HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017 1
Μερικές διατάξεις Μία σχέση R επί του A λέγεταισχέση µερικής διάταξης εάν και µόνο αν έχει την ανακλαστική, αντισυµµετρική, και µεταβατική ιδιότητα. Συχνά χρησιµοποιούµε το σύµβολο για τέτοιες σχέσεις. Σηµειώστε ότι δεν είναι απαραίτητο να ισχύει κάποιο από τα a b ή b a. Γι αυτό το λόγο η διάταξη λέγεται µερική Ένα σύνολο A µαζί µε µία µερική διάταξη επί του A ονοµάζεται µερικώς διατεταγµένο σύνολο και συµβολίζεται µε τη διατεταγµένη δυάδα (A, ). 4/7/2017 2
Μερικές διατάξεις, παράδειγµα R(A,B) = {A B} (A,B σύνολα) Ανακλαστική: A A Αντισυµµετρική: Αν A B και B A τότε A=B Μεταβατική: Αν A B και B C τότε A C Άρα η σχέση είναι σχέση µερικής διάταξης προσέξτε ότι για δύο σύνολα, µπορεί να ισχύει ότι ούτε A B, ούτε B A. (µερική διάταξη) 4/7/2017 3
ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Οι ακµές από ένα κόµβο στον εαυτό τους µπορούν να παραλειφθούν, γιατί µπορούµε να τις θεωρήσουµε ως δεδοµένες (γιατί;) Γιατί η R έχει την ανακλαστική ιδιότητα και εποµένως ξέρουµε ότι κάθε στοιχείο σχετίζεται µε τον εαυτό του. 4/7/2017 4
ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Αν στο γράφο υπάρχουν οι ακµές που αντιστοιχούν στα R(a,b), R(b,c) τότε µπορούµε να παραλείπουµε τις ακµές R(a,c) (γιατί;) Γιατί η R έχει την µεταβατική ιδιότητα και εποµένως ξέρουµε ότι εάν R(a,b), R(b,c), τότε οπωσδήποτε R(a,c) 4/7/2017 5
ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Οι ακµές από ένα κόµβο στον εαυτό τους µπορούν να παραλειφθούν, γιατί µπορούµε να τις θεωρήσουµε ως δεδοµένες (ανακλαστική) Αν στο γράφο υπάρχουν οι ακµές που αντιστοιχούν στα R(a,b), R(b,c) τότε µπορούµε να παραλείπουµε τις ακµές R(a,c) (µεταβατική) 4/7/2017 6
ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης Παράδειγµα: Θεωρείστε το ({1, 2, 3, 4, 6, 8, 12}, ) 4/7/2017 7
ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης Παράδειγµα: Τα υποσύνολα του συνόλου {x, y, z} µε τη σχέση υποσυνόλου {x,y,z} {x,y} {x,z} {y,z} {x} {y} {z} {} 4/7/2017 8
Μερικές διατάξεις Η σχέση < είναι σχέση µερικής διάταξης; Ανακλαστική; Αντισυµµετρική; Μεταβατική; 4/7/2017 9
Μερικές διατάξεις Η σχέση < είναι σχέση µερικής διάταξης; Ανακλαστική: OXI! Αντισυµµετρική: ΝΑΙ! Μεταβατική: NAI 4/7/2017 10
