1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

Σχετικά έγγραφα
Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

< a 42 >=< a 54 > < a 28 >=< a 36 >

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

(a, b) (c, d) = (a + c, b + d) (a, b) (c, d) = (ac, ad + bc)

a b b < a > < b > < a >.

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Ε Μέχρι 31 Μαρτίου 2015.

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Ε Μέχρι 18 Μαΐου 2015.

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 9

9 Πολυώνυμα Διαίρεση πολυωνύμων

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

a = a a Z n. a = a mod n.

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

Το Θεώρημα CHEVALLEY-WARNING

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες

Υπολογιστική άλγεβρα Ενότητα 6: Ο αλγόριθμος της διαίρεσης

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

Πρώτα και Μεγιστοτικά Ιδεώδη

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2

Παρασκευή 6 Δεκεμβρίου 2013

2.2 ιαίρεση Πολυωνύμων

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

Πεπερασμένα σώματα & Κρυπτογραφία. Σημειώσεις σύμφωνα με τις παραδόσεις του Αριστείδη Κοντογεώργη

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

= s 2m 1 + s 1 m 2 s 1 s 2

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Α Δ Ι Θ Θ Α Ε Ι Μ :

Abstract Algebra: The Basic Graduate Year: Robert B. Ash

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Το μόνο, ίσως, μειονέκτημά τους είναι ότι το μήκος τους υπόκειται σε περιορισμό από το πλήθος των στοιχείων του σώματος επί του οποίου ορίζονται.

Αριθμοθεωρητικοί Αλγόριθμοι

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

f(t) = (1 t)a + tb. f(n) =

1 Η εναλλάσσουσα ομάδα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

Transcript:

13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i) = a i με το μεγαλύτερο i N {0}, όπου f(i) 0 R Ονομάζουμε ένα μη μηδενικό πολυώνυμο μονοστό, αν ο επικεφαλής του συντελεστής ισούται με 1 R Παραδείγματα 121 Έστω ο δακτύλιος των ακεραίων αριθμών (Z, +, ) και Z[x] ο αντίστοιχος δακτύλιος των πολυωνύμων μιας μεταβλητής υπεράνω τού Z Το πολυώνυμο f 1 (x) = 2 Z[x] έχει deg f 1 (x) = 0, το f 2 (x) = 2+x 3n Z[x], n N έχει deg f 2 (x) = 3n και το πολυώνυμο f 3 (x) = 1 + x + x 2 + + x n, n N έχει deg f 3 (x) = n Ο επικεφαλής συντελεστής τού f 1 (x) είναι 2 Tα f 2 (x) και f 3 (x) είναι μονοστά πολυώνυμα Πρόταση 122 Αν ο δακτύλιος (R, +, ) είναι ακέραια περιοχή, τότε και ο δακτύλιος R[x] είναι ακέραια περιοχή και μάλιστα f(x), g(x) R[x] είναι deg f(x)g(x) = deg f(x) + deg g(x) Απόδειξη Αν ένα από τα δύο πολυώνυμα είναι το μηδενικό, τότε το γινόμενό τους είναι επίσης το μηδενικό πολυώνυμο και από την παραδοχή που κάναμε, βλ (**), σχετικά με τον βαθμό τού μηδενικού πολυνωύμου έπεται η ισότητα deg f(x)g(x) = deg f(x) + deg g(x) Αν ούτε το f(x) = a 0 +a 1 x+ +a n x n είναι το μηδενικό πολυώνυμο, ας πούμε ότι deg f(x) = n, ούτε το g(x) = b 0 +b 1 x+ +b m x m είναι το μηδενικό πολυώνυμο, ας πούμε ότι deg g(x) = m, τότε ο επικεφαλής συντελεστής τού γινομένου f(x)g(x) είναι ο a n b m 0 R, επειδή a n 0 R, b m 0 R και επειδή ο R είναι ακεραια περιοχή Συνεπώς, deg f(x)g(x) = n + m = deg f(x) + deg g(x) Παρατηρήσεις 121 Εππιλέον αν, (R, +, ) είναι οποιοσδήποτε μοναδιαίος δακτύλιος, f(x), g(x) R[x], deg(f(x) + g(x)) max{deg f(x), deg g(x)} 13 Ιδεώδη και Περιοχές κυρίων Ιδεωδών Έστω (R, +, ) ένας μοναδιαίος μεταθετικός δακτύλιος και I R ένα υποσύνολό του Υπενθυμίζουμε ότι Ορισμός 131 Το I R είναι ένα ιδεώδες τού (R, +, ) αν, το ζεύγος (I, +) είναι μια υποομάδα τού (R, +) και το I είναι κλειστό ως προς τον πολλαπλασιασμό με τα στοιχεία τού R, δηλαδή a I και r R, το στοιχείο ra ανήκει στο I 7 Ν Μ

