A Classical Perspective on Non-Diffractive Disorder

Σχετικά έγγραφα
Defects in Hard-Sphere Colloidal Crystals

Gradient Descent for Optimization Problems With Sparse Solutions

Diamond platforms for nanoscale photonics and metrology

m i N 1 F i = j i F ij + F x

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α


Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Lifting Entry (continued)

A 1 A 2 A 3 B 1 B 2 B 3


SPECIAL FUNCTIONS and POLYNOMIALS

d 2 y dt 2 xdy dt + d2 x

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

!"#$ % &# &%#'()(! $ * +

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2


Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

ITU-R P (2012/02) &' (


Geodesic Equations for the Wormhole Metric

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ


ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού

Jeux d inondation dans les graphes

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

ITU-R P ITU-R P (ITU-R 204/3 ( )

Matrices and Determinants

Note: Please use the actual date you accessed this material in your citation.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Leaving Certificate Applied Maths Higher Level Answers

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Durbin-Levinson recursive method

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Multi-GPU numerical simulation of electromagnetic waves

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

m 1, m 2 F 12, F 21 F12 = F 21

Solutions - Chapter 4

the total number of electrons passing through the lamp.

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

692.66:

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

Περιεχόμενα. A(x 1, x 2 )

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!


encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΑΡΧΕΣ ΣΚΕ ΑΣΗΣ. Νικόλαος Ε. Ζαφειρόπουλος Τµήµα Επιστήµης και Τεχνολογίας των Υλικών, Πανεπιστήµιο Ιωαννίνων

rs r r â t át r st tíst Ó P ã t r r r â

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :

Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,


Section 8.3 Trigonometric Equations

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

Klausur Strömungslehre

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ


TeSys contactors a.c. coils for 3-pole contactors LC1-D

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Between Square and Circle

The Pohozaev identity for the fractional Laplacian

Constitutive Relations in Chiral Media

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

ˆ ˆ Š Š ˆ ƒ Ÿ ƒ ˆ ˆŸ œ Œ ˆ ŒŠ Š ƒ ˆ ˆ ƒ.. ŠÊ Ö±,.. Ö, ƒ. ƒ. ³Ö,.. Éμ ±μ

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Exercises to Statistics of Material Fatigue No. 5

ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min.

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

Local Approximation with Kernels

Transcript:

A Classical Perspective on Non-Diffractive Disorder The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms of Use Klales, Anna. 2016. A Classical Perspective on Non-Diffractive Disorder. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. July 29, 2017 7:28:27 AM EDT http://nrs.harvard.edu/urn-3:hul.instrepos:26718765 This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:hul.instrepos:dash.current.terms-ofuse#laa (Article begins on next page)

0

r 5 r 5

R = 10MΩ

1 itp2d

6B;m`2 RXR, M `` v Q7 2B;2Mbi i2b rbi? +QMb2+miBp2 2M2`;B2b BM i?2 MQBbBv [mbmib+ TQi2MiB HX h?2 T`272``2/ Q`Bi2Mi ibqmb Q7 i?2 bi i2b + M #2 b22m BM i?bb `` vx k

Q

0, t

1.2 1.0 0.8 h (t)i 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 t M δp t = M δp 0. δx t δx 0 ψ G (x, t) =exp{(i/ )[(x x t ) A t (x x t )+p t (x x t )+γ t ]}

fully resolved third recurrence second recurrence first recurrence 0 2 4 6 8 10 12 f A t = 1 2 δp t (δx t ) 1 γ t = φ t + 1 2 i [ln δx t (δx 0 ) 1 ] φ t = p t dx t Et φ t t =0 ψ G (0) ψ G (t)

exp{ nτλ/2} λ M n n ϵ T (ω) = 1 2 π T T exp{iωt} ψ G ψ G (t) dt. λ

λ/ω. ω/λ 1 t

r r 5 r 5

φ =0 r 0 r 5 ψ r,m (ρ, φ) =R r,m (ρ)e imφ ψ r,m ψ r, m ψ r,m = R(r)e imφ ψ r, m = R(r)e imφ. V r,±m = ψ r,m V ψ r,m ψ r,m V ψ r, m. ψ r, m V ψ r,m ψ r, m V ψ r, m ψ + ψ 2 2 ψ + V ψ =0 ψ + cos φ ψ sin φ

