ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

Σχετικά έγγραφα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

P (M = n T = t)µe µt dt. λ+µ

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Θεωρία Τηλεπικοινωνιακής Κίνησης

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

Διαδικασίες Markov Υπενθύμιση

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

3. Προσομοίωση ενός Συστήματος Αναμονής.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

E[X n+1 ] = c 6 z z 2. P X (z) =

ιωνυµική Κατανοµή(Binomial)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

H επίδραση των ουρών στην κίνηση ενός δικτύου

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ίκτυα Επικοινωνίας Υπολογιστών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Τυχαία Διανύσματα και Ανεξαρτησία

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ.

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

Τυχαία μεταβλητή (τ.μ.)

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Απλα Συστήματα Αναμονής Υπενθύμιση

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

3. Κατανομές πιθανότητας

P (M = 9) = e 9! =

Τυχαίες Μεταβλητές (τ.µ.)

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Transcript:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί Ορισμοί Θεωρίας Ανανέωσης (Renewal Theory) Υπολειπόμενη Ζωή (Residual Life, Renewal Parado) Ροπογεννήτριες Συναρτήσεις (Moment Generating Functions MGM) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 7/6/2017

Σε χρονικό ορίζοντα t: ΤΥΠΟΣ Little Γενικό Σύστημα Αναμονής σε Εργοδική Ισορροπία A(t): Συνολικός αριθμός αφίξεων στο διάστημα 0, t D(t): Συνολικός αριθμός αναχωρήσεων στο διάστημα (0, t) T i : Χρόνος παραμονής στο σύστημα του πελάτη i, i = 1,, D(t) Ο αριθμός πελατών στο σύστημα στο χρόνο t είναι: n t = A t D t Ο συνολικός αριθμός πελατών στο σύστημα στο διάστημα (0, t) είναι: t n τ dτ T i 0 Σε χρονικό ορίζοντα T η ρυθμαπόδοση γ και ο χρόνος καθυστέρησης E(T) στην εργοδική κατάσταση είναι: γ = lim T T Λόγω εργοδικότητας: E n(t = E n = 1 T = lim n τ dτ T T 0 D t, E T = lim T 1 = lim T T T i = lim T 1 D(T) T i T 1 D(T) T i Και τελικά: E n = lim T T lim T 1 D(T) T i = γe(t)

ΧΡΟΝΟΣ ΚΑΘΥΣΤΕΡΗΣΗΣ ΟΥΡΑΣ ΣΕ ΕΡΓΟΔΙΚΗ ΚΑΤΑΣΤΑΣΗ ΜΕ ΕΝΑ ΕΞΥΠΗΡΕΤΗΤΗ (G/G/1) n t = n q t + n s t, T = W + s : E T = E n t γ E n s t = γe s = γ μ = E W + E s = E n q t γ + E n s t γ = 0 P n t = 0 + P n t > 0 = P n t > 0 ο βαθμός χρησιμοποίησης του εξυπηρετητή u = γ = P n t > 0 ) μ

ΝΟΜΟΙ ΣΥΝΟΛΙΚΗΣ ΠΙΘΑΝΟΤΗΤΑΣ (1/2) ΕΡΓΟΔΙΚΑ ΣΥΣΤΗΜΑΤΑ M/G/N/K: ΙΔΙΟΤΗΤΑ PASTA Συνολική Πιθανότητα Γεγονότος Α σαν άθροισμα υπό Συνθήκη Πιθανοτήτων του συνόλου Διακριτής Μεταβλητής n =k : P(A) = P A n = k P(n = k) k= Συνολική Πιθανότητα Τυχαίας Μεταβλητής Y σαν Ολοκλήρωμα υπό Συνθήκη Πιθανοτήτων του συνόλουυ Συνεχούς Τυχαίας Μεταβλητής X = : P Y = P Y X = f X d, E Y = E Y X = f X d = E X [E Y X ] = = Θεωρείστε διάστημα T διαιρεμένο σε μη επικαλυπτόμενα υποδιαστήματα T 1, τ, T 2 και αφίξεις Poisson με μέσο ρυθμό λ αφίξεις/sec Η πιθανότητα k αφίξεων σε διάστημα t είναι P k t = e λt λt k, k = 0,1,2,3,, E t k = σ 2 t k = λt k! Αν υποθέσουμε πως έχουμε μια άφιξη Poisson R στο T με πιθανότητα P 1 T υποδιάστημα τ με πιθανότητα: = e λt (λt). Η άφιξη αυτή θα συμβεί στο P 1 άφιξη Poisson στο τ 1 άφιξη Poisson στο T} = [P 0 (T 1 ) P 1 (τ) P 0 (T 2 )]/P 1 (T) = λτe λ T 1+τ+T 2 λte λt = τ T