Αυστηρή σχέση µερικής διάταξης Μία σχέση R επί του A λέγεται αυστηρή σχέση µερικής διάταξης εάν και µόνο αν είναι µηανακλαστική, ασύµµετρη, και µεταβατική. Πχ. Η σχέση < 4/7/2017 11
Αλυσίδες - Αντιαλυσίδες Έστω (A, R) µε Α µερικώς διατεταγµένο (είτε αυστηρά, είτε όχι) ως προς την R. Ένα υποσύνολο του A ονοµάζεται αλυσίδα αν για κάθε ζεύγος στοιχείων του, ισχύει ότι είναι συγκρίσιµα (σχετίζονται) µέσω της R. Έστω (A, R) µε Α µερικώς διατεταγµένο ως προς την R.Ένα υποσύνολο του A ονοµάζεται αντιαλυσίδα αν για κάθε ζεύγος στοιχείων του, ισχύει ότι είναι µη συγκρίσιµα µέσω της R. 4/7/2017 12
Παράδειγµα Έστω Α={α 1, α 2,...α n } το σύνολο των µαθηµάτων που πρέπει κανείς να περάσει για να πάρει πτυχίο. Έστω η σχέση Προαπαιτούµενο(x,y) = {Tο µάθηµα x, είναι προαπαιτούµενο του µαθήµατος y} Τι σχέση είναι η σχέση Προαπαιτούµενο(x,y); 4/7/2017 13
Παράδειγµα Έστω Α={α 1, α 2,...α n } το σύνολο των µαθηµάτων που πρέπει κανείς να περάσει για να πάρει πτυχίο. Έστω η σχέση Προαπαιτούµενο(x,y) = {Tο µάθηµα x, είναι προαπαιτούµενο του µαθήµατος y} Τι σχέση είναι η σχέση Προαπαιτούµενο(x,y); Αυστηρή σχέση µερικής διάταξης Το µέγεθος της µεγαλύτερης αλυσίδας προσδιορίζει το ελάχιστο πλήθος εξαµήνων για να πάρει κανείς πτυχίο. Το µέγεθος της µεγαλύτερης αντιαλυσίδας προσδιορίζει το µέγιστο πλήθος µαθηµάτων που µπορεί κανείς να πάρει σε ένα εξάµηνο. 4/7/2017 14
Προαπαιτούµενα... HY011 HY021 HY031 HY001 HY012 HY013 HY022 HY023 HY041 HY024 HY014 4/7/2017 15
Αλυσίδες/αντιαλυσίδες Παράδειγµα: Τα υποσύνολα του συνόλου {x, y, z} µε τη σχέση υποσυνόλου {x,y,z} {x,y} {x,z} {y,z} {x} {y} {z} {} 4/7/2017 16
Σχέσεις ολικής διάταξης Έστω µία µερική διάταξη (A, ). Εάν x,y Α (x y y x) δηλαδή εάν όλα τα στοιχεία του Α είναι συγκρίσιµα µεταξύ τους, τότε η σχέση ονοµάζεται σχέση ολικής διάταξης, και το σύνολο Α ολικά διατεταγµένο ως προς την 4/7/2017 17
Ολικές διατάξεις, παράδειγµα R(a,b) = {a b} (a,b πραγµατικοί) Ανακλαστική: a a Αντισυµµετρική: Αν a b και b a τότε a=b Μεταβατική: Αν a b και b c τότε a c Άρα η σχέση είναι σχέση µερικής διάταξης αλλά και σχέση ολικής διάταξης, αφού οποιοιδήποτε πραγµατικοί αριθµοί είναι συγκρίσιµοι µέσω της σχέσης 4/7/2017 18
Τι σχέσεις είναι οι παρακάτω; (N, ) Σχέση ολικής διάταξης (N, ) (όπου σηµαίνει διαιρεί ) Σχέση µερικής διάταξης Σχέση µερικής διάταξης 4/7/2017 19
Συναρτήσεις 4/7/2017 20