ψ + = 1 2 (ψ r,m + ψ r, m ) ψ = 1 2 (ψ r,m ψ r, m ). ψ + cos φ ψ sin φ φ =0

, r 5

6000 5800 5600 E 5400 5200 5000 2:5 resonant set 3:7 resonant set 0 25 50 75 100 125 150 175 r r m E ω. r 5

H = H 0 + λv H 0 = 2 2µ 2 + r 5 a ψ m V ψ m+a = = e imφ Ve i(m+a)φ dφ e iaφ Vdφ. V a

0 200 400 600 800 1000 1200 0 0 200 400 600 800 1000 1200 200 400 j 600 800 1000 1200 i i ψ i V ψ j

W = ψi 0 V ψ 0 j. ψ 0 i V φ i. W φ 1 = ϵ 1 φ 1 W φ 2 = ϵ 2 φ 2 W φ n = ϵ n φ n. ϵ 1 > ϵ 2 >... > ϵ n ψ = i a i φ i i a i 2 =1.

ψ W ψ = i = i = i = i φ j a i a jw φ i j a i a j φ j W φ i j a i a j φ j ϵ i φ i j a i a jϵ i φ j φ i j i = j ψ W ψ = i a i 2 ϵ i. φ i ψ W ψ ψ φ ϵ φ i V,

itp2d 1:π,

state 3673 state 3678 state 11059 state 11062 state 11070 state 11076 state 20661 state 20671 state 20676 state 30662 state 30670 state 30688 6B;m`2 RXN, ai i2b + H+mH i2/ pb /2;2M2` i2 T2`im`# ibqm i?2q`v QM bk HH bm#b2i Q7 bi i2b rbi?bm `2bQM Mi b2ix k9

state 3673 state 3678 state 11059 state 11062 state 11070 state 11076 state 20661 state 20671 state 20676 state 30662 state 30670 state 30688 6B;m`2 RXRy, ai i2b + H+mH i2/ U HKQbiV 2t +ihv pb /B ;QM HBx ibqm QM p2`v H `;2 bm#b2i Q7 # bbb bi i2bx k8

y 12 10 8 6 4 2 0 0 2 4 6 8 10 12 x 0 2 4 6 8 10 12 x 0 2 4 6 8 10 12 x 1.0 0.5 0.0 0.5 1.0 V

itp2d itp2d

2

dp/dx

p 0.08 0.00 0.08 / 0 20 15 10 5 0 1.0 0.5 0.0 0.5 1.0 1.5 2.0 x

y p x x x

p n+1 = p n dv n(x) dx x n+1 = x n + p n+1 p x V n (x) x

V n (x) =0, V n (x)v n (x )=v 2 0e x x 2 /ξ 2. t c v 2/3 0

transverse position 200 150 100 50 0 0 500 1000 1500 2000 2500 longitudinal position 8 6 4 2 log( ) transverse position 400 300 200 100 0 0 50 100 150 200 250 longitudinal position 8 6 4 2 log( )

p x p x p x a p x p a x 2 V a x 2 a ( p x 1+ p ) 1 p a x a x. a 1 ( 1, 0]

1 0 δs = δp 2 + δx 2 = δp ( p 1+( x p) 2 = 2 δx 1+ x) δp δx p x p δs > x 0 q 1+2 p x +2 p S drift = q x 1+ p x 2 q 2 q 2 < p x < 0

S kick = 1+ p x + 2 V n 2 q dx 2 p 2 q x 1+ p x 2 q 2 V n q dx 2 q. αp = p βx = x p x = α β p 0 < x < 2 α β α = β =1

r(t) = log M(x 0,x t ) d(x 0 ) d(x 0 ) x 0 M(x 0,x t ) x 0 x t

p 0.0004 0.0002 0.0000 0.0002 0.0004 0.0 0.5 1.0 1.5 x 4.5 3.0 1.5 0.0 1.5 3.0 4.5 6.0 log( ) v 0 = 10 6 ξ =0.1 x =0 x =1 λ c λ c v 0 λ c v 2/3 o p(x) =0

