Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Σχετικά έγγραφα
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής


ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ


δημιουργία: επεξεργασία: Ν.Τσάντας

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

A 2 B 2 Γ 2. u 1 (A 1, A 2 ) = 3 > 1 = u 1 (B 1, A 2 ) u 1 (A 1, Γ 2 ) = 1 > 0 = u 1 (B 1, Γ 2 ) A 2 B 2

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Κεφάλαιο 28 Ολιγοπώλιο

Κεφ. 9 Ανάλυση αποφάσεων

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

( ) ΘΕΜΑ 1 κανονική κατανομή

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Κεφάλαιο 29 Θεωρία παιγνίων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

6. Παίγνια αλληλοδιαδοχικών κινήσεων και η αξία του περιορισμού των επιλογών κάποιου ατόμου

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Βασικές Αρχές της Θεωρίας Παιγνίων

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

Μοντέλα των Cournotκαι Bertrand

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

Β. Βασιλειάδης Αν. Καθηγητής. Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κεφάλαιο 4: Διαφορικός Λογισμός

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Διαφορικόσ Λογιςμόσ. Παράγωγοσ. Εξίςωςη εφαπτομένησ όταν γνωρίζουμε το ςημείο επαφήσ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Το Υπόδειγμα της Οριακής Τιμολόγησης

ΣΗΜΕΙΩΣΕΙΣ. η τιμή της συνάρτησης είναι μεγαλύτερη από την τιμή της σε κάθε γειτονικό σημείο του x. . Γενικά έχουμε τον ακόλουθο ορισμό:

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

Δεύτερο πακέτο ασκήσεων

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ

Εκτεταμένα Παίγνια (Extensive Games)

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

8. Πολλαπλές μερικές παράγωγοι

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3. Ενισχυτικές διαφάνειες

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων

8. Πολλαπλές μερικές παράγωγοι

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

Διαφορικές Εξισώσεις.

f I X i I f i X, για κάθεi I.

Διάλεξη 8. Ολιγοπώλιο VA 27

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

2. Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις

Transcript:

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας Ισορροπία Nash σε συνεχή παίγνια

3 η Διάλεξη-Περιεχόμενα (2/2) Ισορροπία με αμιγείς στρατηγικές σε παίγνια σταθερού αθροίσματος Αλγόριθμος εύρεσης ισορροπίας σε παίγνια σταθερού αθροίσματος. Εξασφαλισμένη έκβαση παιγνίου σταθερού αθροίσματος Στρατηγική MAXIMIN και MINIMAX σε παίγνια σταθερού αθροίσματος

Σημείο ή ζεύγος ισορροπίας κατά Nash (1/4) Υποθέτουμε ότι για ένα παίγνιο 2 παικτών, το οποίο αναλύθηκε από έναν ειδήμονα, μας προτείνεται το ζεύγος στρατηγικών Σ* για τον Ι και Τ* για τον ΙΙ. Υποθέτουμε ακόμη ότι οι 2 στρατηγικές είναι όντως οι καλύτερες για τους 2 παίκτες, αλλά αυτοί δεν μπορούν για κάποιους λόγους να δεσμευθούν αμοιβαία ότι θα τις ακολουθήσουν. Σημείωση: η επόμενη ύλη αφορά σε παίγνια μη σταθερού αθροίσματος, εκτός και αν δηλωθεί ρητά διαφορετικά.

Σημείο ή ζεύγος ισορροπίας κατά Nash (2/4) Ο παίκτης Ι μπορεί να σκεφτεί ως εξής: αν όντως ο αντίπαλός μου επιλέξει την στρατηγική Τ*, τότε εγώ πρέπει να επιλέξω την στρατηγική που μεγιστοποιεί τα κέρδη μου δοθείσης της Τ*. Πρέπει δηλαδή να λύσω το πρόβλημα max Σ (Σ, Τ*). Αν η στρατηγική που μου προτάθηκε, δηλ. η Σ* δεν ταυτίζεται με την λύση του προηγούμενου προβλήματος, πρέπει να αναθεωρηθεί.