Συνάρτηση: Τυπικός ορισµός Για οποιαδήποτε σύνολα A, B, λέµε ότι µία συνάρτηση f απότο A στο B (f:a B) είναι µία ειδική εκχώρηση ακριβώς ενός στοιχείου f(x) B σε κάθε στοιχείο x A. 4/7/2017 21
Συνάρτηση Μπορούµε να αναπαριστούµε µία συνάρτηση f:a B σαν ένα σύνολο διατεταγµένων ζευγών f ={ (a, f(a)) a A }. Η f είναι µία σχέση µεταξύ του A και του B, και εποµένως ένα υποσύνολο του A x B. Αλλά µε κάποιες ιδιαιτερότητες: Για κάθε a A, υπάρχει τουλάχιστον ένα (a,b) στη σχέση. Τυπικά: a A b B((a,b) f) Για κάθε a Α, υπάρχει το πολύ ένα (a,b) στη σχέση. Τυπικά: a,b,c((a,b) f (a,c) f b c) 4/7/2017 22
Πολλαπλοί τρόποι αναπαράστασης f f a b A B A B ιµερής γράφος y x Γραφική παράσταση 4/7/2017 23
Ορολογία Εάν f:a B και f(a)=b (όπου a A και b B), τότε λέµε ότι: Το A είναι το πεδίο ορισµού της f. Το B είναι το πεδίο τιµών της f. Το b είναι η εικόνατου a µε βάση την f. Το εύρος R B της f είναι R={b a f(a)=b }. 4/7/2017 24
Εύρος Πεδίο τιµών Το εύρος µίας συνάρτησης µπορεί να µην είναι το πλήρες πεδίο τιµών της. Το πεδίο τιµών είναι το σύνολο στο οποίο η συνάρτηση είναι δηλωµένη να απεικονίζει στοιχεία του πεδίου ορισµού. Το εύρος είναι το ειδικό σύνολο τιµών του πεδίου τιµών στο οποίο η συνάρτηση πραγµατικά απεικονίζει στοιχεία από το πεδίο ορισµού της. 4/7/2017 25
Παράδειγµα Υποθέστε ότι σας λέω ότι: f είναι η συνάρτηση που απεικονίζει φοιτητές του ΗΥ118 στο σύνολο των βαθµών {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Σε αυτό το σηµείο ξέρετε ότι το πεδίο τιµών της f είναι: {1,2,3,4,5,6,7,8,9,10}, και το εύρος της είναι. άγνωστο Υποθέστε ότι η βαθµολογία έχει µόνο 8, 9 και 10. {8,9,10} {1,2,3,4,5,6,7,8,9,10} Τότε το εύρος της f είναι, αλλά το πεδίο τιµών της είναι. 4/7/2017 26
Συναρτήσεις που έχουµε δει... Έστω το «σύµπαν» U. Μπορούµε να δούµε ένα σύνολο S υποσύνολο του U σαν συνάρτηση; Ένα σύνολο S στο σύµπαν U µπορεί να ειδωθεί σαν µία συνάρτηση από το U στο σύνολο {T, F}, που για κάθε στοιχείο του U µας λέει να ανήκει στο S. Πχ, υποθέστε ότι U={0,1,2,3,4} και S={1,3} Τότε S(0)=S(2)=S(4)=F, S(1)=S(3)=T. 4/7/2017 27
Γενίκευση Ορίσαµε τη συνάρτηση f:a B ως µία ειδική αντιστοίχιση στοιχείων a A σε στοιχεία b B. Το A µπορεί να είναι οποιοδήποτε σύνολο, εποµένως, θα µπορούσε να είναι και το καρτεσιανό γινόµενο κάποιων συνόλων 4/7/2017 28
