5.13.1!",! ## $% &%' ( )) ( ( )!* )) ( )%.+., 8
! &... 4, ++ 1. #- (...!*.! /!*... 18 1.1. '' #"(' #- (...... 18 1.. #-' (...!* )!... 1.3. #-' (... $$ )!... 9 1.4. "!*... 3, ++. +!" #. (!* (.!'... 33.1. )!.( $$ )!... 33.. #!" #. ( $$ )!... 35.3. )!.(!* )!... 46.4.!" #. (!* )!... 49.5.!" (!*... 5.6. "!*... 6, ++ 3. ( ".!'!* (.!'... 61 3.1.!*-( " -.!'... 61 3..!*-( " -.!'... 65
3 3.3.!*-( " &-.!',./1. )( ) %!*... 71 3.4.!'! "!* ( ). %... 77 3.5. "... 8, ++ 4..'!"%'!.!" "!*... 88 4.1.. ) MATLAB... 88 4.. ( )!.%!* $$% RASIS... 91 4.3. #1 )! RASIS... 9 4.4. )! RASIS )!'!" ".!'!*... 96 4.5.!*"' RASIS... 97, ++ 5.!)!*... &-1!*" RASIS... 11 5.1.!*... &-1... 11 5.. " &-.!' (.!'!.. &-1... 111 5.3. +!" ( (.!'!.. &-1... 11 3+ 4... 117 ++... 119 5 +. +6 &7 3 8+ &+9 +:6.....13
4 " (!* (.!' )-!*-)!. )!* #!! ( "! " %!% " " ".! " )" "- "( '! )! "'/1',!('.' (!* )! [1, 8, 88]. )#!(! "!* (.!' [7]. (!* ")(!)'!* #! # (, (/1 : (!!*'!/# "('!*- )!.!*. )* $$%!*. (.! () "!( #, )!'/1 )!!. *!*! ) n n 1 ( ) ( ) ( ) ( ) ( ) D s, = a s + a s +... + a s + a, P,.) n n 1 1 "'/' ) - P. 1 4 ) )!.!*.! [1, 8, 88]:!*', $$',!! '!!*'.!* )! $$%! '!'/'!* (, [ ] s + s +,, ). 1 n ax $$ )! $$%! #"! "*/!* (, 3 ( ) s ( ) s ( 5 ) s 1 7, [, ] + + + + + + ). 3 1 3 1 1 n ax
5!! )! $$%!! "' -).,!!* $ ( ) s 3 ( ) s ( 9 3 ) s 5, [, ] 1 3 3 1 1 3 1 3 n ax (, + + + + + ).!!* )! $$%! "'!!* ' # ). (, ( 1 3 ) 1 1, [ n, ax ] s s + + + ).!*! D( s, ) "' # (,! ( P. ) %!*"' )!*"*' " ' (, - P, #1.', )- #(.!. )!' ' ")( ( "#- #! "# "!(. ') "!*" "/.. [116], )!' # (! D( s, )!* )!*/ #) )(, (# ( %!* #" $! #! (. $$%! / )!* "(' " ")!. /.$(/ $, #!.)' )!'!' # ( )( * )!* ). ( ().).$..).$ "'.).$ 9-!' [93]. &!'!" # ( #!!- % $$ )!,!, '' #'.!*" ' #.!, # (... P, )'/1 ) ). ;, / ()*, #"/!. # )!' # (
#) )( (* #!. 3, ( #' "!' $$ )*!" # (,!*! (!!*!*!. 6 ) )!' 1 (.!' -!* '* #/ (*!*,!"*.!*/ #/ (* [66, 67, 68, 7, 81, 88, 91, 95, 11, 111], /1/ )! # (. +!" #. ( ) )! ) "! ( "!* ") )".! ) '1.!)'!*!* 1!* )(!.!* # ( [6, 7, 1, 73, 116].!*"!*,!,!.#( ( ).,, [89] "#!' )' ")!!, )(!.#( ( / ). a a a 1 + 1 -!. ;!' δ *,.) a a -.%! $$% a 3)(!" )!-!!! ' - [63]. &!'. ( #! $' 4 %!*! n,.) n ')!, '' (*.!(!, )!-1, ". 3, ( "# [63]!.!* # ( '!'' )( #!) )! */ ".
7 ') ", ) " ) '!'' - )* -)' )!*!, #(/' ") (. " ) (/ : )! '' (*, "'*, (# #(* ").!* '!'' )!* ' "# )!)'!*, "/1' #!* (*/,, '. "# ) )!.'!-* )),!*"/1 ".% (!!* [94 98]. )) '.!* # ( '" "!(!-', /1 )! ('!*.!*. )) ' ")( #( -!. ( < $%'!/# "- "('!*, ).'.!- -! #!. 3!* (!!* )!*/ ) n P( s) = a s, a a a, = n ax.) n!*' *!*. (.!, a!* $$%. " [5], (!* $$ )!' (! #! #-' (... $$%!.( #". #, - )!* "! (!*..% #!!!"% )!'/' #,!*, ")/1!* #
.. -) )!' )!*.!*"'!"!* )!' )!. 8 3, (!* )!,.! [7, 118], -!" #-' # (...!" #-'!*..,, [7] )!' $ )!- ") #! )!.' * ) n!, /1.. P. ), %, #"!, "' * ) )!' ")( *' (! '.!) *, (!!!!* )!' ( #!* /1!* %'!').% #!!!"%. )!'*' - ( (..., - *!*.! #- /!*, ( )( ")!*! (!"% #!* (!!* $$%. )!* # )!.' * (.!'!*!* $$ )!' (!.!(',.)!*!!*/!!! / )!*, )!.' )*!*! $$ )!!!* $, )!' [7]. 3, ( (..!(!* )!! #"'.!* $$%,!( $$ )!!*,! )'1 $$% (.!. &!'!(' ") "! ( #) "!.*!
! /1 #". #( % ( % "/'!)/1 "!': */ (!#!**/. &!' #!) ")*!* )/!#!**!* )/ * (. 3) "!'.(* #!*,!-' )'!(,!'/ 1 */.! ϕ = arctgµ ( 1). 9 =>?@ 1 #!*!!"% ")!*!#!**/ 3)!* ) ( #.(* #!*,!-'!* ', )'1!!!* ' ( ). =>?@ #!*!!"% ")!* */ ( &!' ). #('!* )!#!* ϕ!* ) (
1 #), (# (.!!.!*!!* ', '1 '.! ϕ ( 3). =>?@ 3 #!* -!!!"% /.%, "/ 3 - *! */.#!. #) (*, ( $' b )' y = ± x,.! $$% a b µ = ± tgϕ = ±,.) a b!.#!, a x a y =.!.' a = η, ).#!!!, b 1 " 4. 4 ' #!* -!!!"%!) - *, ( 1/ (.!', #'!.( %
)/ -!# ). %. )!' - #( )( ). % )!'!*. )#' ")( ' ' [63, 93] ( # (. 11 +)( "' %, * "'. )' )!,55 ) 1 (' ).!#') [6]. * "' ). % "'!) ).! (!)!*!# ). ").!! '!''!).!#'.!#!* '!'' %, * "'. *,55. "' %, * "'. #!* 1. +)( ). % - #(* )!- #!-. 1. ' [6]. &!' )-' ").!' #).% #!!!"%!*. (.!!-* %!* #", " 5,.) < <.! [, ] a3 a a1 a a. ) 1 *,!* )!-!.*' ( ABCD,.(.! ϕ!* ', )'1 (" a 3. 1 5 #!!!"% )!' #(' )(. ). %
1 ')!- (!/ "!* ) #) (*!-!, "!-!' ' ). % :.! '.!' [15]. ")(!"!*,!* '!'' - ")( " )!'.!' [54]. ') #, '1!/, )!' ' ")( "!*"' # ) D-"#'.,, [9] )!' #(' # (!* "# ) )!', ' '.!* ) D-"#'. "!* "! '.% D-"#', '1' " '.!*, "!( #! # ( #/ "(' ". ) 1!* -!!*!* #(* #/ (*,.* ) "! (.!*". )) ")( (. ".!' )'!-/ #!!!"% (.! -! #!'!!. #", )!' '! ")( )!' "#. )) )!" #. (!*, - ) (. "!.!',./1 ") (!'. " ) )!.' "#* #-' #!!* ((...) /!*. &!'. #)!" #-' # (...
13 * '"* #" "!' ( (* (!#!**). &!' ' ")( #(' #. (!* )!.'!*"*! -, -! &-"!', '!!!!* (.!'. 3, ( 1 (.!'!* - $$, "!'/1 )*!" " ". &!'. "# )!)!."* ) ).!"% ;. )!.'!*"* ) MatLab, '/ '1 ' "!( #!'!) ")(. MatLab, )(.# ) '".', "!'/1 *. )% ), '' #( $!. A #!* * $$ #" $%, -!( %!" ##! MatLab. "') #! )!'!)!* %!. &!' $$ # MatLab, "'!..', (! ),!*"!* -!'* # ) '. " " "#. ) MatLab [5, 117] )!'!)' (.!'!) )!*. )!'!"!* «++» [117], )). ) ') ), : ).-#!(!"!*, "-* (. "!.!'!* )!*/, "-*.%!*"!. ") - %. '"!* ")( ")' %!".
!). )!' '! ")(!" "!*. 14 #$ # %# # )!'/: )!" #. (!* $$ )!' # (!; )!*-(. " - -.!', #(/1. "! (!/#"('!* ; )!*-(. " &-.!' #(/1. )( ) ). %!/#"('!* ; ) % -! #!!-'!/ (!-'! )!' #('. ' "! (. &' (&) *##('+ #!'/: "# ) Matlab!(!.!).!" #. ( ; "# ) Matlab!(!.!). (. "! -, -, &-.!' )!',./1 # (!'; "#!). RASIS, ( - *!*"', ( )!. ) ) )!' ' ( ")(!', - #(' ) /1 %!* ;
15! "!'!!/.! "-*!('. "). "(' % #!!-'!/.,-* ) -'.. "!* ).!)' - ( *', ".!-' )% # )!)!* #-)!*!)/1 $%' ": III, V VI ' (-(' $%' ),!) ( «!)-* $%!.»,.., 5-8...; XI, XII XIII -))' (-(' $%' ),!) ( «!.»,.., 5-7... )% # #! 1 # 4 * -!, ) +: 1.,.. +!" " # (.!' ) Matlab //.. ),.+.,,.. 3' // "'.!(., 8. -.31 B 5.. 61 65..,..!*-( " #. (*/. /.. ),.+., //!)-* $%!.: # ) V (-( $% ),!) (., 7 $!' 1 7. :, 7..333 334. 3.,..!*-( " #. "!' (. /.. ),.+., //!.: ) XIII -)) (-( $%
16 ),!) ( -, 6 3 7. :, 7..447 449. 4...!)!*! '. /.. ),.. 3',.. $ //!.: ) XII -)) (- ( $% )!) (,, 7 31 6. :, 6..61 63. 5.,.. )! -! #!!-' )/1!/ " (! /.. ),.+., // "'.!(., 7..311 B 5.. 57 61. 6...!). )!'!" "!* //!)-* $%!.: # ) VI (-( $% ),!) (, 6 8 $!' 8. : #,$, 8..377 378. 7.,.. ( "!..!'!*. "!' ( /.. ),.+.,,.. 3' // "'.!(., 7..311 B 5..1 13. 8... "1 #!!!"% )/1!/!* (.!' ") ( /.. ),.+.,,.. 3' // "'.!(., 7..311 B 5..5 9. 9.,..!' # (!*.!. /.. ),.+., // «!)-* $%!.» III ' (-
17 (' $%' )., 15 17 $!' 5.. : ")-, 5.. 16 17. 1.,..!' # (! $$ )!*/. /.. ),.+., //!.: ) XI -)) (- ( $% )!) (<.....,, 8 1!' 5.. : ")-, 5..66 68. '&' -/ -'.. &%' " )', '.!, "!/('!,!/(/1. 118 ; )- 131 (/ %., 59 6 #!%.