Σημείο ή ζεύγος ισορροπίας κατά Nash (3/4) Ανάλογες σκέψεις μπορεί να κάνει και ο παίκτης ΙΙ. Τελικά, για να θεωρηθούν 2 στρατηγικές ως εύλογες για την έκβαση ενός παιγνίου 2 παικτών, υπό την έννοια ότι οι παίκτες δεν θα έχουν κίνητρο να αποκλίνουν από αυτές, θα πρέπει να ισχύουν οι σχέσεις: K I (Σ*, Τ*) >= Κ Ι (Σ, Τ*), για κάθε Σ. K IΙ (Σ*, Τ*) >= Κ Ι (Σ*, Τ), για κάθε Τ. Ένα ζεύγος στρατηγικών Σ*, Τ* που ικανοποιεί τις προηγούμενες σχέσεις ονομάζονται σημείο (ή ζεύγος) ισορροπίας (κατά Nash).

Σημείο ή ζεύγος ισορροπίας κατά Nash (4/4) Περιφραστικά θα μπορούσαμε να πούμε ότι το σημείο ισορροπίας Nash είναι μια ευσταθής έκβαση του παιγνίου, που καθορίζεται από κάποιες συγκεκριμένες στρατηγικές, υπό την έννοια ότι οι παίκτες δεν έχουν κανέναν λόγο να αποκλίνουν από τις στρατηγικές αυτές. Πρόκειται δηλαδή για ένα ιδανικό σημείο για όλους τους παίκτες. Ο ορισμός επεκτείνεται και για Ν παίκτες. Σε ένα παίγνιο μπορεί να υπάρχει ένα, πολλά ή κανένα σημείο ισορροπίας. (Δείτε τα επόμενα παραδείγματα)

1 ο Παράδειγμα ισορροπίας Nash Στην 2 η Διάλεξη, στο 1 ο παράδειγμα, το ζεύγος σ2, τ2 είναι το μοναδικό σημείο ισορροπίας. Η λύση αυστηρής ακολουθιακής κυριαρχίας που αναπτύχθηκε (απαλοιφή της σ1 και στην συνέχεια της τ1) οδηγεί στο σημείο Nash. Όταν η ακολουθιακή λύση είναι αυστηρή, τότε οδηγεί πάντα στο σημείο ισορροπίας.

2 ο Παράδειγμα ισορροπίας Nash Στην 2 η Διάλεξη, στο 2 ο Παράδειγμα, η ακολουθιακή λύση (Βόρεια, Βόρεια) είναι σημείο ισορροπίας Nash. Η λύση ακολουθιακής κυριαρχίας (Βόρεια, Βόρεια), αν και όχι αυστηρή, οδηγεί στο σημείο ισορροπίας. Όταν η ακολουθιακή λύση δεν είναι αυστηρή, ενδέχεται να μην οδηγήσει στο σημείο ισορροπίας.

3 ο Παράδειγμα ισορροπίας Nash (1/2) Δύο εταιρείες εξετάζουν την κάθοδο σε δύο διαφορετικές αγορές Α, Β. Αν και οι δύο κατέλθουν στην ίδια αγορά, τα κέρδη θα είναι αμελητέα και για τις δύο λόγω του ανταγωνισμού. Αν όμως κατέλθουν σε διαφορετικές αγορές δε θα υπάρξει ανταγωνισμός και επομένως θα είναι και οι δύο κερδοφόρες. Δεχόμαστε ότι η αγορά Α είναι πιο προσοδοφόρα από τη Β.