40 30 20 v 0 =2 20 v 0 =2 18 v 0 =2 16 v 0 =2 14 v 0 =2 12 r 10 0 10 0.0 0.2 0.4 0.6 0.8 1.0 t/t c v 0 t c v 0 =2 10 v 0 =2 12 v 0 =2 14 v 0 =2 16 v 0 =2 18 v 0 =2 20 0 2 4 6 8 10 c λ c v 0

p n+1 = p n dv n(x) dx x n+1 = x n + p n+1 p x

V n (x)v n (x )=v 2 0e x x 2 /ξ 2 x v 0 ξ 2 c 0 v 0 ξ 2 m = mv m 2 V 1+m V m p x V 2 V x 2 m c V c 0 V m c = c 0 c 2 0 +4c 0 2 c 0 m c = c 1/2 0. V m

V,m<<1 m =(mv m 2 V )(1 m + V ) m<<m c m 2 << V m = V mm c m 2 V m = m 2 V m>>m c m 2 >> V m = m 2 m c m n (n n 0 ) 1 n 0

L n+1 L n = 2 = 2 (( V 1 2 dx dp) 2 + 1 4 dx2 dx 2 + dp 2 ( = 2 ( V dx ) 2 1 2 dp dx + 1 4 1+ dp 2 dx V 1 2 dp dx 1+ dp 2 dx ) 2 + 1 4 1 2 1 2 ) 1 2 r = r n+1 r n =ln(l n+1 /dx 0 ) ln(l n /dx 0 ) = ln(l n+1 /L n ) r = ln ( 2 = 1 2 ln V 1 2 dp dx ( 2 1+ dp 2 dx V 1 2 dp dx 1+ dp 2 dx ) 2 + 1 2 1 2 ) 2 + 1 2

dp dx = m ( r = 1 ( 2 V 2 ln 1 2 m) ) 2 + 1 2 1+m 2 ln(x) x 1 ( r 1 ( 2 V 1 2 m) ) 2 + 1 2 2 1+m 2 1 ( 1 ( 2 V 1 2 m) 2 + 1 2 1 ) m2 2 1+m 2 ( ( 2 V 2 1 2 V mv 1 2 V + 1 4 + 1 2 m mv + 1 2 m + m2 + 1 4 1 2 1 2 m2) ) 1 2 1+m 2 ( V 2 1 2 V mv 1 2 V + 1 4 + 1 2 m mv + 1 2 m + m2 + 1 4 1 2 ) 1 2 m2 1+m 2 ( ) V 2 V + m 2mV + 1 2 m2 1+m 2 (1 + m 2 ) 1 1 m 2 r V 2 V + m 2mV + 1 2 m2 r m V

m m 1 t t c t c r ln(t t c ) r = m +ṁ m<<m crit α = (x dx 1,p dp) β = (x, p) γ = ((x + dx 2,p+ dp)) α = (x + p dx 1 dp V 1,p dp V 1) β = (x + p V,p V ) γ = (x + p + dp + dx 2,p+ dp V 2)

p (x + dx 2,p+ dp) (x dx 1,p dp) (x, p) x p (x + p dx 1 dp V1 0,p dp V 0 1 ) x (x + p + dp + dx 2,p+ dp V 0 2 ) (x + p V 0,p V 0 )

m 2 = dp dx 2 m = dp dx 1 c = dp dx 2 dp dx 1 dx 2 = m 2 m dx 2. c = m 2 m dx 2 c = ( ) ( ) dp V 2 +V dp+v dp+dx 2 V 2 +V 1 V dx 1 +dp+v 1 V dp + dx 2 V 2 + V = 1 dx 2 m 2 V 2 m 2 +1 V 2 m V 1+m V m 2 +1 V 2 c c = 1 dx 2 = 1 dx 2 ( ( ) ( ) m2 V 2 m 2 m V +1 V 2 1+m V m 2 +1 V 2 (m 2 m) m 2 m V 2 + V (m 2 +1 V 2 )2 (1 + m V ) m 2 + m ) c c 1 ( (m2 m V 2 + V )( 2m 2 +1+2V 2 )(1 m + V ) dx 2 m 2 + m )

dx 2 (c c) V V 2 +4m 2 V 2 2m 2 2 mv 2 + mm 2 2V 2 2 + V 2 V V m 2 2mV + m 2 + V 2 t t =6