Συναρτήσεις που έχουµε ήδη δει Μπορούµε να δούµε τους προτασιακούς τελεστές ως συναρτήσεις; Έναςπροτασιακός τελεστής µπορεί να ειδωθεί σαν µία συνάρτηση απόζεύγη τιµών αληθείας σε τιµές αληθείας: π.χ., (F,F) = F. (F,T) = T (T,F) = T (T,T) = T 4/7/2017 29
Κι άλλες συναρτήσεις που έχουµε δει... Έναςτελεστής συνόλων όπως οι,, µπορούν να ειδωθούν σαν συναρτήσεις από προς 4/7/2017 30
Κι άλλες συναρτήσεις που έχουµε δει... Ένας τελεστής συνόλων όπως οι,, µπορούν να ειδωθούν σαν συναρτήσεις... από διατεταγµένα ζεύγη συνόλων σε σύνολα. Παράδειγµα: ({1,3},{3,4}) = {3} 4/7/2017 31
Ένας νέος συµβολισµός Μερικές φορές γράφουµε Y X για να συµβολίζουµε το σύνολο F όλων των δυνατών συναρτήσεων f: X Y. Εποµένως, f Y X είναι ένας άλλος τρόπος να πούµε ότι f: X Y. 4/7/2017 32
Σύνθεση συναρτήσεων Για συναρτήσεις f:a B και g:b C, ορίζεται η σύνθεσή τους ( ). Συνθέτει µία καινούργια συνάρτηση από τις f και g εφαρµόζοντας την g στο αποτέλεσµα της f. Λέµε (g f):a C, όπου (gf)(a) : g(f(a)). f(a) B, εποµένως το g(f(a)) ορίζεται και g(f(a)) C. Σηµειώστε ότι δεν ισχύει πάντα ότι f g = g f. 4/7/2017 33
Σύνθεση συναρτήσεων δεν ισχύει πάντα ότι f g = g f Μπορείτε να το εκφράσετε αυτό σε κατηγορηµατικό λογισµό; 4/7/2017 34
Σύνθεση συναρτήσεων δεν ισχύει πάντα ότι f g = g f Μπορείτε να το εκφράσετε αυτό σε κατηγορηµατικό λογισµό; ( f g x(f g(x) =g f (x))). [Μην γράψετε: f g x(f g(x) g f (x)))] (Σηµειώστε τους ποσοδείκτες που ισχύουν και σε συναρτήσεις και σε αντικείµενα.) 4/7/2017 35
Συναρτήσεις ένα-προς-ένα Μία συνάρτηση είναιένα-προς-ένα (1-1), αν και µόνο αν κάθε στοιχείο στο εύρος της σχετίζεται µε ένα µόνο στοιχείο του πεδίου ορισµού της. Τυπικά: δοσµένης f:a B, f, ένα-προς-ένα : ( x,y: x yf(x) f(y)). εν υπάρχουν διαφορετικά στοιχεία του πεδίου ορισµού µε την ίδια εικόνα στο πεδίο τιµών. Πεδίο ορισµού & εύρος έχουν τον ίδιο πληθικό αριθµό. Τι γίνεται σε σχέση µε το πεδίο τιµών; 4/7/2017 36
Το πεδίο τιµών µπορεί να είναι µεγαλύτερο. Για να αποδείξουµε ότι µία συνάρτηση είναι ένα προς ένα αρκεί να αποδείξουµε τον ορισµό. ή ότι για κάθε x, y στο πεδίο ορισµού της, αν ισχύει f(x)=f(y) τότε ισχύει ότι x=y (γιατί;;;) 4/7/2017 37
Ένα-προς-ένα Τι λέτε για τα παρακάτω παραδείγµατα; 4/7/2017 38
Ένα-προς-ένα Τι λέτε για τα παρακάτω παραδείγµατα; ΝΑΙ 4/7/2017 39
Ένα-προς-ένα Τι λέτε για τα παρακάτω παραδείγµατα; ΝΑΙ ΟΧΙ 4/7/2017 40