18! 1. '-1#,' (& ### & #'+#, # # &#$,(&('+ 1.1. C)!* "!*, "!'/1!)* #/ (*!* )!*/,!( #.. [114]. * (!!* )!*/ ): n P( s) = as, a a a, (.1) =.) a -!* $$%, a -!* "( a, a -.!* "(. (!,! " "( $$%, ()/1' () - "(' ) ) P( s) = a + a s + a s + a s +...; 3 1 1 3 P ( s) = a + a s + a s + a s +...; 3 1 3 P ( s) = a + a s + a s + a s +...; 3 3 1 3 P ( s) = a + a s + a s + a s +... 3 4 1 3 (.) ;!!(! "!. "(!)/1 #": )!' # (!*. #) )(, (#! #! ( [116]. *!!* $$%. #"/ (.., )!'/1 # '.!*.!!!), )-1 1 #.
(... )!'! '!* $$% "#- 1.1. 19 1.1 (.. P )!/# ( P!* V, = 1, )!'/' -':.) a a = a + a, = 1, n, (.3) ( a a ) a ( a a ), (.4) 1 -.!*., a. "( V. * M(s) N(s) ) )!, )!' )' ), '" ) #. ) ' #.!. )!' # )( ) γ M ( s) + (1 γ ) N( s),.) γ 1. )!!)/1' [5]: * ") (.. P..) )!' # (!, ").. P #) )( (*. #!. &' " #. "!' $$ '* #/ (*,! (! )! $$%! ()( * #
!). )!!, (! "(!* ()- )!' =5 - * # #!*. #D (!. 1 =8 #!), ( '"!* #!!)' "- 1' (! ' #. " ' #! #-' (... (. 1.1),!) () ), ( )!'!" # ( )( *!*. 1 #, #"!'/.% #!!!"%!. ) )!'. #) * " )!'* 1 # /1 ' $%!! )!. $$%. #"( #-' V (... U. 1. )! #- P!/!*,!-'-!!"/' ) #!',.( #" # P. 1. #- (...
1 #!*.! #"( R, = 1,,.)!(!* $$%, '). #" # #"( (" P #" )! 1.3. RS " # '. # RS RS 1 RS 3 R 3 R 1 R 1.3 #- # (... )!/.. P!/#'..* '!'' '.!*! "' )!* $$% " ).,!*.! #"( G ( 1.4), = 1,, j = 1,, j, ') j. #". #"( (" GS j.
U V 1.4 #-. (... #"(.! ) ". "! U j j ( 1.5)., )!'/1.! ) #, #"( (" E j. 1.5.! ) # 1.. &!' #-' : P φ S,.) S - (.1), #) *, '"/1 ) ( P n
3 '! (.1). )!'!('!* )! - #*,!( "!* ) (.1) -' (.3) n P( s) + a s =. (.5) = (.5) " #-' #!* R P( s) + a s =. (.6) * (.6) '!'' ( )( # '"*/..) )(' $%'! " )!' # #) * ) W as ( a, s) = (.7) P( s) +!"' (.6) (.7) "%..).$, ", ( " a! (.3) )-'!/ $% (.7), /1 ) % ). %.).$..) )!' R, ' (.6) R. #"/ $.. φ S #) )! -': φ ( R ) = RS, : P φ ( V ) = U.!)!*,.! # #!!!"% (.1), #D) '!'' # ' S, #).( RS )(!*.).$. ) "!' * S.(!*.).$. (.1) " #-'!. G j '!*.( j as a js P s ( ). + + = (.8)
4 * ) " ' (.8) ) s = α + jβ, r 1, n. )!'' (.8) ) s r )!'' 1/ / (,!( )! )' a a j : j a Re( α + jβ ) + a j Re( α + jβ ) + k p + Re ak ( α + jβ ) + ap( α + jβ ) = ; k p j a I( α + jβ ) + a j I( α + jβ ) + k p + I ak ( α + jβ ) + ap( α + jβ ) =. k p &!' (.9)!)/1 )!('. r (.9) 1. ' " ) a = a, a j = a.!)!*, P G j. j φ 1 ( s ) = P,.) P = ( a, a ), ( r. '!(/' ' -!. ".!), (! G j 1 #' '' t ( 3. 1.6), '!/# " (.9), ( φ 1 ( s ) = t. r j 1.6 #-. (... # '
5 (' # #. #-'.% #! S r!!"%. '! s r, * φ 1 ( s ) = P, ( r 1 ( ) φ S = G (.1) r P R j.. ) P '!'/' ) (.9), (" RS )' *, )'1' s r.!)!*,! (.1).% /1' #" # G j. S r '!'/' * φ 1 ( sr ) = t t G j = PP 1 (( P 1 P )!- # G j ).!)!*, PP 1 φ ( ) = sr (" s r (". # "! #"( U ) ) -.).$!* $$%, #"/1 ' t #..! ) -) U..).$.! ) /1' U!- -) )' /1' - # '.!)!*,!(! (.1).% S r )' /1' #" ) # #", G j. RS. )*.% #!!!"% ' (.1) %!, ((, '* U. " #.( (#"( GRS ), #".( # ( GR ), #", )!-1 GR,.( "! ( GU ). 1.7 ) #-' (... '!*!/!*. 1.7 " #!* S r,.% '!'/' /1' #" # 1.7#.( /1' #" # P. P,
6 ) #) 1.7 #"'.% #!!!"% -, (!*. (.! P 1 ) # GR )!' #!!!"%!. * φ ( V ) = s1, s1 = α1 + jβ1, φ ( V ) = s, 1 ( ) s φ S1 = P, = α + jβ, ( s 1 '!''.( )!' S 1 s )!' S φ 1 ( S ) = P. &, ( ) "!* $$% a " " V ) " /.%, )!'/!' (.3) (.4). "!* - "*', ( s 1 S 1, s S.!( φ 1 ( s ) 1 P, φ 1 ( s ) P, (
( 1/ s 1 s ). #".! * 7 ) #- V * GU, - '!'/' ). #-'. ". - )!* ), ( )!' φ S 1 : P ) #. GR,!'/1.( # " ).!"!), (! U Sr, GRS. )*.% S r!*/, ((, (!)!( '!'' "!* (' "! U. )! # #!' S r. GR #) (* "-!( U (), ( #)! U S '!'' ' t!' P. 3, (! ) -!#. 1 '' t,!!/#. (' P,!!!*.., - #) /1' '' t. #)! U Sr '!''!( ' t ' # ) "!. P, /1 ) #1/.!! C. #! ",! 1' ' t $$% a j r a #-' U ( α; jβ ) '!''! ' "* (.9). ; "*,! 1/ "(' α β,!'/'
( j ) ( j ) 8 ( j j ) ( j j ) Re ( α + β ) Re ( α + β ) = = I ( α + β ) I ( α + β ) ( α + β ) + p ( α + β ) Re ak ( j ) a ( j ) k p = I ak ( j ) a ( j ) k p k p ( α + β ) + p ( α + β ) k p. (.11) (), ( α β )!- '!'*' '!( " (.11)! j j Re (( α + jβ ) ) I (( α + jβ ) ) Re (( α + jβ ) ) I (( α + jβ ) ) = ; j k p Re (( α + jβ ) ) I ak (( α + jβ ) ) + ap (( α + jβ ) ) k p j k p I (( α + jβ ) ) Re ak (( α + jβ ) ) + ap (( α + jβ ) ) =. k p (.1) 3, ( )!' (.! S r!./'!!! "- "! U / ) α < β. "!*!" (.1)!(!)/1 -). '1#. "! U (' # 1/!* #-'!., #" $$%! (.1) ), )!'/1!/ j 3. (.13) "&%'+('. )! (.1) #/ ) α + jβ = s. $!.( )! #" (.1) ) b b s = s (cos( bϕ ) + jsn( bϕ )) + j s (cos( ϕ )sn( jϕ ) cos( jϕ )sn( ϕ )) = ; j+ z az s (cos( jϕ )sn( zϕ ) cos( zϕ )sn( jϕ )) =, z (.14)
.) z = k p. (.14) ) U * '!'/'.! φ )!* s. (', ( α, β, -!*"' "..( $%, ' (.14) - * 9 sn(( j ) ϕ) = ; j+ z az s sn(( z j) ϕ) =. z (.15) (), (!-!' α < β ' (.15) )!- )!'* ϕ, ϕ 9.!( (.15) #) * '!* j 3. ; ' )!'!! )!'/' - π ϕ = π, j = 3,4,5... j ) "(' ϕ (.15) "!' )!* s,,, )!* ) U!!. #", #)! U S '!''!( (.1)!* $$% ), )!'/1 (.13). r 1.3. )! #-' P )!'!(' $$ )!,.)!* '!'/'!* ($"(),! )'1 $$% (.!. * (! ): = ( ) ( ) D( s) = T A ( s) + B s =, T T T, (.16)
3 k k j j.) A ( s) = ( a, js ), B( s) = ( bjs ). j= : j= &!' #-' φ P S!*"!)/1 -: k ( ) D ( s) + T A ( s) =, (.17) =.) D ( s )! "('!*, /1 (.... # P #)!*"* ) #"( R,.) ), = 1,, ) V, " T # '' T. (.17) " #-' # R!/!* : ( ) ( ) D s + T A s = (.18) - (.7) )!'!(' $$ )! #) * ): " W ( T, s) D A ( s) ( s) T = (.19) T (.18), '*!/ $% (.19)!', #"/ )(!*.).$. /#'.* )!* T P '!'' '.!*! "' (.16) " #-'!. T j " ) V. ( ) ( ) ( ) j j G j : D s + T A s + T A s = (.) * sr = α + jβ, r 1, n. )!'' (.) ) s r,!( )! )' T T j : ( ) ( ( )) ( ( α β )) ( ( α β )) ( ( )) ( ( α β )) ( α β ) T Re A + j + Tj Re Aj + j + Re D s = ; T I A + j + Tj I Aj + j + I D s =. (.1)
31 &!' (.1), )!'!('!* )! $$%!, - )!(': T = T, * 1. T j = T.!)!*, * j )!-! G j. 1 * φ * * * ( sr ) = P, P ( T, Tj ) =, ( (.. ".!), (! G j 1 '' t, '!/# " 1 (.1), ( ϕ ( s r ) = t.!. #- P!(!* )! #- # * P P )!'! $$ )!*/ - )"*, ( #. - )*.%!*/, ((, '* )!!!(' * U. * U. #! ",! '!''! ' "* (1.8). ; "*,! 1/ α β, (!'/' : ( ) ( ) ( ) ( ) ( D ( α + jβ )) ( ) Re A Re Re α + jβ A α + jβ = = I A α + jβ I A α + jβ I D α + jβ ( ) (.) &!' #) *!(/ " (.) )! : ( ) ( j α β ) ( ( α β )) ( Aj ( α jβ )) I( D ( α jβ )) ( Aj ( α jβ )) D ( α jβ ) ( A ( α jβ )) I Aj ( α jβ ) A ( j ) A j Re + + Re + I + = ; Re + + I + Re + =. (.3) ( -). " (.3) '!'/'! ( β #" #). (!.! (.3) ' β, #-'.