6.5 3200 6.0 5.5 2400 2d periodic potential Intensity 5.0 y y 4.5 1600 4.0 3.5 800 3.0 2.5 0 0 50 100 150 200 250 time time 300 350 6B;m`2 kxrk, S2`BQ/B+ #` M+?2/ ~Qr Q7 K MB7QH/ Q7 +H bbb+ H i` D2+iQ`B2b 8e

6B;m`2 kxrj, S2`BQ/B+ #` M+?2/ ~Qr Q7 [m MimK K2+? MB+ H TH M2 r p2 7Q` p `B2iv Q7 `2T2 i H2M;i?bX 8d

6B;m`2 kxr9, +QKT `BbQM Q7 i?2 /2MbBiv Q7 +H bbb+ H i` D2+iQ`B2b UH27i T M2HV rbi? r p2t +F2i H mm+?2/ BM i?2 b K2 TQi2MiB H M/ KmHiBTHB2/ #v e ie0 t/! iq ;2i i?2 `2bmHiBM; [m MimK bi i2 rbi? 2M2`;v E0 U`B;?i T M2HVX h?2 v2hhqr ``Qr BM/B+ i2b #` M+? 2pB/2Mi BM i?2 +H bbb+ H /2MbBiv i? i Bb #b2mi BM i?2 +Q``2bTQM/BM; [m MimK bi i2x "Qi? T M2Hb b?qrm 7mHH irq@/bk2mbbqm H 2pQHmiBQM 83

e ie0t/ E 0 E 0. 0.

3

V I R R = 10MΩ V

R T = V I.

n m = πn/v F

Ω n 0 n (r) n n(r) =n 0 + n (r)+n (r). L = 1 2 m(r)ṙ2 L d L =0 q i dt q i [ ] 1 2 m(r)ṙq2 t + r (m(r)ṙq) = 0 1 2 m(r)ṙ2 = m(r) r + ṙ (ṙ m(r))

m(r) = π v F n(r) r = [ ṙ2 1 ) (ˆṙ m(r) 2 m(r) m(r) ˆṙ]. r B = eṙb z /m(r) r = [ ṙ2 1 ) (ˆṙ m(r) 2 m(r) m(r) ˆṙ] + eṙb z /m(r).

] [ 2 + ω2 c 2 n2 (r) ψ =0. ψ = e iωs(r)/c S(r) S S = n 2 (r). n(r) dr ds = S [ d n(r) dr ] ds ds = n(r). d/ds = ˆk dr/ds = ˆk ] [ˆk n(r) ˆk + n(r) [ˆk ˆk] = n(r). ˆk = n(r)v/c F 2n(r) 2 [v n(r)] v + n(r)[v v] =c 2 F n(r)

2 1 y 0 1 2 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x d dt = t + v v dv dt =(v )v d 2 r dt 2 = c2 F ( ) n(r) n(r) 3 2 ( v n(r) n(r) ) v. m(r) n(r).

1 1 y x n 3

2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) 0.0-1.0-2.0 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm)

2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) 0.0-1.0-2.0 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm)

2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) 0.0-1.0-2.0 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm)

n 3 n 0 R = n 3 n 0 N N n tot = N i e l i/l l i i σ(ρ) = qa 2π (ρ 2 + a 2 ) 3/2 q a ρ 2ρ =2a 2 2/3 1 σ = q 2πa 2

10 11 2

y(µm) 4 3 2 1 0 0 1 2 3 x(µm) 16 12 8 4 0 4 8 12 16 B =0.12T n = 10 12 2

y(µm) y(µm) 1.0 0.0-1.0 1.0 0.0-1.0 1.0 B = 0.00 T B = 0.06 T B = 0.07 T B = 0.08 T B = 0.09 T B = 0.10 T B = 0.11 T B = 0.12 T B = 0.13 T 0.08 0.06 0.04 0.02 0.00 T/T 0.02 0.04 y(µm) 0.0-1.0 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.06 0.08 10 1 2 2