Ένα-προς-ένα Τι λέτε για τα παρακάτω παραδείγµατα; ΝΑΙ ΟΧΙ ΕΝ ΕΙΝΑΙ ΚΑΝ ΣΥΝΑΡΤΗΣΗ 4/7/2017 41
Επαρκείς συνθήκες για να είναι µία συνάρτηση 1-προς-1 Για συναρτήσεις f:a B όπου Α, Β σύνολα αριθµών, λέµε ότι: Η f είναι γνησίως αύξουσα αν και µόνο αν x>y f(x)>f(y) για κάθε x,y στο πεδίο ορισµού. Η f είναιγνησίως φθίνουσα αν και µόνο αν x>y f(x)<f(y) για κάθε x,y στο πεδίο ορισµού. Εάν η f είναι γνησίως αύξουσα ή γνησίως φθίνουσα, τότε η f είναι 1-προς-1. Ισχύει το αντίστροφο;;;; 4/7/2017 42
Εάν η f είναι γνησίως αύξουσα ή γνησίως φθίνουσα, τότε η f είναι 1-προς-1. Ισχύει το αντίστροφο;;;; OXI! Π.χ., f:zz τ.ω. εάν x άρτιος τότε f(x)=x+1 εάν x περιττός τότε f(x)=x-1 4/7/2017 43
Συναρτήσεις «επί» Μία συνάρτηση f:a B είναι «επί» εάν το εύρος της είναι το ίδιο µε το πεδίο τιµών της ( b B, a A: f(a)=b). Θεωρείστε Γέννηση : AB, όπου A=άνθρωποι, B={ Ε, ΤΡ, ΤΕ, ΠΕ, ΠΑ, ΣΑ, ΚΥ}. Είναι συνάρτηση; Είναι 1-1; Είναι επί; 4/7/2017 44
Συναρτήσεις «επί» Μία συνάρτηση f:a B είναι «επί» εάν το εύρος της είναι το ίδιο µε το πεδίο τιµών της ( b B, a A: f(a)=b). Θεωρείστε Γέννηση : AB, όπου A=άνθρωποι, B={ Ε, ΤΡ, ΤΕ, ΠΕ, ΠΑ, ΣΑ, ΚΥ}. Είναι συνάρτηση; NAI Είναι 1-1; OXI Είναι επί; ΝΑΙ 4/7/2017 45
Συναρτήσεις «επί» Μία συνάρτηση f:a B είναι «επί» εάν το εύρος της είναι το ίδιο µε το πεδίο τιµών της ( b B, a A: f(a)=b). Μία συνάρτηση επί απεικονίζει το σύνολο A επί όλου του συνόλου B, όχι ενός µέρους του. Π.χ., για πεδίο ορισµού και πεδίο τιµών το R,ηx 3 είναι επί, ενώ η x 2 δεν είναι. (Γιατί;) 4/7/2017 46
Είναι αυτές οι συναρτήσεις επί ; 4/7/2017 47
4/7/2017 48 Είναι αυτές οι συναρτήσεις επί ; NAI OXI NAI OXI
Είναι 1-1; 4/7/2017 49
Είναι 1-1; ΟΧΙ ΟΧΙ ΝΑΙ ΝΑΙ 4/7/2017 50
Είναι επί; Οχι 1-1, επί όχι 1-1, όχι επί 1-1 επί 1-1 όχι επί 4/7/2017 51
Η συνάρτηση ταυτότητας Για κάθε πεδίο A, η συνάρτηση ταυτότητας I:A A (γράφεται επίσης ως I A ) στο A είναι η συνάρτηση που απεικονίζει κάθε στοιχείο του Α στον εαυτό του Σε κατηγορηµατικό λογισµό: a A: I(a)=a. Η συνάρτηση ταυτότητας είναι 1-1 και επί. 4/7/2017 52
Η συνάρτηση ταυτότητας y y = I(x) = x Πεδίο τιµών και εύρος x 4/7/2017 53
Αµφιµονοσήµαντες συναρτήσεις Μία συνάρτηση είναι αµφιµονοσήµαντη, αν και µόνο αν είναι και 1-προς-1 και επί. 4/7/2017 54