!!!* ( P 3 * U. (.3) )!' (!* "(, (.% /1' #. S r ' " 1.4. ).! ) #"(', ' # )..).$ )!" #-' /!* (...!*. (.! ). )!:!* $$. "!*!"!, ( #".( #.. # )!. )*.% #!!!"%!*.! %!, ((, '* # "! * U. )!' # )! $!'!(' * U.% #!!!"%. ", ( "- ( # #) (*! "..(. #.!*. (.!. ; #) )!' ' #!!!"% %!*/ )!*.!" #. (!*.
33!. # % -('# &(' #'+#. ( (' '' (&,# ).1. )!!' )!-. ).! ) U.% R "!. S r (.1). &!' U. #"(.! (" Θ.. - " ' $" [83], ". )!' U.! D ( s ) *, A ( s ) * z,.) T )' $! Θ!( * T n z Θ = 18 Θ + Θ, (.4) k l k= 1 l= 1.) Θ k n z k l k= 1 l= 1 (.5) Θ = Θ + Θ, Θ l -.! -) 1 */,! " U k-!/ l-!/ $% (1.6).!" "-!' )-' s r " U, ' #! #-'. P #1 V (.1). -) "! )-' s r )!'' E = E + E,.) j j E - #, ") E j Θ Θ j [98]..!!!.#, Ej ) " U!- #". E.! E j Ψ, ( Ψ 18. j j
34 Θ3 Θ Θ1.1 #- (... " GU )' ).( #, /1 #"/.(.! GΨ j, -!-1 )" [,18 ].!(!*.! Ψ j,,!)!*, )!'/1 # )!- )!-* GΨ j. " )! (".! ) #, (!-!* 1!.!/ C V V Θ Θ 1 < 18 (.6) #", (.6) - * )!-* P.% #! '. ) S r!!"%!.. " "-!-' RS ".(.. "!!-. S r (.#). GU (.) " "!,
35 Θ3 Θ Θ1 Θ3 Θ Θ1.!- ) RS ". "!..!" "- '.! ) ) # ( RS RS j ) " ).( "! ).( # */ '!'/' # ). P. * * U S r. " T k # GRS k (), ( #" S r, '" RS RS j GR k * s r )-' GRS k.. "'*'.! ) " s r s RS s RS j. ), * U S r, s RS s RS j /'. )
s r ). 36 GU ). #) '*'!)!**!( s Θ j (.3). ##1'!( #!* (! #, - "!/(*, ( ).( "! "('.! ) #)!.*' )!)!*. s Θ Θ Θ Θ1 Θ1 Θ Θ1 Θ1 Θ.3!- ) * ). RS ". "! * * U S r,.) s RS s RS j. *' * U.! " T k " %' sr * = U )! * U ) " S r,
' ( 37 GRS k "' s Θ s Θ j.!( ).( "! #) '*'!)!**.! ) # (.3#).! $" )!'.( #!" "- (' # "! "#!..( # "% $$ )!. P )!'!(' * (.1) $$ )! / * )!' ) ". P # #1 ( U S r )..)! " GU )'1' ". GRS, ().( # */ #), )!* " -).! ).! ) " GRS #) * (#!*)., "'!(.! Θ, = 1, )!'!/#..(.. "!!- ') "' (#'), - )!*!)!** RS, = 1,, = 1,.(/1 #!*!!"%!. '. ;!)!* ')( # # P - ".( #..( "!/(*, ( " #, '"/1 P, ( ) -) /!-.( "('!*.! ' # )!' )!* (.1), #! S r "-!( * U.!( #) - "! GU, " )!'. )!*!)!** Θ /1/!)!** # P.! )-!( #" # () #!)/1 " -' #"!* T T j )!' (.1),
.( #!(!)!/(* #. G j. 38 #",!. #.!" )!' )!' #. (!* )!!)/1 : 1. ) (.! ) (.16).. )! ) P, /1.( "('!*. 3. (.1) ) " P )!'!'!*,.( #. *'. 4. -) (1.1).(. "!!!"%. * U #! 5.,(' #' "%' P.! ) # ".(.. "! ( "!*.3. 6. #-.(. #. /!*. 7. +!"!-' #!!!"%!*.! )! #. (. &, (!* )' $$. (. '!* */!, 1.!( (! #) * ): ( ) * ( ) ( ) P( s) = B s + T A s, (.7) = k 1 j * j.) B( s) = ( bjs ), A ( s) = ( a, js ), T T T j= j= < <.
39! B( s ) - #*!/#.!)!*, )!' )!* (.7), "(, #! S r "-!( U*.! (.! $$ )!*/ #) #- 1 (.4). Θ3 Θ 1 Θ.4!-'! (.! $$ )!*/!* "(!!*, 1 #",!! )( $% #"/!)!** s 1 >s > >s, #) *!)!**.! ) Θ 1 >Θ > >Θ n. "*.! )!'!)!*.) * 18º,!)!*, /1 "(' T "! '!''.(..! ' $" (.8) (.9), "*.! ) ", #".( "('!* $$% (!*!!*), #) * 18º,..!*.!!' )!/ º (!(,!!* ' E),!* 18º (!(,!!* '!/ E)..! ) ".( (.5)
4 T 1 T T 4 T 3 T T T 4 T 1 T 3 T.5 "#-'.! ) ".(!)!* "''.! ) #!*!- ')!(' (*'),!(.( (.6), )!'/1!* # )!'. T T T T 4 T 1 T 3 T 1 T T 4 3 T 4 T 1 T 3 T T T T T 4 T 1 T 3 T T T 3 T 3 T T T T 4 T 4 T 4 T 1 T 1 T 1 T T 3 T.6.! ) ".( #!%, #) ) ') "' ).!!' #!% 1!)/1: "/' ) )! $$%, ('!/#. )! a j. -)!)/1 /
))1 "'' )!!* ). $$% ( (), ('.).!!(' + 1 )!,!-, " )! '' - '). "!* #!% #"' 41 /!- )!. P, ) ) ) #!% "/' ) ). # P, - "!/(*, ( )' #!% ") " # " #, '"/1 P. ( #!%.1 ) 1 )!'!*. (.! *. '), $$%. '!'/'!*. #!%.1 1 )!' (.! $$ )!*/ *. ') (!*!* $$%, )%) ) 1 T T 3 T T 1 T 4 T T 3 T T 1 T 4 3 T T 3 T T 1 T 4 4 T T 3 T T 1 T 4 5 T T 3 T T 1 T 4 6 T T 3 T T 1 T 4 7 T T 3 T T 1 T 4 8 T T T 3 T 1 T 4 9 T T 3 T T 1 T 4 1 T T 3 T T T 1 4
4 #",!. )!'.% #!!!"%!!* )!!)/1 : 1. ) (.! ) (.7).. )! )! (.!. 3. C!)!* )! (.! ') "' (#'). 4. C!* "('!, " ') "' (#')!. 5. C #.!)!* ".( "(! '), ".4. 6. #- #. /!*. 7. +!"!-' #!!!"%!*.! )! #. (. &!'!" $$ "#!. #! ) ' ( #-' #!* (! "!(!(!/ -) # "!(!(!* $$%. "!* ) )! #!%..3.
43 #!%.!*!" $$!. -)'!*. #.!* )! / #!*!!* )!*/ ', -) )-!(!( #' $-!* ( t # /t n!* ( $$% # (t # ) t # /t n (t n ) 4 5,55,,75 4 1,75,71,4648 4 5 3,7 1,45,5517,5865 4 1 7,3,83,5795 5 5 1,3,35 3,7143 5 4,6 1,3 3,5385 5 5 1,8 3,1 3,4838 3,599 5 1 1,4 5,9 3,671 6 5 3,6,6 6 6 11,6 5,8 6 5 7,3 4,7 5,885 5,916 6 1 53,9 8,9 6,56 3* (.% #-'!*. (.! $$ )!*/ (#'!* # ) )!.7.
44.7 ' (.% #-'!* )!*/ (#'!* ) " ).!" $$ "#.. ) MATLAB!. (.% (.!!* )!*/ ), ( * (.% #-' ".(.!(!(!* $$%, / #. ( -)'!*. #. 6!* $$% ")'' # ( # ( # ) 6 ".!( ( "#' # (.%!(' %!* ' $$%, "'1!(!* $$% # ).
45 #!%.3!*!" $$!. -)'!*. #. $$ )! / #!*! $$ )!*/ ',!( )-!(- -)!* #' $ ( t # /t n $- -( #!* $% (t # ) t # /t n (t n ) 4 5,8,18 4,4444 4,,55 4 4 5 5, 1,3 4 4,1111 4 1 1,5 4 5 5 1,7, 8,5 5 5,5,6 9,1667 5 5 1,7 1,6 7,9375 8,41 5 1 4,8 3,1 8 6 5 3,8,5 15, 6 14,8,9 16,4444 6 5 34,5, 15,6818 15,918 6 1 66,9 4,1 16,3171 3* (.% #-'!*. (.! $$ )!*/ (#'!* # ) )!.8.
46.8 ' (.% #-'! $$ )!*/ (#'!* ) " ).!" $$ "#.. ) MATLAB!. (.% (.! $$ )!*/ ), ( * (.% #-' ".(.!(!(!* $$%, / #. ( -)'!*. #. 6!* $$% ")'' # ( # ( # ) #!"!* 16 ".!( ( "#' # (.%!(' %!* ' $$%, "'1!(!* $$% # )..3. " [7], (!* )!!#!** * ( (.!' )!'' (...!*. (.!. )!(
!(!* $$%!( ".(., ( )! ")!*!# )!. %) )!'!" "! (!*. ).! "#' ) )!'!*, ).( #..( "! 47 )!* # (!*. 3 '.! ) # " " $$% $! * a.) a..! Θ!( n g= 1, a )' Θ = 18 Θ + Θ (.8) n g= 1 g Θ = Θ + Θ, (.9) Θ g Θ.! -) 1 */,! " U g-!/!' $% (.13), /1 ) ) (; j ). [111] (.8) (.9)!(!)/1! #-' g P.% #!: U #) )!-*.% #!!!"% ',! "% -)!*!*.! Θ * 18.). 3, (,.! (.8) (.9),.! Θ * #1'!'/1' n Θ, '!'!!'.(.!-' U. g= 1 g ) '.! (!( a $! Θ /.! Φ, Φ = π + Θ (.3),
48 * a $! Φ = Θ (.31) ) )( E )'1 " (! ) ).! Φ.! ")* "( Θ,,.! (.3) (.31),.! -). $$%!. )!'' #" (!' /1..!. (), ( "!-/ E - )* "! U. #) )!-*.% #!,! E!* $$% #)!.*'.!, * 18.). #!.!') *!.!' -.( #, ' E. )...9 (*'!* $$% " "-!- E )!'!('.(. 3, ( " )! $$%!*.!*! # "!' (* /1 18.). ; ) "-*, # ) ",!-*!* -! #".!)!*, # -!. $* )! $$%.( P.!" "-.!-' E - )!*!)/1 -):! )!' -). " $$% *. ). (.3) (.31) )!-,!/#!)!*!- #)!-*.!, * π,,!)!*, )!'* ).( P (.1).
