛt τ)dτ = 0 e τ dτ = 1 e t, t > 0 αʹ) Περίπτωση 1η ϐʹ) Περίπτωση η Άρα τελικά ϑα είναι που είναι και το Ϲητούµενο. Σχήµα 15: Περιπτώσεις Άσκησης 5 c xy t) = { 1 e t, t > 0 0, t 0 3) 6. Θεωρούµε το σύστηµα που ϕαίνεται στο Σχήµα 16, µε Σχήµα 16: Σήµα Άσκησης 6
7 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 7 xt) = ɛ t + 1 ) ɛ ) t 1 h 1 t) = δ t 3 ) h t) = ɛt) ɛt 3) Να υπολογιστεί και να σχεδιαστεί η έξοδος του συστήµατος, yt). Αφού τα συστήµατα είναι σε σειρά, µπορούµε να ϐρούµε το συνολικό σύστηµα ht), που είναι η συνέλιξη των δυο συστηµάτων, και είναι ht) = h 1 t) h t) = δ t 3 ) ) ɛt) ɛt 3) = ɛ t 3 ) ɛ t 3 3 ) = ɛ t 3 ) ɛ t 9 ) Άρα είναι σαν να περνάµε την είσοδο xt) από το σύστηµα ht). Παρατηρούµε ότι Οι περιπτώσεις ϕαίνονται στο Σχήµα 17, 18, 19. xt) = ɛ t + 1 ) ɛ t 1 ) t = rect 1) ht) = ɛ t 3 ) ɛ t 9 ) t 3 ) = rect 3 Κατά τα γνωστά λοιπόν, ϑα παίξουµε µε το ht), και ϑα έχουµε αʹ) Περίπτωση 1η ϐʹ) Περίπτωση η Σχήµα 17: Περιπτώσεις Άσκησης 6-1 αʹ) Περίπτωση 3η ϐʹ) Περίπτωση 4η Σχήµα 18: Περιπτώσεις Άσκησης 6 - τις παρακάτω περιπτώσεις : 0, t 1 3/ dτ = τ 1/ 1/ 1/ dτ = τ t 3/ 1/ 1/ 1/ = t 1, για 1 < t. = 1, για < t 4
8 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 8 1/ t 9/ 0, t > 5 dτ = τ 1/ t 9/ Σχήµα 19: Περιπτώσεις Άσκησης = 5 t, για 4 < t 5 Άρα συνολικά ϑα είναι Το αποτέλεσµα ϕαίνεται στο Σχήµα 0. 0, t < 1, t > 5 t 1, 1 < t yt) = 1, < t 4 5 t, 4 < t 5 4) Σχήµα 0: Αποτέλεσµα Άσκησης 6 Παρατήρηση : Μπορούµε να περάσουµε την είσοδο από το h 1 t), να ϐρούµε την έξοδο y 1 t), και έπειτα να περάσουµε την y 1 t) από το h t) και να ϐρούµε την τελική έξοδο yt). 7. Θεωρούµε το σύστηµα yt) = T{xt)} = xt + 1) e xt) 5) Εξετάστε αν είναι γραµµικό, αιτιατό, ευσταθές, στατικό, και χρονικά αµετάβλητο. Για τη γραµµικότητα, έχουµε y 1 t) = T {ax 1 t)} = ax 1 t + 1) e ax 1t) y t) = T {bx t)} = bx t + 1) e bx t) και yt) = T {ax 1 t) + bx t)} = ax 1 t + 1) + bx t + 1)) e ax 1t)+bx t) = ax 1 t + 1) + bx t + 1) e ax 1t) e bx t) y 1 t) + y t)
9 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /Λυµένες Ασκήσεις 9 άρα το σύστηµα είναι ΜΗ γραµµικό. Για την αιτιατότητα, το σύστηµα δεν είναι αιτιατό, γιατί η έξοδος yt) εξαρτάται από µελλοντικές τιµές της εισόδου. Για παράδειγµα, y0) = x1) e x0), χρειαζόµαστε το x1), δηλ. µια µελλοντική τιµή, για να υπολογίσουµε τη y0). Για την ευστάθεια, αν x 1 t) < B x τότε yt) = xt + 1) e xt) xt + 1) + e xt), λόγω τριγωνικής ανισότητας. Άρα yt) xt + 1) + e xt) < B x + e Bx = B y άρα είναι ευσταθές. Για τη στατικότητα, το σύστηµα δεν είναι στατικό δηλ. είναι δυναµικό), γιατί η έξοδος τη χρονική στιγµή t εξαρτάται από τη χρονική στιγµή t + 1 της εισόδου. Με άλλα λόγια, χρειαζόµαστε µνήµη για να υλοποιήσουµε αυτό το σύστηµα. Τέλος, για την χρονική αµεταβλητότητα, έστω ότι η είσοδος του συστήµατος είναι η xt t 0 ), τότε η έξοδος ϑα είναι yt) = T {xt t 0 )} = xt t 0 + 1) e xt t 0) Η καθυστέρηση κατά t 0 της εξόδου δίνεται ως άρα το σύστηµα είναι χρονικά αµετάβλητο. yt t 0 ) = xt t 0 + 1) e xt t 0) = T {xt t 0 )}
x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Διαβάστε περισσότεραx(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία
Διαβάστε περισσότεραbx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Ασκηση. αʹ Γραµµικό: Είναι y = y = Τρίτη Σειρά Ασκήσεων
Διαβάστε περισσότεραΣυνέλιξη και Συστήµατα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015/16 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας
Διαβάστε περισσότερα= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα
Διαβάστε περισσότεραy(t) = x(t) + e x(2 t)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες
Διαβάστε περισσότεραX 1 = X1 = 1 (1) X 3 = X3 = 1 (2) X k e j2πk 1 2 t = k
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση (i) Είναι T
Διαβάστε περισσότεραx(t) 2 = e 2 t = e 2t, t > 0
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση
Διαβάστε περισσότεραP x = X k 2 (2) = = p = 78% (5)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εξέταση Προόδου - Λύσεις Θέµα - Βαθµός : 5 Ενα πραγµατικό
Διαβάστε περισσότεραdx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Επαναληπτικά Θέµατα. Βρείτε το
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Laplace. Εστω
Διαβάστε περισσότεραx(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά
Διαβάστε περισσότεραy(t) = x(t) + e x(2 t)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - Σχόλια ιάρκεια : 3 ώρες Ηµεροµηνία
Διαβάστε περισσότεραLCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Διαβάστε περισσότερα0 2j e jπt e j2πkt dt (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης :
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 8//09
Διαβάστε περισσότερα= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία
Διαβάστε περισσότεραx(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Bonus Ασκήσεις Ηµεροµηνία
Διαβάστε περισσότεραx(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0
Διαβάστε περισσότεραe (4+j2πf)t dt (5) (0 1)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης
Διαβάστε περισσότεραx(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το
Διαβάστε περισσότεραx(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Εστω το σήµα xt
Διαβάστε περισσότεραx(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 16/3/017
Διαβάστε περισσότεραX(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω
Διαβάστε περισσότεραe jθ = cos θ j sin θ(1.2)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - Λύσεις ης Σειράς Ασκήσεων Ασκηση. Σχέσεις του Euler
Διαβάστε περισσότερα2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής . Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος 2 Γραφικός
Διαβάστε περισσότεραΌταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Διαβάστε περισσότερα400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που
Διαβάστε περισσότεραy = u i t 1 2 gt2 y = m y = 0.2 m
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ) Το χαρτονόµισµα ξεκινά από ηρεµία, u i = 0, και
Διαβάστε περισσότεραT 2 Tsinc2( ft e j2πf3t
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Fourier. Απλός
Διαβάστε περισσότεραc n x n (t)) f(t) c n x n (t)dt + θ f 2 (t)dt = 0 f(t)c i x i (t)dt =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση. Προφανώς και θee
Διαβάστε περισσότεραa x (t) = d dt u x(t) = d dt dt x(t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Λύσεις Φροντιστηρίων 1ο Φροντιστήριο Ασκηση 1. Γνωρίζουµε ότι a x (t) = d dt u x(t) = d dt
Διαβάστε περισσότερα+ cos(45 ) i + sin(45 ) j + cos(45 ) i sin(45 ) j +
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Τέταρτο Φροντιστήριο Επιµέλεια : Αναστασία Πεντάρη Υποψήφια ιδάκτωρ Ασκηση 1. Πόση είναι η
Διαβάστε περισσότεραx[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n +
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 6 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης : //6 Ηµεροµηνία
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Διαβάστε περισσότεραΣ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο
Σ. Φωτόπουλος -- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο ο Άσκηση. Περιγράψτε τα σήµατα που φαίνονται στο σχήµα. χρησιµοποιώντας κατάλληλα την συνάρτηση µοναδιαίας κρούσης δ[]. x[] + x[] + + + + + (a) (b) -.5 Σχήµα.