1.0 B = 0.00 T B = 0.06 T B = 0.07 T y(µm) 0.0-1.0 0.016 0.012 y(µm) 1.0 0.0-1.0 1.0 B = 0.08 T B = 0.09 T B = 0.10 T B = 0.11 T B = 0.12 T B = 0.13 T 0.008 0.004 0.000 T/T 0.004 0.008 y(µm) 0.0-1.0 0.012 0.016 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm)

2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) 0.0-1.0-2.0 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) x =1µ y =0

B =0.10T,

2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) 0.0-1.0-2.0 2.0 B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) 0.0-1.0-2.0 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm) 0.0 1.0 2.0 x(µm)

x

4

Ψ β (q, t) = dq G (q, q,t)ψ β (q, 0), G (q, q,t)= 1 2πi 2 S(q, q ) q q 1/2 [ ] exp is (q, q,t). S(q, q ) q 0 q t

( ) ( ) S S S (q, q ) = S(q t,q 0 )+ (q q t )+ (q q 0 ) q t q 0 q 0 q t + 1 ( 2 ) S 2 qt 2 (q q t ) 2 + 1 ( 2 ) S q 0 2 q0 2 (q q 0 ) 2 q t ( 2 ) S + (q q 0 )(q q t ) q 0 q t + 1 ( 3 ) S 6 q0 3 (q q 0 ) 3 + 1 ( 3 ) S q t 6 qt 3 (q q t ) 3 q 0 + 1 ( 3 ) S 2 q0 2 q (q q t )(q q 0 ) 2 + 1 ( 3 ) S t 2 q 0 qt 2 (q q t ) 2 (q q 0 ). Ψ β (q, t) = 1 N 2πi ( 3 ) S + q 0 qt 2 dq 2 ( S 3 S + q 0 q t q0 2 q t 1/2 (q q t ) exp { i [ Ξq 3 +Υq 2 +Ωq +Λ ]} ) (q q 0 )

Ξ = 1 ( 3 ) S 6 q0 3, q [ t ( Υ = 1 2 ) ( S 3 ) ( S 3 ) ( S 3 ) ] S 2 q0 2 + q t q0 2 q q t q0 3 q 0 q t q0 2 q q t + A, t ( ) ( S 2 ) ( S 2 ) ( S 3 ) S Ω = + (q q t ) q 0 q t q 0 q t q0 2 q 0 + q t q0 2 q (q 0 q t qq 0 ) t + 1 ( 3 ) ( S 2 q0 3 q0 2 3 )( S 1 + q t q 0 qt 2 2 q2 t + 1 ) 2 q2 qq t 2Aq β + ξ, ( ) S Λ = q + 1 ( 2 ) S q t q 0 2 qt 2 q 2 + 1 ( 3 ) ( ) S S q 0 6 qt 3 q 3 q 0 q 0 q 0 q t ( 2 ) S qq 0 1 ( 3 ) S q 0 q t 2 q 0 qt 2 q 2 q 0 + 1 ( 2 ) S 2 q0 2 q0 2 q t + 1 ( 3 ) S 2 q0 2 q qq0 2 t 1 ( 3 ) ( ) ( S S 6 q0 3 q0 3 2 ) S q t q t q t q 0 qt 2 qq t 1 ( 3 ) S q 0 2 qt 3 q 2 q t q 0 ( 2 ) ( S 3 ) S + q 0 q t + q 0 q t q 0 qt 2 qq 0 q t 1 ( 3 ) S 2 q0 2 q q0q 2 t t ( 2 ) S + 1 2 qt 2 qt 2 q 0 + 1 ( 3 ) S 2 qt 3 qqt 2 1 ( 3 S 2 q 0 qt 2 +Aq 2 β + S + γ ξq β. ) q 0 q 2 t 1 6 ( 3 ) S q 3 t q 0 q 3 t