Αγγλική ορολογία 1. injection = 1-προς-1 2. surjection = επί 3. bijection = αµφιµονοσήµαντη 3 = 1&2 εποµένως, για να αποδείξουµε ότι µία συνάρτηση είναι αµφιµονοσήµαντη αρκεί να αποδείξουµε ότι είναι 1-1 και επί 4/7/2017 55
Αντίστροφη συνάρτηση Για µία αµφιµονοσήµαντη συνάρτηση f:a B, υπάρχει η αντίστροφη της f 1, f 1 : B A ιαισθητικά, αυτή είναι η συνάρτηση που ακυρώνει ότι κάνει η f Τυπικά, είναι η µοναδική εκείνη συνάρτηση για 1 την οποία = f f I A (θυµηθείτε ότι I A είναι η ταυτοτική συνάρτηση στο A) 4/7/2017 56
Αντίστροφη συνάρτηση 4/7/2017 57
Αντίστροφη συνάρτηση Παράδειγµα 1: Έστω f: Z Z, f(x)=x+1. Ποιά είναι η f 1 ; Κατ αρχάς υπάρχει; ηλαδή η f είναι αµφιµονοσήµαντη; Ναι, γιατί είναι 1-1 και επί. Πως θα το δείξουµε;.. 4/7/2017 58
Αντίστροφη συνάρτηση Παράδειγµα 1: Έστω f: Z Z, f(x)=x+1. Ποιά είναι η f 1 ; 4/7/2017 59
Αντίστροφη συνάρτηση Παράδειγµα 1: Έστω f: Z Z, f(x)=x+1. Ποιά είναι η f 1 ; Η f 1 είναι η συνάρτηση (ας την ονοµάσουµε h) h: Z Z που ορίζεται ως h(x)=x-1. h(f(x)) = h(x+1)=(x+1)-1 = x = I(x) 4/7/2017 60
Αντίστροφη συνάρτηση Παράδειγµα 2: Έστω g: Z N, g(x)= x. Ποιά είναι η g 1 ; 4/7/2017 61
Αντίστροφη συνάρτηση Παράδειγµα 2: Έστω g: Z N, g(x)= x. Ποιά είναι η g 1 ; εν υπάρχει τέτοια συνάρτηση, εφόσον η g δεν είναι αµφιµονοσήµαντη 4/7/2017 62
Αντίστροφη συνάρτηση Παράδειγµα 3: Έστω g: R R, g(x)=x 2. Ποιά είναι η g 1 ; 4/7/2017 63
Αντίστροφη συνάρτηση Παράδειγµα 3: Έστω g: R R, g(x)=x 2. Ποιά είναι η g 1 ; εν υπάρχει τέτοια συνάρτηση, εφόσον η g δεν είναι αµφιµονοσήµαντη 4/7/2017 64
Αντίστροφη συνάρτηση Παράδειγµα 3: Έστω g: R + R +, g(x)=x 2. Ποιά είναι η g 1 ; 4/7/2017 65
Αντίστροφη συνάρτηση Παράδειγµα 3: Έστω g: R + R +, g(x)=x 2. Ποιά είναι η g 1 ; Η συνάρτηση τετραγωνικής ρίζας 4/7/2017 66
Ιδιότητες ( f g) = g f 1 1 1 4/7/2017 67
Εύρεση αντίστροφης συνάρτησης Λύση της y = f (x) ως προς x, π.χ.: Να βρεθεί η αντίστροφη της Εποµένως, 4/7/2017 68
Εύρεση αντίστροφης συνάρτησης Αλλιώς: Να βρεθεί η αντίστροφη της H f εφαρµόζει στο x τους εξής µετασχηµατισµούς: x 2x 2x+ 8 (2x+ 8) Για να βρούµε την αντίστροφή της πρέπει να τους αναιρέσουµε από το τέλος προς την αρχή y 3 3 y 8 4/7/2017 69 3 y 2 8 3
Γραφική παράσταση µιας συνάρτησης και της αντίστροφής της Οι γραφικές παραστάσεις µιας συνάρτησης και της αντίστροφής της είναι συµµετρικές ως προς τη διχοτόµο της γωνίας xοy (δηλ. της γραφικής παράστασης της εξίσωσης y=x) 4/7/2017 70