49 #", ")'! 1' #' ( (!*. -) ", -!(* # " "-.( P.! $ # $ " " $! #.9 &.!-'.1.(.4. &!' )!'!. # (!!) (*!.% #!!!"% : # RS. )*.% #!!*/, ((, '* )! (. (!).!(', (
#., #" $$% a 5!(, )'1 " (! ) ).! a j, /' π ϕ = π. j U,.( ), ) (" #!(. *' )..!)!*, #) ( ). $ $ #.( P. &!'. )!.' )!* #!(,!-1 ").! γ..! π #!(, #! ", )'' $! ϕ = π, n k k =,1,,..., n.!-' #!( ".11.!.! γ "). )-' #!(, $.(!) )* #!/# Θ " )" π π < Θ < π. (.3) n! - γ )- #!(, #)!'* "/ %) Θ " (.3) " )!!*)" π π π < Θ < π, k =,1,,..., kax, n k + 1 n k + ax (.33) π π γ < Θ < π. (.34) n k + 1
51.11!-' #!(! -.( P '!'' #D) -,!( "!( "(' Θ.!(.( P )!'' $! k ( n + 1 + ). = ' & 3 ## # % -('# &(' ( ('., #'+#4 #,##('. ).!" "#!)/1' %) $' #.( P. 1. &!' ").! γ (!!* $$% )!*.! #!(,!-1 AOD.. 3)* "(.! Θ " )" (.3). 3.. ). )!'!* $$% # )! *!(, )'1 " (! ) ).! (.33) (.34). 4.. )., ('!/#.!(, )!*!)!**!(,!- ) " ). )-!-!*! ( (!).
5. " /1!( )! $$% 5 $* ).( P. 6.!)!* "'' (!*!(, * %).4,5!(* ).( P. π 7.! π > π γ, * ) '. 3,4,5,6 "('.! Θ n " )" (.33) (.34). 8. -)!)/1 Θ #) "!(/1' #.( #* )#!'* )..5..,# ) # # -# 3'. 1. * ")!!* )!*/ [ 6;8] [ 14;18] [ 9,5;1,5] 3 s s s + + +. #) )!*!* # (...!*. (.!. )!.( # )!' P 3, )- 1 #. #- ) ". V 1 ) a = 6, a 1 = 14, a = 9,5 '!'' "! U1 = (,45 + j1,61)..! ) " U 1 #!* $$% /!)/1 "(': U1 Θ a = 54, U1 Θ a1 = 17, U1 Θ a = 31. )!'!''! (.6), # )./ V,!(/1/' ) a = 1,5. / "! U = (,31+ j1,5).! U Θ a = 57, Θ =, U a1 11 Θ =.!(! (.6) U a 141!'', * U '!''.( "!.!* (.3)!'' )!' ) )!* $$%, #- P 3 #
"!..( # " V )!'' " $$% $" U U Θ a1< a 53 Θ < Θ U a.!(. " 6 # ).1,.)! "!!*. $$% "(.!(,! " *. #% & "% ) "& % # &.1!*. #.. *!!* )!*/ D( s) a s a s a s a a [ 1; ]. = + + +,.) a [ ], a [ ], [ ] 3 3 1 3,7;,1,3;,45 a1 1,1;1,5, #) )!*!* #!*. )!( P 4 #" (*'!* $$% )- 3 #. "!* # V ) a 3 =,7, a =,45, a 1 = 1,1, a = 1!, ( '!''.(.! ) # " #" U U U U U (,7; j1,4) / "(': Θ 3 = 89, Θ = 13, Θ 1 = 154, Θ = 17. a )!'/ #) )!' )!* "% P 4 $" U U U U Θ a < Θ a3 < Θ a< Θ a1. &!' ").!! (.3)!'' )!' ) $$% a 3 a. (.!( a a a
$".13.( # 54, )-1!* 1 #.. P 4..13!*. #. &!' "#.!. # "%,!( 1, # #! #- /!*. - ' P 3 P 4. #! #- (.. $$%. "!* #" #!*/!.% #!!!"% /1!*!, ( )!* ## )!-.!...,# ) -('# &('. 3. * ")!!* )!*/ D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] 3 3 1 3,7;,9,45;,49 a1 1,1;1,5, a [,1;,7 ]. #) %*. #/ (*.! γ = 7. #!%.4 ).( P 4,!( '. ).,.! "# ). '"/1 # #-
// /!!* ).% #!!!"%!-'- (..14). ) ".14, ' #!*!. '!*. (.!!-.! γ 4 = 6.!)!*, 55 ")!* (! #!) # (*/.! γ = 7. #!%.4 1 P 4 ) 1 a a a 1 a 3 3 a a a 1 a a 1 a a 3 a 3 4 5 a a 1 a a 1 a a 3 a a 3 6 a a 1 a a 3 7 a 8 a a 1 a a 3 a a 1 a 3
56.14 #!*!!"%!*. (.! 4. ( #!"%.!, '1/ "..!,!), )(.!'! '-'. (! ) a s + a s + a s + a =, 3 3 1.) a3 = lj, a = J χ + χr (1 + Tk k ), 1 a = Jc + cr + k k r χ + Tc, 1 1 ( ) a = ck1k r,.", l )!..!, J %!), χ )!* $$% )$'..!, c )!*' -*..!, r ) ).!), k1, k $$%!'!( ( ) $$% )( -.!', T '' -.!'.
"(': 57 ' ##1. #D!' / J =.5', 4 χ = 1 1, c 4 = 1, r.1 =..!* ") )": [ 5,5] ', l [ 5,1], [ ] k1 5,5..!' k = 1, T =,1 )! )!' ) "(!*. #) "# %)!" #.!* ( *.(!*.).$ )!' ) #!"%! '-' )!* )!* "(' "! (. ) (! ) (.7): 1 l A1 ( s) + A ( s) + k1 A3 ( s) + A4 ( s) =,.) A ( s) = ck r + ( ck Tr + χk r ) s + χtk r s, 3 A ( s) 1 = Js 3 ; ( ) ( χ ) A s c χs r s ( ) = ( + ). 4 A s = J c + s s ; (.. #" '!* )- 8 : V (5;5;5), V (5;5;5), V (5;5;5), 1 3 V (5;5;5), V (5;1;5), V (5;1;5), V (5;1;5), V (5;1;5),.) 4 5 6 7 8 ' ) ' l, *' k 1. &!' $% ) (.19) (... )! '!/ (3,34+j3,88, 3,34 j3,88, 1,53), - #! (! ' A ( s ) ; A ( s ) : 1 ; A ( ) 3 s : 1).&!'. "! 3,34+j3,88 (.4), (.5) ) Θ = 34, V1 V1 Θ l = 5, Θ 1 = 86..! )! (.6)!'',!)!*, V 1 )!- #., V1 V1 V1 l k1 V1 k Θ < Θ < Θ,,!)' "# ), "!)!** "'!* " V 1 (...: l k1 l k1 l. " ().( #!)/1 :
V1 V5 V6 V7 V4 V3 V1. #- //!!* )!,.)!* 1 #.(.!*...).$. 58.15 #!*!!"%!*. (.!!!"%!* - %*.!*/ (*:!*' * (,35,!*'!#!** 3,8.). 5. * (! $$ )!*/ ): D s = s + s a + a + a + a + + a + a + a +, 4 ( ) 1 ( 1 3 3 4 ) 1 5 3 5.) a 1 = [ ;5], a = [ ;5], a 3 = [ ;5], 4 [ ;5] a =. #) )!*!* #, *.).$.! ) (!*
% ( (!*/!#!**!*/ * (). a 1:, 59 )! )!.!: a :,5, a 3:,5, a 4 : ;!)!*, '* )!!* $$% #)!)/1!)!*: a 4, a, a 1, a 3, (' ) ".( ( (!#!* "('!* $$%,!#!*). "!* ") (!( #, )!.16..16!* #...).$ )!!* :!*'!#!** 1,15.),!*' * (,1.
6.6. ).! )!!' )!- #!*. (.!.( #!* $$ )!'. $" ', )!!' )!'.(.. "! )!' )!. "# ) )!'.(. #. )!'!*. (.! $$ )!*/ ( #!(. ", (!!* )'.!!* */, 1, "- 1 #!(!!!. )!' -)'.(. #. )( "* )! " ') "' (#')!)!* ".%!*, ('!* "(, )!*. "# ) )!'.( "! )!'!* )!*/. ", ( )!' -)' "! #) "- #!( )!* #.( )!' -)., #".!(. #.( #)! # ). ) ') (!,.!')!!//1 ##* "# )!" #. (!*.
61! 3. ' (& 4 ( #'% )' #'+#. ( (' '' (&,# ) 3.1.!- - ' (.!' (+) #D (* ( #D!' %!% "'/'! " " ". )!' "!* + " ), "# )!' #D ', '" #!* )'. /, )!' %!!( #" ))!* ". )..).$. &!'!('!* + ) %. "!' ( (!* */ ( η!*!#!**/ µ ) #), (# (.!!* +!.!*!!* ', '1 ' η,.! ϕ, ϕ = arctg( µ ). 3)( "!* (.!'!!"%!/!* + #!,!/# "- "('!* #D!'. + -.!', )!/ : 3.1 (.!' * +!* )!*/:
.!': 6 *!.!' )(/ $%/ - P ( ),.) K * -.!', )(' $%' #D!' ):.) A( s) = ( as ), = W n B( s) = b s, W s = K (.35) ( A( s) s =, (.36) B( s) ( ) b b b. j j j j j j= #) )!* -.!', #(/1!- #!!*. (.! ") (!/# "('!* #D!'. #!* "- "(!*-)! #-'!/!* ) #!!!"%!-'- " 1,.)!!"/' 1 ( 3.). 3. #- (... P n
63!* (! - #* " ): f ( s) = B( s) + KA( s) = (.37) $$%! (.37), ) " ) *, #"/ '.!*.!!!) /1 n P, 1 n # n. #) "#*!. )!'! K,! (.37)!./' #!,.!) (*, (,.! [94],!*'!#!**!*/ * (!* + )!''.. P. &!' '! ")( )!./'!)/1 : 1. )!* "-.( P, #-/1'.% #!,.. &!' -) ) )!* "(' *. K, /1' *..).$.%,. 3. &!' -).( )!*! ),..).$ #) )*' #!,. 4. &!'.( )!* (' )! ),! (.37)!./' ") #!,. &!'!"%.!*"' $" '..).$ [94] )!.! )..).$ " $$% )!' '. ).. " [11], ( )!'.( "% -)!*!*.! )!- * 18. [11] -!, (,.( ) #!!,. *' ). #!. ; #! ")!'/' #!(, )'1
" (! ) ).!: 64 π l ϕ =,.) l =,1,,..., z = 1,,3,..., n. " z!(!) #*,!-,.(..!!*!#!*. &!!) #* "!*.! -)!(,.! [11], )!' a a * / )..! Θ!-. 3 #) #* #%,!-1.! 18, #", )!* ).(. &!'!"%. '! ")(!*"' "..).$ )(- ; (,;) [11]:.) E( δ, ω ) = Re( B( s)), F( δ, ω ) = I( B( s)), P( δ, ω ) = Re( A( s)), R( δ, ω ) = I( A( s)), F( δ, ω) P( δ, ω) E( δ, ω) R( δ, ω) =, (.38) δ ω 1 ( ', )!-1.,;. )!'' (.38) '.%,, )!'/' "(' ω, ) ( #.%,. &!' )!*. -)' "( ) #)!*"*' -: K = E( δ, ω) P( δ, ω) + F( δ, ω) R( δ, ω). P ( δ, ω) + R ( δ, ω) (.39) )!'' (3.5)!( )!* "(' ω,!( "(' ), ) ( #.% #!,. * ) "( ) " )! )!'! ),! (.37)!-,.