Διαβάστε περισσότερα( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Διαβάστε περισσότερα[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1
ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ 4.. ΣΥΝΕΛΙΞΗ Στην προηγούµενη παράγραφο εισαγάγαµε την ιδέα της συνέλιξης από τα συµφραζόµενα των γραµµικών συστηµάτων. Σ' αυτήν την παράγραφο ορίζουµε τη συνέλιξη σαν µια πράξη η οποία
Διαβάστε περισσότεραΣυνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής:
ΦΕΒΡΟΥΑΡΙΟΣ Άσκηση : Δίνεται το LTI σύστηµα y[ n ] T{ x[ n ] } που ορίζεται από την αναδροµική σχέση: y[n ]y[n - ] +x[n ]- x[ n -] +x[ n - ] ( ). Να βρεθεί η συνάρτηση µεταφοράς του συστήµατος H(z ). 𝑦
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ
Διαβάστε περισσότεραz(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 18/2/216
Διαβάστε περισσότεραΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο του Χρόνου Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Διαβάστε περισσότεραe 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τρίτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 15/3/016
Διαβάστε περισσότερα() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.
Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :
Διαβάστε περισσότερα= 1 E x. f(t)x n (t)dt, n = 1, 2,, N (2) = 0, i = 1, 2,, N (3) E e = e 2 (t)dt (4) e(t) = f(t) c n x n (t) (5) f(t) cx(t) = 4 sin(t) (7)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 25-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : /3/26
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία
Διαβάστε περισσότεραy[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)
Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
Διαβάστε περισσότεραΣχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Aνάλυση Σήματος 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε
Διαβάστε περισσότερα12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:
Διαβάστε περισσότεραdq dv = k e a 2 + x 2 Q l ln ( l + a 2 + l 2 ) 2 10 = (
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2015 ιδάσκων : Γ. Καφεντζής Ηµεροµηνία Ανάθεσης : 15/12/2015 Πέµπτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Παράδοσης : Ηµέρα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας
Διαβάστε περισσότεραΓεωµετρικη Θεωρια Ελεγχου
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο
Διαβάστε περισσότεραx(t) 2 dt X(f) 2 df T d B w 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :
Διαβάστε περισσότεραΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σήματα και Συστήματα Το εκπαιδευτικό υλικό που παρουσιάζεται βασίζεται
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 3: Εισαγωγή στα Συστήματα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Συστήματα 1. Ορισμός και Κατηγορίες Συστημάτων Συστήματα Συνεχούς Χρόνου Συστήματα Διακριτού
Διαβάστε περισσότεραP = 0 1/2 1/ /2 1/
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 206 ιδάσκων : Π. Τσακαλίδης 7ο Φροντιστήριο Επιµέλεια : Κωνσταντίνα Φωτιάδου Ασκηση. Μια Μαρκοβιανή
Διαβάστε περισσότερα. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/14 Πρόβλημα 1 (βιβλίο σελίδα 27) Να υπολογιστεί η βασική
Διαβάστε περισσότεραx[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
Διαβάστε περισσότεραδ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2015 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τέταρτο Εργαστήριο - Ηµεροµηνία : 27/11/2015 Σηµείωση
Διαβάστε περισσότεραp B p I = = = 5
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011
Διαβάστε περισσότεραP (A B) = P (A) + P (B) P (A B).