ΝΟΜΟΙ ΣΥΝΟΛΙΚΗΣ ΠΙΘΑΝΟΤΗΤΑΣ (2/2) ΕΡΓΟΔΙΚΑ ΣΥΣΤΗΜΑΤΑ M/G/N/K: ΙΔΙΟΤΗΤΑ PASTA Συνολική Πιθανότητα Γεγονότος Α σαν άθροισμα υπό Συνθήκη Πιθανοτήτων του συνόλου Διακριτής Μεταβλητής n =k : P(A) = P A n = k P(n = k) k= Συνολική Πιθανότητα Τυχαίας Μεταβλητής Y σαν Ολοκλήρωμα υπό Συνθήκη Πιθανοτήτων του συνόλουυ Συνεχούς Τυχαίας Μεταβλητής X = : P Y = P Y X = f X d, E Y = E Y X = f X d = E X [E Y X ] = = Θεωρείστε διάστημα T διαιρεμένο σε μη επικαλυπτόμενα υποδιαστήματα T 1, τ, T 2 και αφίξεις Poisson με μέσο ρυθμό λ αφίξεις/sec Η πιθανότητα k αφίξεων σε διάστημα t είναι P k t = e λt λt k, k = 0,1,2,3,, E t k = σ 2 t k = λt k! Αν υποθέσουμε πως έχουμε μια άφιξη Poisson R στο T με πιθανότητα P 1 T υποδιάστημα τ με πιθανότητα: = e λt (λt). Η άφιξη αυτή θα συμβεί στο P 1 άφιξη Poisson στο τ 1 άφιξη Poisson στο T} = [P 0 (T 1 ) P 1 (τ) P 0 (T 2 )]/P 1 (T) = λτe λ T 1+τ+T 2 Οι αφίξεις Poisson έχουν τη συμπεριφορά τυχαίων αφίξεων (Poisson Arrivals ~ Random Arrivals) λte λt Ιδιότητα PASTA (Poisson Arrivals See Time Averages): Η εργοδική κατανομή (και ο μέσος όρος) της κατάστασης S ουράς M/G/N/K (εφόσον υπάρχει) εκτιμάται σαν ο μακροχρόνιος λόγος του συνολικού χρόνου τ S που η κατάσταση έχει την συγκεκριμένη τιμή S προς το συνολικό διάστημα παρατήρησης T. Οι εκτιμήσεις αυτές μπορεί να προκύψουν από καταγραφή της κατάστασης σε χρονικά σημεία αφίξεων Poisson με ενιαίο ρυθμό λ: τ S P n t = S = lim T T = lim A A S A Αρ. Αφίξεων Poisson όταν n t = S, στο συνολικό διάστημα τ S Αρ. Αφίξεων Poisson στο συνολικό διάστημα T = τ T

ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΩΡΙΑΣ ΑΝΑΝΕΩΣΗΣ Renewal Theory: Basic Definitions Στατιστικά Μοντέλα Χρόνου Ζωής (Life-Time), Αποτυχίας (Failure-Times), Αποκατάστασης (Repair-Times) Βασική παραδοχή: Τα διαστήματα μεταξύ διαδοχικών Σημείων Ανανέωσης (renewals που ορίζουν το Χρόνο Ζωής) είναι συνεχείς τυχαίες μεταβλητές S με τιμές 0, ανεξάρτητες μεταξύ τους, με την ίδια κατανομή F S (i.i.d. - independent & identically distributed random variables), συνάρτηση πυκνότητας πιθανότητας f S, μέση τιμή E S και διασπορά σ 2 S = E S 2 E S 2 : P S d, = f S d, F S = P S = f S t dt, E S = tf S t dt, E S 2 = t 2 f S t dt Ένας άσχετος παρατηρητής του συστήματος σε τυχαίο χρονικό σημείο R (Random Point που σύμφωνα με την ιδιότητα PASTA ισοδυναμεί με τυχαία άφιξη Poisson) έχει πιθανότητα να βρεθεί σε διάστημα Χ με προτίμηση ανάλογη με το μέγεθος του διαστήματος. Η απόσταση Y από το σημείο αυτό μέχρι το επόμενο renewal αποτελεί τον Υπολειπόμενο Χρόνο Ζωής (Residual Life) Renewal Parado: Η τυχαία μεταβλητή Χ (το μέγεθος του διαστήματος τυχαίας επιλογής) έχει πυκνότητα πιθανότητας f Χ διαφορετική από την f S P R S = = K (τυχαία επιλογή ανάλογη με το μέγεθος του διαστήματος ) F X = P X = P R t S = t f S t dt = K t f S t dt f X = df X d = K f S, f X d =0 = 1 = K f S d =0 f X = f S /E S, E X = E(S 2 ) E(S) K = 1/E S και τελικά