65 ( ) (' )! ), )!'/1 -) " "-.(. ' & ( #'% -)': )!) "# )!*-(. " -.!',!/(/1'!)/1 : 1. 3) # "! ( (!* ) (!* )!#!*!* ).. -) "-.. P, #-/1'.% #!. 3. )! )!' -) ).( -' (.39), ( (' ") #!, */..).$. 4. )! ) ) "( " )! (.37)! "( *. K,..).$ )'' ") #!. 5. -) (' ).3! K )!.! K,!!./' ") #! )!'.(. &!' (. ' "# ) )!-.!. #! "#!-. MATLAB, )/1 1 $$ )!' "!* + ; -. 3..!-!- (.!', )!/ 3.3.
66.!': 3.3 (.!' *!.!' )(/ $%/ - W.) K, K.!', * + P K s + K = (.4) s * + ( s), )(' $%' #D!' ):.) A( s) = ( as ), = W ( n B( s) = b s, A( s) s =, (.41) B( s) ( ) b b b. j j j j j j=.)!* (! - #* " ): ( K K s) A( s) s B( s). + + = (.4) + * #) )!* -.!', #(/1!- #!!*. (.! "), ( 3.)!/# "('!* #D!'. )!*! (.4) ) k c s =, (.43) =.) $$% c k. '!'*' $%'!* #D!'.!'.!* $$% c #"/ (..,. )!'/' "('.
67 "..).$ ", (! *!- 1,.! )..).$ ". '!'/! 18. (), ( )!'., (# 1 *!*.! ).!'! "!/#!* $$%, #), (#.! ) $$%!'! 18. #!* $$%, #( ) #, )!''!)/1. -)': '1# 1.!!* $$%! ") ()/1' )! cc1 cc3, ('!*. )!' c, ) # $$% )!' 1!/,.! ).).$ ".!* $$%!'/ 18. "&%'+('. " $"..).$ ", (.! ) " '!( $!:.) n Θ = 18 Θ + Θ, g= 1 g c - (.44) Θ g Θ.! -) 1 */,! " ' g-!/!' $%. *! (.44) 1 * S*..) )!'!/#!-'- )!'!/#. 1. ',!-1! S*,..).$ - "!/(*,( Θ 1 + Θ = 36, Θ 3 = ( 3.4). P P P
68 3.4!-'!)!*,.! ) " ' S*!( $!: *, c - Θ = 18 + Θ (.45) Θ = Θ (.46) #",!!*! #) * ()/1' )! $$% cc1 cc3,.! ) " #" /1 # (... P #) 18. ). -)' - )!* ), (!*' * (!* - #* ")!* ', )'1 (" 1 *, /1 ()/1' )! $$%!*.!. *!*' * ( ")' s* = α *. ) $%/ #! (.43), ")' ()/1' "(' b "( s* = α *. " )! K + (" K *,.!( -: v ( α ) K = f K, *, b, (.47) + * j
69.) v b j.( "(' $$%! B(s), #(/1 () )! c. &!' )!*. " -.!'!(!* (! ) * $$% v ( + ( * j ) * ) K K, α *, b + K s A( s) + s B( s) =. (.48) " [116], (,!(!* )! (.!,!*' * (!*'!#!** )!'/' #"..!* $$%, )!' '! ")( #) )!*. &!'. )!.'!*"*' ), "# [18].! -)' # ( #)..).$ )(-; [113] )!* )!' -) " "('..!' K *, ) (..).$ ") 3.3.% #!!!"%. )! )/ %), -!(* /1! "( K *,!*.!!- ") #!,. &!' -)'! "( K *, )!'/1.,!) (!. &!' (!*. )!' -.!' #) #* "( K * "!(.! )* "( - (.47))!' -)' "(' K +. )!) "# )!*-(. " -.!',!/(/1'!)/1 :
7 1. 3) # "! ( (!* ) (!* )!#!*!* ).. 3) (! s = α * )!!* #D!', /1 ) cc1 cc3. 3.!( " (.47) ) (.! )' * -.!'! ) * K *. 4. -) "-.. P, #-/1'.% #!,. 5. )! )!' -) ).( -' (.39) ( (' ") #!, */..).$. 6. )! ) ) "( " )! (.4)! "( *. K,..).$ )'' ") #!. 7. )! (' )! K *,!!./' ") #!, )!'.(. 8. # "(' K * " #! ('! )! "(' K + -' (.47). &!' (. ' "# ) )!-.!. - #! "#!-. MATLAB )!' "!* + ; -.
71 3.3.!-!"-, #$ % (.!', )!/ 3.5..!': 3.5 (.!' *!.!' )(/ $%/ &-.) K*, K+, K,.!', W P K* s + K+ + K, s ( s) =, (.49) s )(' $%' #D!' ): W ( A( s) ( s) =, (.5) B( s).) A( s) = a s, = n B( s) = b s, b b b. j j j j j j=.)!* (! - #* " ): ( + *, ) K + K s + K s A ( s ) + s B ( s ) =. (.51) &!' )- )( ). % "('!* $$% #D!' #) &-.!', # #(!!- #!!)/1 #": 1 )!-!.*' -) F 1 F,!* )!-!.*' #! ABCD,.(!* ',
7 )'1 (" F 3.! G, "/1!*/!#!** ( 3.6). #" #(' )!- 1, ) % #) )(!/# "('!* #D!' ") )!, "('!#!* #) *!* "). "('. 3.6 5!' #!*!-' ". )(*/ ). % )!*! (.51) ) k c s =, (.5) =.) $$% c k. '!'*' $%'!* #D!'.!'.!* $$% c #"/ (..,. )!'/' "('. &!'!!"% 1. ' ")! )! -)/ 1 )"!)/1 -):
73 '1#.!!* $$%! ") ()/1' )! 1 3, ('!*. )!' c, ) # $$% )!' 1 *,.! ).).$ ".!* $$%!'/. "&%'+('. " $"..).$ ", (.! ) " '!( $!:.) n g= 1, c - Θ = 18 Θ + Θ (.53) Θ g Θ.! -) 1 */,! " ' g-!/!' $%. *! (3.8)! 1 * s**..) )!'!/#!-'- )!'!/#. 1. ',!-1 s**,..).$ - "!/(*,( Θ 1 + Θ = 36, Θ 3 = ( 3.7). P P P g 3.7!-'!)!*,.! ) " ' s**!( c - $!: Θ = 18 + Θ (.54),
74 * Θ = Θ (.55) #",!!*! #) * ()/1' )! $$% 1 3,.! ) " #" /1 # (... P #). ). -)' - )!* ), (!*' * (!* - #* ")!* ', )'1 (" 1 *, /1 ()/1' )! $$%!*.!..! -)' 1, ) $%/ '!* */ (, ")/ s* = α1!* */ (, ")/ s** = α! (.5). *!*' * ( ")' s* = α1,!*' s** = α. ) $%/ # '! (.5), ")' ()/1' "(' s* = α1 s** α. =,!( : ( * +, α 1 3 ) ( * +, α 1 3 ) f K, K, K, *, c, c, c, c, = ; f K, K, K, **,,,,, =. c "(' (.56) (.56)!* K +, ' # ',!(: ( *, α 1 3 ) = ( *, α 1 3 ) f K, K, *, c, c, c, c, f K, K, **,,,,,. (.57) " K * " (.57),!( *, ( α α 1 3 1 3 ) K = f K, *, **,,,,,, c, c, c, c,. (.58)
!(: 75 ) - (.58) ) " (.56), +, ( α α 1 3 1 3 ) K = f K, *, **,,,,,, c, c, c, c,. (.59) &!' )!*. " &-.!' )!( ' (.58) (.59) (.5)!(!* (! ) * $$% ( + (, α α ) * (, α α ), ) K K, *, **, c + K K, *, **, c s+k s A( s) + s B( s) =. (.6) (.6)!)!(*..).$ )(-;,. )!' -) " (,!( ) [18] ), )!* )!' -) " "('..!' K,, ) (..).$ ").% #!!!"%,. )! )/ %) )!' -) (, -!(* /1! "( K,,!*.!!- ") #!,.!) (*, ( ) 1 * #'"!* #) )*'! α 1 ) α. &!' -)'! "( K,, )!'/1.,!) (!. &!' (!*. )!' &-.!' #) #* "( K, "!(.! )* "( -' (.58) (.59) )!' )!*. -)' K * K +. )!) "# )!*-(. " &-.!',!/(/1'!)/1 : 1. 3) # "! ( ( α 1, α, α 3, G).
76. 3) (! s* = α1 )!!* #D!', /1 ) cc1 cc3. 3. 3) (! s** = α )!!* #D!', /1 ) 1 3. 4.!( (.56) ) (.! ' * &-.!'! ) * K,. 5. -) "-.. P, #-/1'.% #!,. 6. )! )!' -) ).( -' (.39) ( (' ") #!, */..).$. 7. )! ) ) "( " )! (.51)! "( *. K,..).$ )'' ") #!. 8. )! (' )! K,,!!./' ") #!, )!'.(. 9. # "(' K, " #! ('! )! "(' K * K + - (.58), (.59). &!' (. ' "# ) )!-.!. - #! "#!-. MATLAB.
77 3.4. % " (.!'. "!' ( #) (*!*!/ "!*,!. "!-! " ( ). %. &!' %!'' #! ) ') (, * "!/(!*!)/1: #' )(' $%' "!' *!-'-!/, $!'!/,!- (!* */ (!*!#!*. &! ' *, #% ) /!-/ *!-'-!/, "(/!!(.!' ). %., )!' )( $% "!* ) P( s) ( s a1 )( s a )( s a3 ) ( s b )( s b )( s b ) = =, 1 3.) a 1 =, a = 5 6 j, a3 = 5 + 6 j!* */ (, 3,5 ) *!/!( *, "#-/ 3.8:
78 3.8,$".!' ). % &!' )!' #!!-'!/!*..! ). % (.!' )# *! '.!' ( 3.9), "/1 "('.!' * )!-'-!/. 3.9 '...!'
79 ) ( - )!* ), ( ) "!.!' (.!' " "('!/ #)!', #!-/1' (/ 1 ). )! (! ).! #) **'. #", )!' #(' "). ( ). % #) (* -!-! " (.!'. &!'. )!.'! " (.!' " ( " (.!',! #), "' #!* ) "(.!'. &!'!"% %) "#!)/1' ): 1. # *!-'- )/1!/ P 1, P.. C%' '!/ ( #!*!#!**/!* */ (. 3. C%'! (,!-1 - #!- (! ). 4., #% ) /!-/ *!-'-!/, "(/!!(.!' ). %. 5., ( "(' *!/ "! "(.!'. 6. "). "('.!'!) "*.% #!, " " +.!) *, ( "# - ) MatLab.!" - %)
8 #!, (!. 1 #'!* #* -/ #!*, )!' ")..!' ( ".!' ).!'. 3.5. 1. - *-'. /, 1 '/, 31.,.3...1 31.', 1 /. * ") (! ): K + a p + a p + a p =, 3 1 3.) a 1 = [ 1,13], a = [ 15;8], 3 [,95;1,5 ] a =. #)! K, #!!!"% ").! )'' #! φ = 1 η =. *!, φ = 1,,!)' [15], #) *!* ) ).!" ). )! "-.( P : a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3, a1 aa 3. &!,!)' "#. 3.1 ), )! K = [ 8,43;35,9 ]. &!'!(. "!*!*" "/ #/ #!!!"%!*.! K = [ 8,43;35,9 ] ( 3.1). " ), ( #!!!" ") #!,.