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Εαρινό Εξάµηνο 2007 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 08/10/2007 Ηµεροµηνία Παράδοσης : 18/10/2007
Διαβάστε περισσότεραp(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη
Διαβάστε περισσότεραx(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5)
Κεφάλαιο 7 Συστήματα στο χώρο του Laplace 7. Εισαγωγή Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων
Διαβάστε περισσότεραΜάθηµα Θεωρίας Αριθµών Ε.Μ.Ε
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 208-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 6/4/209
Διαβάστε περισσότεραΓεωµετρικη Θεωρια Ελεγχου
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2018-2019 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία, 2018-2019 1. ώστε δύο διαφορετικά παραδείγµατα συστηµάτων
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Διαβάστε περισσότεραx[n] = x a (nt s ) (1)
Εισαγωγη στα Σήματα και τα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Σεπτεμβρίου 015 1 Σήματα και
Διαβάστε περισσότεραΧ(j2πf) = X(s) s=j2πf
Κεφάλαιο 6 Ο Μετασχηματισμός Laplace 6. Εισαγωγή Εχουμε ήδη δει ότι ο μετασχ. Fourier είναι ένα εργαλείο που μας επιτρέπει να αναπαριστούμε ένα σήμα x(t σαν ένα συνεχές άθροισμα (ολοκλήρωμα εκθετικών σημάτων
Διαβάστε περισσότεραΕπομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1 Μία Μαρκοβιανή
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότεραΣτοχαστικές Ανελίξεις (1) Αγγελική Αλεξίου
Στοχαστικές Ανελίξεις (1) Αγγελική Αλεξίου alexiou@unipi.gr 1 Ενότητες Μαθήματος Ενότητα 1 Εισαγωγή Ορισμός Στοχαστικών ανελίξεων Στατιστική Στοχαστικών Διαδικασιών Στασιμότητα Εργοδικότητα Ενότητα 2 Διαδικασίες
Διαβάστε περισσότεραW = 6.34 kn (2) F = u 2 f = u2 i + 2a(x f x i ) a = u2 f u2 i 2x f. F = d U(x) (5)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-2: Φυσική Ι Χειµερινό Εξάµηνο 208 ιδάσκων : Γ. Καφεντζής Λύσεις 3ου Φροντιστηρίων Ασκηση. Επιλέγουµε ως σύστηµα τη σφάιρα. Το σύστηµα είναι µη αποµονωµένο.
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε
Διαβάστε περισσότεραΠροηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή
Διαβάστε περισσότεραΕπικοινωνίες στη Ναυτιλία
Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,
Διαβάστε περισσότεραsin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ Η ηλεκτρική ϱοή διαµέσου µιας επιφάνειας A είναι
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν
Διαβάστε περισσότεραx[n] = x a (nt s ), n Z (11.1)
Κεφάλαιο 11 Σήματα και Συστήματα Διακριτού Χρόνου Ως τώρα, τα σήματα που μελετήσαμε ήταν ολα συνεχούς χρόνου. Σε αυτό το κεφάλαιο, ξεκινάμε τη μελέτη μας σχετικά με την επεξεργασία σημάτων διακριτού χρόνου
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση
Διαβάστε περισσότεραΜετασχηµατισµός Laplace
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 25/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας Σήµατος
Διαβάστε περισσότερα