3 ο Παράδειγμα ισορροπίας Nash (2/2) Η κανονική μορφή του παιγνίου είναι: Επιβεβαιώνεται εύκολα ότι υπάρχουν 2 σημεία ισορροπίας: (Α, Β) και (Β, Α). Προφανώς ο παίκτης Ι επιδιώκει το σημείο (Α, Β) ενώ ο ΙΙ επιδιώκει το (Β, Α). Δεν είναι όμως σαφής από την ανάλυση η εξέλιξη του παιγνίου, καθώς στην προσπάθειά τους να εξασφαλίσουν οι παίκτες την αγορά Α, μπορεί να καταλήξουν στο (Α, Α), το οποίο είναι δυσμενές και για τους δύο.

Αλγοριθμική εύρεση σημείου ισορροπίας Σε παίγνια δύο παικτών, ο προσδιορισμός των (τυχόν) σημείων ισορροπίας γίνεται αλγοριθμικάδιαγραμματικά: 1. Για κάθε στρατηγική του Ι υπογραμμίζουμε στον πίνακα του παιγνίου την βέλτιστη επιλογή του ΙΙ, δεχόμενοι ότι ο ΙΙ γνωρίζει την επιλογή του Ι. 2. Επαναλαμβάνουμε, αντιστρέφοντας τους ρόλους των Ι και ΙΙ. 3. Τα στοιχεία με 2 υπογραμμίσεις είναι σημεία ισορροπίας, αφού ικανοποιούν και τις 2 σχέσεις του ορισμού.

4 ο Παράδειγμα ισορροπίας Nash Εκτελώντας τον διαγραμματικό αλγόριθμο, επιβεβαιώστε ότι στο παρακάτω παίγνιο το μοναδικό σημείο ισορροπίας είναι το (Β, Γ). Επιβεβαιώστε ότι δεν υπάρχουν κυριαρχούμενες στρατηγικές.

5 ο Παράδειγμα ισορροπίας Nash Εκτελώντας τον διαγραμματικό αλγόριθμο, επιβεβαιώστε ότι στο παρακάτω παίγνιο το μοναδικό σημείο ισορροπίας είναι το (Α, Β). Για τις κυριαρχούμενες στρατηγικές: η Α του παίκτη Ι κυριαρχείται από την Β (ασθενώς). Η στρατηγική Β του παίκτη ΙΙ κυριαρχείται από την Γ (ασθενώς). Αν προχωρήσουμε στις αντίστοιχες απαλοιφές, τότε το παίγνιο που προκύπτει δεν έχει πλέον το αρχικό σημείο ισορροπίας. Αυτό συνέβη λόγω της απαλοιφής ασθενώς και όχι αυστηρώς κυριαρχούμενων στρατηγικών.

Ισορροπία Nash σε συνεχή παίγνια (1/2) Θυμίζουμε ότι ένα παίγνιο καλείται συνεχές όταν τα σύνολα των στρατηγικών των παικτών του δεν είναι διακριτά αλλά συνεχή διαστήματα, π.χ. [0, 1]. Τα συνεχή παίγνια έχουν πολλές εφαρμογές στην Οικονομική Επιστήμη. Αν τα συνεχή σύνολα στρατηγικών είναι διαφορίσιμα (παραγωγίσιμα) ως προς τις στρατηγικές, τότε η ανάλυση των συνεχών παιγνίων διευκολύνεται με την χρήση του Διαφορικού Λογισμού.

Ισορροπία Nash σε συνεχή παίγνια (2/2) Οι δύο γνωστές συνθήκες που ορίζουν την ισορροπία Nash στα διακριτά παίγνια, στα συνεχή παίγνια διαμορφώνονται ως εξής: 1. 2. Ο προσδιορισμός του σημείου ισορροπίας γίνεται συνήθως με βάση την επίλυση των 2 παραπάνω αναγκαίων σχέσεων.

1 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (1/4) Έστω οι εξής συναρτήσεις κέρδους σε συνεχές παίγνιο δύο παικτών: Να βρεθεί το σημείο ισορροπίας κατά Nash.