φ Ψ 1 β (q, t) =N 2πi i dq A(q, t)exp{iφ} : φ = Ξq 3 +Υq 2 +Ωq +Λ ( = Ξ q 3 + Υ Ξ q 2 + Ω Ξ q + Λ ) Υ [ ( = Ξ q + 1 ) 3 Υ 1 3 Ξ 3 [( = Ξ q + 1 ) ( 3 Υ Ω + 3 Ξ Ξ 1 3 1 Υ 3 Ξ ( Ω Ξ 1 3 ( Υ Ξ ( ) 2 Υ q 1 Ξ 27 ) 2 ) ( Υ Ξ 1 27 ( ) 3 Υ + Ω Ξ Ξ q + Λ Ξ ) ) 2 ( q + 1 ) Υ 3 Ξ ( ) 3 Υ + Λ ]. Ξ Ξ ] t = ( q + 1 ) Υ 3 Ξ = φ =Ξt 3 +Ξ ( Ω Ξ 1 3 ( ) ) ( Υ 2 t 13 Ξ Υ Ω Ξ 1 3 ( ) ) Υ 2 1 Υ 3 Ξ 27 Ξ 2 +Λ. Ψ β (q, t) = N 1 2πi i exp { i [ Ξq 3 +Υq 2 +Ωq +Λ ]} = N 1 2πi exp { i [ i + 1 Υ 3 Ξ [ dq 2 ( S 3 ) ( S + q 0 q t q0 2 q (q 3 ) ] 1/2 S q 0 )+ t q 0 qt 2 (q q t ) + 1 Υ 3 Ξ Ξt 3 +Ξ ( [ 2 ( S 3 S dt + q 0 q t q0 2 q t Ω Ξ 1 3 ( Υ Ξ ) 2 ) t 13 Υ ( Ω Ξ 1 3 ) ( (q 3 S q 0 )+ q 0 qt 2 ( Υ Ξ ) 2 ) ) ] 1/2 (q q t ) 1 Υ 3 27 Ξ 2 +Λ ]}.

q q 0 Ψ β (q, t) = N 1 + 1 Υ 3 Ξ 2πi [ 2 S + q 0 q t { [ exp i + 1 Υ 3 Ξ t ( 3 S Ξt 3 +Ξ = N 1 + 1 Υ 3 Ξ 2πi [ 2 S + q 0 q t { [ exp i q 0 q 2 t + 1 Υ 3 Ξ ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) ) ] 1 2 n ( 3 S (q q t ) n=0 ( Ω Ξ 1 3 t ( 3 S Ξt 3 +Ξ = N 1 + 1 Υ 3 Ξ 2πi [ 2 S + q 0 q t n n m { [ m=0 exp i q 0 q 2 t + 1 Υ 3 Ξ n=0 ( Υ Ξ ) n (q q 0 ) n q0 2 q t ) ) ( 2 t 13 Υ Ω Ξ 1 3 ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) ) ] 1 2 n ( 3 S (q q t ) ( Ω Ξ 1 3 t ( 3 S n=0 ( Υ Ξ ) n ( t 1 Υ 3 q0 2 q t ) ) ( 2 t 13 Υ Ω Ξ 1 3 ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) ) ] 1 2 n ( 3 S (q q t ) q0 2 q t q 0 qt 2 ( 1 ) Υ n m 3 Ξ q 0 t m Ξt 3 +Ξ ( Ω Ξ 1 3 ) n ( ) ) ( Υ 2 t 13 Ξ Υ Ω Ξ 1 3 ( ) ) ]} Υ 2 1 Υ 3 Ξ 27 Ξ 2 +Λ ( Υ Ξ Ξ q 0 ) ) 2 ) n 1 Υ 3 27 Ξ 2 +Λ ]} ( ) ) ]} Υ 2 1 Υ 3 Ξ 27 Ξ 2 +Λ