ΥΠΟΛEΙΠΟΜΕΝΟΣ ΧΡΟΝΟΣ ΖΩΗΣ Residual Life & Renewal Parado Επιλογή διαστήματος X = από παρατηρητή που εμφανίζεται σε σημείο Poisson R: f X = f S E S Ο Υπολειπόμενος Χρόνος Ζωής είναι τυχαία μεταβλητή Y με πυκνότητα πιθανότητας f Y y P Y y dy, y X = = P{R dy} = K dy = dy/ P{R } K και από τον τύπο της συνολικής πιθανότητας P Y y dy, y = f Y y dy = y=0 y=0 =y dy f X d = =y f Y y = 1 F S y E(S) Μέσος Υπολειπόμενος Χρόνος Ζωής (Mean Residual Life): E Y = y f Y y dy = y 1 F S y dy = 1 E(S) E S = 1 E S =0 f S y dy y=0 d = 1 E S f S E(S) dy y=0 f S =0 d = dy E(S) =y y f S d =y 2 2 f S d = E S2 2E S dy d = 1 F S y E(S) = σ 2 S + E S 2 2E S dy E Y = E S2 2E S = σ 2 S + E S 2 E S 2E S 2 Renewal Parado: Τυχαία ενδιάμεση παρατήρηση R «προτιμά» κατά μέσο όρο μεγάλα διαστήματα S Για σταθερά διαστήματα S: E S = S = 1/μ, σ S2 = 0, E Y = S 2 = 1/(2μ) και η μέση τιμή του «προτιμώμενου» διαστήματος είναι E X = E S (αναμενόμενο, χωρίς προκαταλήψεις λόγω απολύτως προβλέψιμου S) Για εκθετικά διαστήματα S: E S = 1/μ, σ S2 = 1/μ 2, E Y = E S = 1/μ (ιδιότητα έλλειψης μνήμης εκθετικής κατανομής) και E X = 2E S = 2/μ (διπλάσιο της μέσης τιμής E S με προκατάληψη λόγω απρόβλεπτου S)

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ & ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Moment Generating Functions - MGF Διακριτές ακέραιες τυχαίες μεταβλητές n με τιμές k = 0, 1, 2, και πιθανότητες p k = P(n = k) Ορίζουμε την Ροπογεννήτρια Συνάρτηση (MGF) σαν τον μετασχηματισμό z G n z = k=0 p k z k, z 1, Για z =1, G n 1 = 1 και οι παράγωγοί της MGF ως προς z δίνουν τις ροπές της n: G n 1 =E n, G n 1 (m) = E n m Παράδειγμα: Αφίξεις Poisson k με ρυθμό λ σε διάστημα t με πιθανότητες P k t = e λt λt k, k = 0,1,2,3, G n z = k=0 P k t z k = k=0 e λt λt k /k! = e λt(1 z) G n 1 = 1, G n 1 = E(n) = λt, G n 1 = E n 2 = λt + λt 2, σ 2 n = E n 2 E n 2 = λt Συνεχείς τυχαίες μεταβλητές X με τιμές t 0 και συνάρτηση πυκνότητας πιθανότητας f X P X t Δt, t = f X t Δt, F X t = P X t = f X τ dτ Ορίζουμε τον μετασχηματισμό Laplace F X p της f X F X p = e pt f X t dt Για p = 0 έχουμε αντίστοιχα F X (0) = 1 και οι παράγωγοι ως προς p για p = 0 δίνουν τις ροπές της X: F X (0) = E X, F X (0) (m) = 1 m E X m Παράδειγμα: Εκθετική μεταβλητή X με μέσο όρο 1 μ, f X t = μe μt, t 0 F X p = μ (μ + p) t F X (0) = 1, F X p = μ μ + p 2, E X = F X (0) = 1 μ, F X (p) = 2μ μ + p 3, E X 2 = F X (0) = 2 μ 2 Παράδειγμα: X με σταθερή τιμή 1 μ, f X t = δ(t 1 μ) F X p = e p μ, F X (0) = 1, F X p = (1 μ)e p μ, E X = F X 0 = 1 μ F X p = 1 μ 2 e p μ, E X 2 = F X (0) = 1 μ 2 2, σ X = E X 2 E X 2 = 0 Άθροισμα ανεξαρτήτων τυχαίων μεταβλητών F X+Y p = F X p F Y p t τ=0 k! t