1 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (2/4) Λύση Από την συνάρτηση κέρδους του παίκτη Ι, παραγωγίζοντας ως προς χ έχουμε: και εξισώνοντας με το 0 λαμβάνουμε: (i)

1 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (3/4) Από την συνάρτηση κέρδους του παίκτη ΙI, παραγωγίζοντας ως προς y έχουμε: και εξισώνοντας με το 0, λαμβάνουμε: (ii)

1 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (4/4) Κατά την ισορροπία Nash, οι δύο προηγούμενες σχέσεις (i) και (ii) ισχύουν ταυτόχρονα. Θεωρώντας λοιπόν ότι ορίζουν ένα σύστημα εξισώσεων και επιλύοντάς το, βρίσκουμε τις παρακάτω τιμές των στρατηγικών x και y, οι οποίες ορίζουν το σημείο ισορροπίας κατά Nash στο συνεχές παίγνιο:

2 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (1/4) Έστω οι εξής συναρτήσεις κέρδους σε συνεχές παίγνιο δύο παικτών: Να βρεθεί το σημείο ισορροπίας κατά Nash.

2 ο Παράδειγμα ισορροπίας συνεχούς Λύση παιγνίου (2/4) Από την συνάρτηση κέρδους του παίκτη Ι, παραγωγίζοντας ως προς χ έχουμε: και εξισώνοντας με το 0, λαμβάνουμε: (i)

2 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (3/4) Από την συνάρτηση κέρδους του παίκτη ΙI, παραγωγίζοντας ως προς y έχουμε: και εξισώνοντας με το 0, λαμβάνουμε: (ii)

2 ο Παράδειγμα ισορροπίας συνεχούς παιγνίου (4/4) Κατά την ισορροπία Nash, οι δύο προηγούμενες σχέσεις (i) και (ii) ισχύουν ταυτόχρονα. Θεωρώντας λοιπόν ότι ορίζουν ένα σύστημα εξισώσεων και επιλύοντάς το, βρίσκουμε τις παρακάτω τιμές των στρατηγικών x και y, οι οποίες ορίζουν το σημείο ισορροπίας κατά Nash στο συνεχές παίγνιο:

Ισορροπία με αμιγείς στρατηγικές σε παίγνια σταθερού αθροίσματος (1/3) Ότι αναφέρθηκε μέχρι τώρα για την ισορροπία Nash, αφορούσε σε παίγνια μη σταθερού αθροίσματος. Ας θεωρήσουμε ένα παίγνιο 2 παικτών σταθερού αθροίσματος. Έστω i οι στρατηγικές του παίκτη I και j οι στρατηγικές του παίκτη II, με i = 1, 2,.., M και j = 1, 2,.., N Έστω a i,j τα κέρδη του παίκτη Ι αν στο παίγνιο ακολουθηθούν οι στρατηγικές i και j από τους παίκτες I και II αντίστοιχα. Αφού το παίγνιο είναι σταθερού αθροίσματος, τα κέρδη του παίκτη II είναι c - a i,j, με c σταθερά ανεξάρτητη των i και j.

Ισορροπία με αμιγείς στρατηγικές σε παίγνια σταθερού αθροίσματος (2/3) Τα κέρδη και των 2 παικτών είναι γνωστά, αν δοθεί μόνο ο πίνακας των κερδών του παίκτη Ι, ο οποίος έχει διάσταση Μ x N. Για να ικανοποιεί ένα ζεύγος στρατηγικών i, j τις συνθήκες ισορροπίας Nash (που μελετήσαμε για παίγνια μη σταθερού αθροίσματος) θα πρέπει να ισχύουν οι σχέσεις: a i,j a i,j, για κάθε i και c a i,j c - a i,j, για κάθε j Οι παραπάνω σχέσεις συνοψίζονται ως: a i,j a i,j a i,j για κάθε i, j.