{ [ ( = N 1 1 exp i 2πi 3 Υ Ω Ξ 1 3 ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) n=0 n n m=0 m { [ 1 6 ( 1)m (iξ) m 3 1 ( ( 1 ) Υ n m 3 Ξ q 0 ( ) ) Υ 2 Ξ [ 2 ( S 3 S + q 0 q t q 0 qt 2 + 1 Υ 3 27 Ξ 2 Λ ) (q q t ) ]} ] 1 2 n ( 3 S q 2 0 q t ( ) ( m +1 m 2(iΞ) 2/3 Γ 1F 2 3 3 + 1 3 ; 1 3, 2 3 ; Z 3 ) 27(iΞ) + Z 2 3 ( ) ( m +2 m (iξ)γ 1F 2 3 3 + 2 3 ; 2 3, 4 3 ; Z 3 ) 27(iΞ) ( m ) ( m + ZΓ 3 +1 1F 2 3 + 1; 4 3, 5 3 ; Z 3 ) )] 27(iΞ) + 1 ( ) ( 6 ( (iξ)) m m +1 m 3 [2( (iξ)) 1 2/3 Γ 1F 2 3 3 + 1 3 ; 1 3, 2 3 ; Z 3 ) 27(iΞ) ( ( m ) ( m + Z ZΓ 3 +1 1F 2 3 + 1; 4 3, 5 3 ; Z 3 ) 27(iΞ) 2 3 ( ) ( m +2 m (iξ)γ 1F 2 3 3 + 2 3 ; 2 3, 4 3 ; Z 3 ) )]}. 27(iΞ) ) n Z = Ξ ( Ω Ξ 1 3 ( ) ) Υ 2, Ξ

x n e αx3 e px dx = 0 x n e αx3 e px dx + 0 ( x) n e α( x)3 e p( x) dx [ = L x x n e αx3] (p)+l x [( x) n e α( x)3] ( p) = 1 ( ) ( 6 ( 1)n α n n +1 n 3 {2α 1 2/3 Γ 1F 2 3 3 + 1 3 ; 1 3, 2 3 ; p 3 ) 27α [ ( ) ( +p 2 3 n +2 n αγ 1F 2 3 3 + 2 3 ; 2 3, 4 3 ; p 3 ) 27α ( n ) ( n +pγ 3 +1 1F 2 3 + 1; 4 3, 5 3 ; p 3 ) ]} 27α + 1 ( ) ( 6 ( α) n n +1 n 3 {2( α) 1 2/3 Γ 1F 2 3 3 + 1 3 ; 1 3, 2 3 ; p 3 ) 27α [ ( n ) ( n +p pγ 3 +1 1F 2 3 + 1; 4 3, 5 3 ; p 3 ) 27α 2 3 ( ) ( n +2 n αγ 1F 2 3 3 + 2 3 ; 2 3, 4 3 ; p 3 ) ]}. 27α M(t) = p t p 0 q0 q t p 0 q0 p t q 0 p0 q t q 0 p0.

Ṁ(t) =K(t) M(t) K(t) = 2 H q p 2 H p 2 2 H q 2 2 H p q. H = p2 2m + V (q) K(t) = 0 2 V (q) q 2 1 m 0. 2 S = 1, q 0 q t M 21 2 S = M 22, q 0 q 0 M 21 2 S = M 11, q t q t M 21 M(0) = I 2 2 Γ(t) = K(t) (p, q) ijk M(t) kl M(t) jm + K(t) ij Γ(t) jlm,

Γ(t) 2N 2N 2N M (p 0,q 0 ) K(t) p = 3 H q p 2 3 H p 3 3 H q 2 p 3 H q p 2, K(t) q = 3 H q 2 p 3 H p 2 q 3 H q 3 3 H q 2 p. H = p2 2m + V (q) K(t) p =0 I 2 2, K(t) q = 0 3 V (q) q 3 0 0. 3 S q0 3 3 S q0 2 q t 3 S q 0 qt 2 = = = = 3 S q t q t q t = 1 M 21 1 (M 21 ) 2 1 M 21 Γ 211 ( Γ 222 M 22 ) Γ 221 M ( 22 M 21 (M 21 ) 2 Γ 212 M ) 22 Γ 211, M 21 ) Γ 211, M 21 ) M ( 11 (M 21 ) 2 Γ 212 M ) 22 Γ 211, M 21 ( Γ 212 M 22 ( Γ 112 M 22 M 21 Γ 111 (M 21 ) 3, ( 1 Γ 111 M ) 11 Γ 211. M 21 M 2 21 Γ(0) = 0 I 2 2 2

p q