81 3.1!"%'!* -.!'. - *+-'. ' 1.1 1 /. * ") )(' $%' " )( # '"*/: W p ( p 1) K p T s + K = s a s + a s + a.) K, T.!', p p 1 K ' $$% )( #D!',,
a, a1, a!* #D!', a = [,7;,8], a 1 = [,3;,4], [ ;3] a =. 8 #) )!* -.!',./1 α * = 1 ϕ = 1. ) ( ) ): c s + c s + c s + c = (.61) 3 3 1,.) c3 = a, c = a1, c 1 = a + K K p T p, c = K K p. ) (.61) /1 cc1 cc3.( "(' $$% a,!( "*: T p 3 a s + a1 s + a s + K K = K K s p p, (.6) ): (.6), ( ) 3 aα * + a 3 1α * + aα * + KK p as + a1s + as + KK p s + KK p =. (.63) KK pα *! #" (.63),!(: 3 K a s + a1 s + a s ( a α * + a1 α * + a ) s + K p K s. α * = (.64) (.64) ' )(-; ) (.39). ) [11], )!'..!* $$%, ) #1! K p,!!./' #!,: =,4733;5,16. # "( p K p K " ).!: K = 5,16 -' (.6)!( "(.. T =,4458. p #!!!"%!*. (.! ) -.!' )! 3.11. p
83 3.11!"%'!* -.!' 3. - *+,-'. ' ' 4. * ") )(' $%' " )( # '"*/: W p K p s + T + Td s K 3 s a3 s + a s + a1 s + a =.) K, T, T &.!', p d K = 1 ' $$% )( #D!', a3, a, a1, a!* #D!', a 3 = [,;,13], a = [,3;,34], a 1 = [,1;, ], [ 1;4 ] a =. #) )!* &-.!',./1 )( ) % )/1 1, )'1'! α 1 = 4 ) α = 6!*,
',!-1 #!,.(!* */ ( α 3 = 14!*!#!**/ ϕ = 3. ) ( ) ): 84 c s + c s + c s + c s + c = (.65) 4 3 4 3 1,.) c4 = a3, c3 = a, c 1 = a 1 + T d, c 1 = a + K p, c = T. ) (.65) /1 cc1 c3c3.( "(' $$% a, s = α1 = 4,!( "*: T = 16,579 + 4 K 16 T. (.66) p d ) (.66) /1 1 3.( "(' $$% a, s = α = 6,!( "*: T = 5,1115 + 6 K 36 T. (.67) p d ' ' (.66) (.67), " K p T d : K p = 5,797 + 1 T. (.68) d ) (.68) (.66), " T T d,!(: T = 39,4896 + 4 T. (.69) )!( -' (.68) (.69) (.66),!(!* (!, "!* T d, )/1 1 * - #).* ") " 4 ) 6: ( ) ( ) 4 T + 39,4896 + 1 T + 5,797 + a s + d + T + a s + a s + a s + a s =. d 3 4 5 1 3 4 d d (.7) (.7) ' )(-; ) (.39). "# ), )!' ))%..!* $$%, ) #1!!!./' #!,: [ 1,9;1,166 ] T =. d T d,
85 &!' (!*. )!' &-.!' '..).$ #.( (1,9; 1,166) ) ) (1,918) "(' " ).! T d. &! - (.58) (.59)!( "(' K p T. "!* ( ) #!% 3.1. #!% 3.1 ( $$% &-.!' B / T d K p T 1 1,9 15,9586 64,391 1,918 16,6474 65,691 3 1,166 17,336 67,345 #!!!"%!*. (.! ) &-.!' )! 3.1, 3.13 3.14,. 3.1!"%'!* &-.!'
86 3.13!"%'!* &-.!' 3.14!"%'!* &-.!'
87 )! ) ( 3.15).$ ) % " )( ) ") -) ".( )!' T d = 1,9, K p = 15,9586, T = 64,391. 3.15 ) %.( ). " - -)*, ( ) % " (.!' ' )( ),!/!* /'!- -! #!!/# "('!*.
88! 4. #) %* ) ' # % ( #'% #'+#. ( (' 4.1. MATLAB ( ), -,!)!', ) (.!' ( )'!'* (!, ")* ## "!*!*!), (* -,!'* (. 1/ %!", "!'/1!'* (! )! %. - ' (/' ")(,!)/1' )%,!# #/1!('!-!* )!,!# # '" "# #! $$ )!.!( #! $$ "'!*" #1 ( "!'/1 (!!#!( * )% ( ")(..),!)' ) #!*/ ' )(/ (/ )., - * *!) ")( '"(! ( ). #!* '1 '!(! #1( MathCad MatLab, "!'/1!'* (!,!( %. MathCad # ',. )%.., (!' ")'' ' - $! )' '/' $! %!* $, ( "!' * #( ). # ) ' -.(, ")' #!* (*/ (. &!' # MathCad!*"!' #/'!* "',.', (! ).
89 MatLab, )(.# ) '".', "!'/1 *. )% ), '' #( $!. # ##! ) ). $%, 1 1/. / "*!.. &!' $$ # MatLab, "'!..', (! ),!*"!* -!'* # ) '. '" " MatLab #!.), )!' '!..' "(' (! ), )!'!"%!) ")(..!. A #!* * $$ #" $%, -!( %!" ##! MatLab. "') #! )!'!)!* %!. MatLab (Matrx Laboratory) '!'' )!'!' - ( (, # ). MatLab "# $ MathWork Inc. (A+,.., (). )- / (/!/ $, ))-! %, % ), #!.#(!,! ")( "%,. ), )$$%!* ", "!( ).$,!.!( '".' )#' %' ) ". # ) ( $%, "!'/1' $!* #!!(* ', )# $ #.' )!"%. ). '".! ( "'..' "!'
9!"*!/#!. ) '". '.., )' )!/( %) $% '" C. 7" Matlab #( "-* # $! 1*/ )# $%..,!" ) )!.! )!'(' " $!. MatLab '!'' ( %) $% )!* )!'!*"', )!' % )$%. (,.',!*"!* ' "-., %) $%' ) ) $%'.!/(/ # %!" %$ ##.!,!" "! (.!',. )!' )(, ')!* " ". Maple V ).. &!'!" "!'!* Matlab 1!). Robust Control Toolbox, $!" ) "% H H 5 [6]. (', ( ), #! ", $$ )!'!" "!*, )!' "#. ) MATLAB %!".!)., #. *! ")(. " ) Robust Analyss and Syntheses of the Interval Systes (RASIS).
4.. & % '% RASIS 91!*! ): P( s) = a s + a s +... + a, a a a, =, n, (.71) n n 1 n n 1.) n!*' *!*. (.!. MATLAB: 3)).% "'!* $$% a = a, a,..., a n n n n( n 1) n a = a, a,..., a ax ax n ax( n 1) ax,. (.7),% #) #"(* % -!#% (#"( < ), -! - #*!/! )% (!*!!* "(/, ). &!' -)'.(!*"'!)!*! # (# "(',! 1' '!''.( ).. #) n. #", (!.%: a, a,..., a, a n n n( n 1) n1 n.%: an n, an( n 1),..., an1, aax,, an n, an( n 1),..., aax1, a, n * an n, an( n 1),..., aax1, a ax. #",.% )( )!/ (#!% 4.1).
9 #!% 4.1 <.%. B,% '! #"(.% a, a,..., a, a n n n( n 1) n1 n a, a,..., a, a 1 n n n( n 1) n1 ax a, a,..., a, a n n n( n 1) ax1 n,,...,,,,...,,1,,...,1, a, a,..., a, a 3 n n n( n 1) ax1 ax,,...,1,1 a, a,..., a, a n ax n ax( n 1) ax1 ax 1,1,...,1,1 4.3. $ RASIS C%' defneallapexes (power) "1 %-, '1/ " )!'! ") power */!*. (.! ().!( "!*/1 %!(.!#% " 1,!!* $$%!* "(,!,!!*. C%' defnesectorapexes (power, beta) "1 %-, '1/ " "-.( )!'! ") power */!*. (.! () )!'!#!* beta. +!.(' $% ) 4.1.
93 @ 5 $ A ( 5("#$%& $' (("$) $(* + +('-./!"#$%%& $' (("$) $(* (("+(,-./ /!( % +( '(( #B5$(( ( ( 5(C/$(('( 5(" +&+ $ $ ( 5('( $=> ;<=>CD $5 $ ( 5( %& ((% ( ) $''$( ';<=> &++ ()$( %+ (($C A! '( "((% (%# (5(%(% ( % '89:C?$5 ("$5 ( "((%& (%&# (5(%& (C $) % ( # (5(%( 5('( $(%& EFF(+$($' ("# (5("(%CG$ ( 5( (E ( 55-./+"+( $ ('( $(( 5( ( $(#EFF( CG$ ( 5( (H $(C +$( $(%"#$!(' % +) ' ( '+$ $(# ( 1( 3 4%$ $ ) $( ( ' # (5( '( ( "((" +$ $(, # (6 ( 7) ( "((, (, # (5(,( 89: /$$!( % ( ;<=>6 (?( 4.1 +!.(' $% defnesectorapexes
94!( "!*/1 %!( "-.(. C%' defneinterlacedapexes (power, frsteleent) "1 %- ()/1'! )%, (' FrstEleent. &! %- power. C%' defnetruncatedsectorapexes (power, beta, alpha) "1 %, '1/ " "-.( )!'! ") power */,!#!**/ beta */ ( alpha. C%' stintruncatedsector (Tn, Tax, apexes, beta, alpha) ',!, " apexes,!- (,.(!#!**/ beta */ ( alpha. "!* "1' 1,!!- ") #!!(. Tn Tax %-, "/'!*!* "('!* $$%, ('!*. :!- $% stintruncatedsector )! 4..
95 @ 5 $ A % ( 5('( $(%& $(%&( 5(" ( $(%&EFF($' "+(-./ /$5( 5('( $ EFF(-./13 %+'%&( 13$) $( 13 +("5 13C!?(+$( %5$',' (("F("+ KLJMLN!! /$5+$( ( 5(' EFF( ((%& ( ( (( 5(" ((%& D%5$(+$( ( I $ (+$( J ((5(( # (5((#$ ( 5(6!(" ' "#$%& (?( 4. :!- $% stintruncatedsector
4.4. & RASIS 96 C%' defnemaxalphamnbeta (Tn, Tax, apexes) "1!*/!#!**!*/ * ( "('!* $$%, " Tn Tax.!*'!#!**!*' * ( )!'/', " apexes. ) %!*"' ' MATLAB $%' step. #/'!*!#!**/!* */ (. C%' edgetheorebuld (Tn, Tax, k, r) k-.$ #.. P r ( -) #. C%' fndcrosswthbandn (beta, alpha, T, TVar) ) ( ('..).$, "'/1.' *!'/1 TVar,.%, ") */ ( alpha!#!**/ beta. "' (* ")' T. &!'!"% ) $% '' )(- ;. C%' synthesbn (Tn, Tax, TVar, beta, alpha) )!*!* "(' $$% T k,.).$ ) ")/ #!*,.(/!*!#!**/ beta */ ( alpha. "- ' $%' "1 "( 1.