Ισορροπία με αμιγείς στρατηγικές σε παίγνια σταθερού αθροίσματος (3/3) Λόγω της προηγούμενης σχέσης, το ζεύγος των στρατηγικών i, j, οι οποίες ορίζουν το σημείο ισορροπίας Nash σε παίγνιο σταθερού αθροίσματος, ονομάζεται και σημείο minimax ή σαγματικό σημείο (η γραφική του παράσταση μοιάζει με σάγμα σέλα) ή απλώς σημείο ισορροπίας. Η ορολογία minimax δικαιολογείται καθώς το σημείο είναι το ελάχιστο ως προς τα στοιχεία της γραμμής i και το μέγιστο ως προς τα στοιχεία της στήλης j.

Αλγόριθμος εύρεσης ισορροπίας σε παίγνια σταθερού αθροίσματος. Ο αλγόριθμος μοιάζει με αυτόν που εφαρμόζεται στα παίγνια μη σταθερού αθροίσματος. 1. Για κάθε γραμμή υπογραμμίζουμε το ελάχιστο στοιχείο της γραμμής. 2. Για κάθε στήλη σημειώνουμε με άνω παύλα το μέγιστο στοιχείο της στήλης. 3. Τα στοιχεία που έχουν ταυτόχρονα και υπογράμμιση και άνω παύλα είναι τα σαγματικά σημεία (σημεία ισορροπίας).

Παραδείγματα εύρεσης ισορροπίας παιγνίων σταθερού αθροίσματος

Παραδείγματα εύρεσης ισορροπίας παιγνίων σταθερού αθροίσματος Υπογραμμίζουμε το ελάχιστο κάθε γραμμής και θέτουμε άνω παύλα στο μέγιστο κάθε στήλης. Παίγνιο 1: Ένα σημείο ισορροπίας, το (1, 2) με κέρδος 2 για τον παίκτη Ι. Παίγνιο 2:Κανένα σημείο ισορροπίας. Παίγνιο 3:Τέσσερα σημεία ισορροπίας: (1,1), (1, 4), (4, 1) και (4, 4). Κέρδος 4 για τον παίκτη Ι. Το στοιχείο (4, 2) έχει επίσης κέρδος 4 χωρίς να είναι σημείο ισορροπίας.

Εξασφαλισμένη έκβαση παιγνίου σταθερού αθροίσματος (1/2) Ορίζουμε ως εξασφαλισμένη έκβαση του παιγνίου για τον παίκτη Ι το V I = max i {min j a i,j }, δηλαδή το μεγαλύτερο στοιχείο μεταξύ των μικρότερων κάθε γραμμής. Αυτό αποτελεί ένα επίπεδο εξασφαλισμένου κέρδους για τον παίκτη Ι. Ομοίως, για τον παίκτη ΙΙ ορίζουμε V II = min j {max i a i,j }, δηλαδή το μικρότερο στοιχείο μεταξύ των μεγαλύτερων κάθε στήλης. Από τις δύο παραπάνω προτάσεις συνεπάγεται ότι για το τελικό αποτέλεσμα του παιγνίου V (δηλαδή για το κέρδος του παίκτη Ι) ισχύει: V I V V II

Εξασφαλισμένη έκβαση παιγνίου σταθερού αθροίσματος (2/2) Από την προηγούμενη ανισότητα προκύπτει ότι : V I V II Επίσης, αν V I = V II τότε υπάρχει σημείο ισορροπίας και αντιστρόφως. Προφανώς αν V I < V II δεν υπάρχει σημείο ισορροπίας.

Στρατηγική Maximin και Minimax σε παίγνια σταθερού αθροίσματος (1/3) Αφού το maximin = minimax υπάρχει σημείο ισορροπίας: (Α2, Β2).

Στρατηγική Maximin και Minimax σε παίγνια σταθερού αθροίσματος (2/3) Παίγνιο με 2 σημεία ισορροπίας: (Α1, Β1) και (Α1, Β2)

Στρατηγική Maximin και Minimax σε παίγνια σταθερού αθροίσματος (3/3) Αφού maximin <> minimax, δεν υπάρχει σημείο ισορροπίας.