97 4.5. RASIS 1. *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] 3 3 1 3,7;,9,45;,49 a1 1,1;1,5, a [,1;,7 ]. #) )!*, '!''! # (. "!*!' /1. RASIS!. )!' # ( (.!!* )!*/ #! )!, ( '!'' # (.. *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], a [ ], [ ] 3 3 1 3 1;1 6;8 1 14;18 a 9,5;1,5. #) )!*!* #, #"*. /!* (!* % ( (!*/!#!**!*/ * (). # /1 ) ' RASIS ) (!* ). "!*!'.!( #-!!, )! 4.3 ()!'!* -)'!*. #. - " #- (.!!!) )!.. ').!!'. RASIS (!!!* "( (,,6557!* "(!#!*, 44,4345.).
98 4.3 #- (.!!* )!*/ )!' 4.1 *!!* )!*/ ) D( s) a s a s a s a = + + +,.) a [ ], a [ ], [ ] 3 3 1 3,7;,1,3;,45 a1 1,1;1,5, a [ 1; ]. #) )!*!* #, *.).$.! ) (!* % ( (!*/!#!**!*/ * (). # /1 ) ' RASIS ) (!* ). "!*!'.!( #-!!, )! 4.4 ()!'!* -)'!*. #. -
" #- (.!!!) )!.. '): 99 4.4 #- (.!!* )!*/!!'. RASIS (!!!* "( (,,4134!* "(!#!*, 7,834.).,( # " 1 #,.. 1 #!( #) '* # ).. ". ), ( 1 # "!,!.!)!** ) " "! ''. 3. 3) ) + 1 + + =, a s a s a K T
1.) a = [,1;,15 ], a 1 = [ 1;1,5 ], a = [ ],1;,, K T * $$%. #) )!*! K T, )'' (,.(.! ϕ = ± 45!* */ ( α =. 3 RASIS, # «)!!*! *. $$%, #(/1 / (*», ) #) ) ).! )' (!, )!)/1 : [,5;3,1 ] K =.!**!(. ',.(!*.).$.! # /1. RASIS,!( "!*, )! 4.5. T 4.5.(!*.).$! '.).$ )!)/1 (! "(':!*' * (:,5 : [,;1;1],!*'!#!**:,17 ) (1,.)) : [,1;1;41,4543]. " 4.5 ), (!./' -! #!!/#"('!* $$%.
11! 5. ((# &'+# ' "-1 ( (,+%# RASIS 5.1. "(-1!, #. ) -..! )"( )!'!(' )! $.,!*".. [8].,"" (,)!*.. &-1-13, ( 5.1) )"( )!' #. 1.!!#..!.( -)! )',!',!'%.'(. )#-'. )..!' ) 1 /( )!),3 º. 5.1!*.. &-1-13, %!*'!*... &-1-13, )! 5.,.) 1, - ##;
1 3, 4 '!* #..."); 5 (.'.); 6 $ ; 7, 8 #!! $. ; 9 ") ; 1, 11!! # "). (. ; 1! # ; 13, 14!! #!.#. ; 15 # #. (. ; 16 # ; 17.!; 18,.); 19 ).'; 1 ; #; 3!*'!'; 4 % ; 5 ); 6.!*; 7 )"!*!; 8 )!*!; 9 ; 3 ; 31 #) )( ).
13 5. %!*'!..!*.. &-1-13, ". 1 ()!.) -. ((.) ##, ) -) # ". '!* #!( 594., #"/ 3 4.")..,") ")! -) # (..) 5.")! ( $!).
14 )'' (* -. ## ' )-,!* (! /!*"'1, -,!/ )!'!. $ 118-/ #, #"/ : 6 )! $ ; 1! # ; 16 # (!.(!); 9 "). # )%. / - ) 51,5, ( ).'!(' ' %!'%'!. # % "!*% ## 1, - % ( -!!: $ 8,! # 13 (!.( ) ") ( 1.., $!! 8 ) ## (*' # 7,!- - #, -!!!. #. (. 13 (!.(,.) ) ## ) # 15,!- #. -!! 1 "). (. ) - ## # 11. ( $!! 8!- ).! 17. # '-!', ". (, $ ". (. ## " 1 "#-.!!. ##. ) "!* )!- * '.., ## )! )!.! (*! %),!''! 3, ( ) ), 1/.'! )/ ##.. ).' 19 )"( )!' -' *! (!.'! ((. )-.) )! (.) 18 (, )!' ) (
15."),..") 4 (.) (!). )(!* ) ")'! 3, #.!!'. ## 1!! % 4. # ")' ) 5. &!'!('..!*"/.!* 6,!/ #( " )! )' ') '!* #..")!. ##! : )"!* # 7, )!*! 8, 9, 3.! & ).")! " )!*!. #). '!*. ( #.") ")',!*" #)(.! ") )/'.! 17, #"' $!.'.! (.", " ( )%..!#, )' # ()% '.),.)! " (!)!!(.!# # )' ), %!/1. 3 (." 9 15 )' " (" (.) 18 )' ).' 19,.#/ (/.)! )'.") 3,.) )/! ( #.! 6 ( ).",.#' (./.) 5, )'.") 4 '!*. ( #! 5,!, )' "!!'/' )' ".!*' )! '.(' )% (" ) )'. ") ) #)!*! 3
16 )' ) #D. ## 1,.) '! ).! ' '* %!'%. 1- ( '!* #).!' ) ". ## 1 ' - ## '!* # 4. (,!-.") #! #! " (.". #"/1'' )'' * () )' ## '!* # 3,!-.") #! #! (.". - ( $ )!' ) ". ## 1 ( # 7 ))' $!! 8, )!'', #"/1'' # 6,!, )' ##. 3- ( ") )!' ) " -. ## # 11 ))' -!! 1, )!'', #"/1'' # 9,!-, )' ##. 4- (! # ( )!' ) ". ## 1 # 15 ()' #! -) ))' -!! 13!. #. ;!! 13 - ))' ) " -. ##, # 14,! (. ) )!''!!, #"/1'' # 1!. #.,!-, )' ##. 5- ( # 16) 1!''!.(!# (. ) )'' * () " %!'% )' ##,.) % 4 )!'', ) '! ) % %!'% ''.! %!(
17 1 ) #!/ ) 5!!''.!* 6 )!'!('... ' ) ")' ". ##!* () ).!'!. )(' ) ")' " ' (!: ( -!! -. ##. - ## ) )(!! ),!*"' )!'. ) )! '!.! #- )' )!*! 8 /1 : 9, 3, )"!*! 7. ")!! #)(, #, (.") " )!*!. ) - "'*' )", )! ))-/'!* " )! )!, ( #!!' #' "). - # #!. #!'!. ).!" % ") #D!' - $!*!)/1 ")( "%: #) #(* #!"%/ )!' ) "!.. " ( "' )!; #) #(* #!"%/ ' ) ##!.. " ) /1 ); #) #(*.! )! ") %!*/!. -.'!; #) #(*!.(!* )!, /1 ),, )!' #!'. ;
18 #) #(*!.(/.!"%/!*. )!' ## +,!*!* * ) ##. +('.!' ' )"( )!' ))-'!*. ' -) )!* )!."!. "!. '!- * ) ##! [8]. * ## "'' "-"!('! *' )!!' )!, "'!." )!' ##. ' " ) )! (!) - "!'.!' #!. "!, ( - '*' ( -)' #. - ' " - )! ( ) " ##) ) / %!'% ( -. #. ; #D''', ( )-.!' ' )D'!'/' #' [8]. #", " # (.!' '.( "1 -' ' ##!, ), '.!, ).. ; )! )!'/ #"* #!, " / %/. +('.!' ' ##.! )!- #(* )- ' ) )!: 1) " "1."!* )!' / )!- * ± ; ) (#" "1." 1%!* )!' / )!- * ±5 ; 3)!* % - #! (!!/(.!' )!- * [8].
19 * ##! "/!'. "1. " : " )!* ), "." #!', " )!, "!* ). "1 ) '!'' ' - «#» ',.. ". (!*, /1/ " "1/1. ") '. 7! «#'» - #D'*!)/1 #": " ),!(, )!! *', ) )!!* ),!( '. )!* * ( )* "-" ' )!* )..!' ' ) #(! #. )-' ' ) ##,!* (! "'!*,!*"! $ "('. '" #!! ")( (. " &-.!' "# ). / (/ )!* )!* (!' ) ##!.. - )* ), " 5.3,.)!!)/.( *!( '!, 1 T s + 1 " )(/ $%/ #), "!! ) '!, K T s + 1 " ), K T s " '! «#'» ' ) K T s + 1 )!' # )(/ $%/ )( ). &( ) (( '! «#'». ) #D!' '!'' * ) ##!..!* '!''! *.
11 K T s + 1 1 T s + 1 K T s K T s + 1 5.3 (' )!* (.!' ) ##!.. 3'!!.., - * (/ )!* (.!' ' ) ##!.. ( 5.4).,5 1s + 1 1 s + 1 1 188,4s 5 5s + 1 5.4 (' )!* (.!' ' ) ##!.. %' #D!' )( ") " 5.5.
111 5.5 %' #D!' )( ") 5..!"- "(-1 #" )( $% #D!' (##!.. #)),!( )(/ $%/ ): 89s + 1. s s s 3 1884 + 9796,8 + 188,4 : &, ( #D /!*, T '' ##!.. (-!(*' 1% "-" '!'. ##!..); K, T * «#'» '' «#'» (- "'*' %); T '' #) (-!(*' 5%).!)!*,!*' (.!' ) ##!.. ), " 5.6,.) a 3 = [ 157;3975,78], a = [ 791,8;11816,64 ], 1 [ 188,4;19,8] a =.
11 &H.!' )I 1 693,6 s a s + a s + a s 3 3 1 *I ) 5.6 '!* (.!' ) ##!..!*"' RASIS )!' " &-.!' )!' ")!* +!)/1. : ) % )!- * )( );!*'!#!** )!-#* - 45 ;!*' * ()!-#* -,1. "!* " &-.!' #!!(!)/1 : K =,175, T =,1, T = 5,87; (.73) * +, K =,177, T =,1, T = 6,61; (.74) * +, K =,178, T =,1, T = 7,34. (.75) * +, 5.3. ) "(-1.(.).$,.! #, )!' +!( )!' " $$%.!' (.73) (.75) )! (5.7), (5.8), (5.9) (5.1).
113 5.7.(.).$ )!'.!' &-.!' (.73) 5.8.(.).$ )!'.!' &-.!' (.73)
114 5.9.(.).$ )!'.!' &-.!' (.75) 5.1.(.).$)!'.!' &-.!' (.75)!*'!#!** )!' -) "!*!' 45,!*' * (,1.
115 &!' "!( #!(.!' 5.11, 5.1 " %' )( ").( (.... 5.11 ) %.!' (.73)
116 5.1 ) %.!' (.75) "!* (. " &-.!'!* +!.. &-1!(, #!!!"%!*. (.!!- -! #!, ) % )( )!/#"('!*.
117 5 )!' )%' # "!*!),! "# )!" "!* $$ )!'./!"%/. "# ) #!*"/' # )..).$, $" ',!. # "% )(-;. "!* )% # '!'/': 1. "# ) $' #! )!'!" (!* )!*/.. "# ) $'.( (... )!'!".!* (!* )!*/. 3. "# ) $'.(. #.!*. (.! )!' )!' #!!!"% $$ )!*/. 4. "# )!*-(. "! - -.!'.!* */ (!*!#!**/ )!' (.!'!* )!*/. 5. "# )!*-(. " &-.!',./1. )( ) %!* ).!-' (. '. 6. "# ) % -! #!!!"%!/!* #!!-'! ( -! ' "! ( +.
118 7. "# %!"!). RASIS ) MatLab )!'!" " (.!'!* $$ )!'. "!* )% # "!.!', ( )-)' /1 ).
119 1. Ackerann, J. Paraeter space desgn of robust control systes / J. Ackerann // IEEE Trans. On Auto. Control. 198. Vol. 5. N 6. P. 158-17.. Ackerann, J. Robust control: systes wth uncertan physcal paraeters / J. Ackerann London: Sprnger-Verlag, 1993, 46 p. 3. An, S. Robust stablty of polynoals wth nonlnear dependent coeffcent perturbatons / S. An, W. Lu // Proceedngs of the 4th IEEE Conference on Decson and Control Orlando Florda USA, 1 P 1551-1556. 4. Arzeler, D. Robust D-stablzaton of a polytope of atrces / D. Arzeler, D. Henron, D. Peaucelle // Internatonal Journal of Control,, Vol. 75, N 1, P. 744-75. 5. Barlett, A.C. Root locaton of an entre polytope of polynoals: t suffces to check the edges / A.C. Barlett, C.V. Hollot, H. Ln // Math. Contr., Sgnals. Syst., 1987, Vol. 1, B1. P. 61-71. 6. Barsh, B.R. The robust root locus / B.R. Barsh, R. Tepo // Autoatca, 199. Vol. 6, B. P. 83-9. 7. Barsh, B.R. A generalzaton of Khartonov s four polynoal concept for robust stablty probles wth lnearly dependent coeffcents perturbatons / B.R. Barsh // IEEE Trans. Autoat. Control. 1989. Vol. 34. B, P. 157-165. 8. Bhattacharyya, S.P. Robust control: the paraetrc approach / S.P. Bhattacharyya, H. Chapellat, L.H. Keel Prentce Hall, 1995. 9. Chang Y. H. Robust gaa stablty of hghly perturbed systes / Y.H. Chang, G.L. Wse // IEEE Proc. Control Theory Appl. N, 1998. P. 165-175. 1. Chu E.K. Pole assgnent for second-order systes / E.K. Chu // Mechancal systes and sgnal processng,, N 1, P. 39 59.
1 11. Foo, Y.K. Root clusterng of nterval polynoals n the left sector / Y.K. Foo, Y.C. Soh // Syst. Control Letters. 1989. Vol. 13, P. 39-45. 1. Henron, D. An LMI condton for robust stablty of polynoal atrx polytopes / D. Henron, D. Arzeler, D. Peaucelle, M. Sebek // IFAC Autoatca, 1, Vol. 37, P. 461-468. 13. Henron, D. D-Stablty of Polynoal Matrces / D. Henron, O. Bacheler, M. Sebek // Internatonal Journal of Control, 1, Vol. 74, N. 8, P. 845-856. 14. Henron, D. Ellpsodal approxaton of the stablty doan of a polynoal / D. Henron, D. Peaucelle, D. Arzeler, M. Sebek // IEEE Transactons on Autoatc Control, 3, Vol. 48, N 1, P. 55-59. 15. Henron, D. Postve polynoals and robust stablzaton wth fxed-order controllers / D. Henron, M. Sebek, V. Kucera // IEEE Transactons on Autoatc Control, 3 Vol. 48, No. 7, P. 1178-1186. 16. Henron, D. Robust pole placeent for second-order systes: An LMI approach / D. Henron, M. Sebek, V. Kucera // Kybernetka, 5, Vol. 41,N 1, P. 1-14 17. Kawaura, T. Robust stablty analyss of characterstc polynoals whose coeffcents are polynoals of nterval paraeters / T. Kawaura, M. Sha // Journal of Matheatcal Syste, Estaton and Control, B 4, 1996. P. 1-1. 18. Keel, L.H. Robust stablty and perforance wth fxed-order controllers / L.H. Keel, S.P. Bhattacharyya // Autoatca 1999 N 35, P. 1717 174. 19. Keel, L.H. Robust, fragle or optal? / L.H. Keel, S.P. Bhattacharyya // IEEE transactons on autoatc control, Vol. 4, N. 8, 1997, P. 198-115.. Maar, N. Pole placeent n a unon of regons wth prespecfed subregon allocaton / N. Maar, O. Bacheler, D. Mehd // Matheatcs and Coputers n Sulaton, 6, N 7 P. 38 46.
11 1. Markus, A. H. The Khartonov theore and ts applcatons n sybolc atheatcal coputaton / A.H. Markus, E. Kaltofen // Journal sybolc coputaton, 1997 P. 1-13.. Melnkov, U.S. Stablzaton of undersea object stuaton, connected wth shp by the rope / U.S. Melnkov, S.A. Gavoronsky, S.V. Novokshonov // KORUS 99 III Russan-Korean nternatonal Syposu. Novosbrsk, Russa, 1999. P. 68-7. 3. Nesenchuk, A.A. Root locus felds technue n the uncertan control systes synthess / A.A. Nesenchuk // Proceedngs of the 5th World Multconference on Systes, Cybernetcs and Inforatcs. Orlando, FL, USA. 1. P. 98-33. 4. Pare, T. Algorth for reduced order robust H control desgn / T. Pare, J. How. // Proceedngs of the 38-th conference on decson and control, Arzona, 1999 P. 1863-1868. 5. Rao, P. Robust tunng of power syste stablzers usng QFT / P. Rao, I. Sen // IEEE transactons on control systes technology, 1999, Vol. 7, N. 4. P. 478-486. 6. Rsky, G.V. Root locus ethods for robust control systes ualty and stablty nvestgatons / G.V. Rsky, A.A. Nesenchuk // Proceedngs IFAC 13th Trennal World Congress. San Francsco, USA, 1996. P. 469-474. 7. Senel, W. Desgn and analyss of robust control systes n PARADISE / W. Senel, J. Ackerann, T. Bunte // Proc. IFAC Syposu on Robust Control Desgn, Budapest, Hungary, 1997. 8. Senel, W. Robust control goes PARADISE. / W. Senel, J. Ackerann, D. Kaesbauer, T. Bünte // In Proc. EURACO Workshop on Control of Nonlnear Syste: Theory and Applcatons, Algarve, Portugal, 1996. P. 19-138. 9. Soh, C.B. On the stablty propertes of polynoals wth perturbed coeffcents / C.B. Soh, C.S. Berger, K.P. Dabke // IEEE Trans. On Auto. Control. 1985. Vol 3. B 1. P. 133-136.
1 3. Soh, Y.C. Generalzed edge theore / Y.C. Soh, Y.K. Foo // Systes & Control Letters, 1989, Vol. 1, N 3, P. 19-4. 31. Soh, Y.C. A note on the edge theore / Y.C. Soh, Y.K. Foo // Systes & Control Letters 199, Vol. 15, N 1, P. 41-43. 3. Soh, Y.C. Generalzaton of strong Khartonov theores to the left sector / Y.C. Soh, Y.K. Foo // IEEE Trans. On Autoatc Control, 199, Vol. 35. P. 1378-138. 33. Solyo, S. A synthess ethod for robust PID controllers for a class of uncertan systes / S. Solyo, A. Ingundarson // Asan Journal of Control, Vol. 4, N 4, P. 381-387. 34. Soyleez, M.T. Fast calculaton of stablzng PID controllers / M.T. Soyleez, N. Munro, H. Bak // Autoatca 39, 3, P. 11 16. 35. Taga, T. Desgn of robust pole assgnent based on Pareto-optal solutons / T. Taga, K. Ikeda // Asan Journal of Control, 3, Vol. 5, N, P. 195-5. 36. Tan, N. Coputaton of stablzng PI and PID controllers usng the stablty boundary locus / N. Tan, I. Kaya, C. Yeroglu, P. Derek // Energy Converson and Manageent, 6, N 47 P. 345 358. 37. The basc defntons: the stea boler. Retreved 7, fro the Web ste of the Boler Wkpeda, the free encyclopeda: http://en.wkpeda.org/wk/boler. 38. Varga, A.A. nuercally relable approach to robust pole assgnent for descrptor systes / A.A. Varga // Future Generaton Coputer Systes, 3, N 19, P.11 13. 39. Vceno, A. Robustness of pole locaton n perturbed systes / A. Vceno // Autoatca, 1989, Vol. 5. N 3. P. 19-113. 4. Wang L. Robust strong stablzablty of nterval plants: t suffces to check two vertces. / L. Wang // Syste and control letters, 1995, Vol. 6. P. 133-136.
13 41. Wang, L. Khartonov-lke theores for robust perforance of nterval systes / L. Wang // Journal of Matheatcal Analyss and Applcatons, 3,Vol. 79, N, P. 43-441. 4. Wang, L. Robust stablty of a class of polynoal fales under nonlnearly correlated perturbatons / L. Wang // Systes and Control Letters, Vol. 3, N 1, 1997, P. 5-3. 43. Wang, Y. PID and PID-lke controller desgn by pole assgnent wthn D- stable regons / Y. Wang, M. Schnkel, K.J. Hunt // Asan Journal of Control, Vol 4, N 4, P. 43-43. 44. Wang, Y. The calculaton of stablty radus wth D stablty regon and nonlnear coeffcents / Y. Wang, K.J. Hunt // Proceedngs of 3rd IFAC Syposu on Robust Control Desgn, Czech Republc,, P. 4-46. 45. Wang, Z. Deternatve vertces of nterval faly wth J-stablty / Z. Wang, L. Wang, W. Yu // Journal of Matheatcal Analyss and Applcatons Vol.66, N,, P. 31-33 46. Wang, Z. Iproved results on robust stablty of ultvarable nterval control systes / Z. Wang, L. Wang, W. Yu // Proceedngs of Aercan Control Conference, Denver, Colorado, USA, 1, P. 4463 4468. 47. Xao, Y. Edge test for doan stablty of polytopes of two-densonal (- D) polynoals / Y. Xao // Proceedngs of the 39th IEEE Conference on Decson and Control,, P. 415-4. 48. Zadeh, L.A. Lnear syste theory / L.A. Zadeh, C.A. Desoer McGraw- Hll, 1963. 49. Zayatn, S.V. The robust sector stablty analyss of an nterval polynoal / S.V. Zayatn, S.A. Gayvoronsky // 1st Internatonal Syposu on Systes and Control n Aerospace and Astronautcs, Harbn, Chna, 5, P. 11-115. 5. Zhabko, A.P. Necessary and suffcent condtons for the stablty of a lnear faly of polynoals. / A.P. Zhabko, V.L. Khartonov // Autoaton and Reote Control, 1994, Vol. 55, B1, P. 1496-153.