1 Π Έ Επιπλέον υπενθυμίζουμε ότι ένα ιδεώδες I τού R ονομάζεται πεπερασμένως παραγόμενο αν, υπάρχει ένα πεπερασμένο υποσύνολο A = {a 1, a 2,, a t } τού R, ώστε κάθε στοιχείο a I να είναι ένας R γραμμικός συνδυασμός στοιχείων τού A, δηλαδή για κάθε a I να υπάρχουν r 1, r 2,, r t R (όχι απαραιτήτως μοναδικά) με a = t i=1 r ia i Στην περίπτωση αυτή γράφουμε I = a 1, a 2,, a t Υπενθυμίζουμε ακόμη ότι το ιδεώδες t a 1, a 2,, a t = { r i a i a i A, r i R, i = 1, 2,, t} i=1 είναι το μικρότερο (ως προς τη σχέση ) ιδεώδες τού R που περιέχει το A Ορισμός 132 Ένα ιδεώδες I τού R ονομάζεται κύριο, αν παράγεται από ένα μονοσύνολο τού R, δηλαδή αν υπάρχει a R με I = a Ένας δακτύλιος, τού οποίου κάθε ιδεώδες είναι κύριο ονομάζεται δακτύλιος κυρίων ιδεωδών Ιδιαιτέρως, Ορισμός 133 Ένας μοναδιαίος μεταθετικός δακτύλιος (R, +, ) ονομάζεται περιοχή κυρίων ιδεωδών αν, είναι ακέραια περιοχή και κάθε ιδεώδες του είναι κύριο Συνήθως δηλώνουμε μια περιοχή κυρίων ιδεωδών, γράφοντας τη συντόμευση ΠΚΙ Ήδη γνωρίζουμε ότι Πρόταση 131 Ο δακτύλιος των ακεραίων αριθμών είναι ΠΚΙ Απόδειξη (Περιγραφή) Τα ιδεώδη τού Z συμπίπτουν ακριβώς με τις υποομάδες τού Z Κάθε υποομάδα τού Z είναι κυκλική και επομένως κάθε ιδεώδες τού Z είναι κύριο Στη παρούσα ενότητα θα αποδείξουμε ότι ο δακτύλιος πολυωνύμων μιας μεταβλητής υπεράνω ενός σώματος είναι ΠΚΙ και γι αυτό χρειαζόμαστε τη λεγόμενη Ευκλείδεια Διαίρεση Πολυωνύμων, την οποία διατυπώνουμε λίγο γενικότερα στο ακολουθο: Ν Μ 8

13 Ι Π Ι Λήμμα 131 (Ευκλείδεια Διαίρεση Πολυωνύμων) Έστω (R, +, ) ένας μοναδιαίος μεταθετικός δακτύλιος και f(x), g(x) δύο πολυώνυμα τού R[x], όπου ο επικεφαλής συντελεστής τού g(x) είναι αντιστρέψιμο στοιχείο τού R Υπάρχουν πολυώνυμα q(x) (το λεγόμενο πηλίκο) και r(x) (το λεγόμενο υπόλοιπο) τού R[x] με f(x) = q(x)g(x) + r(x), όπου deg r(x) < deg g(x) (*) Επιπλέον αν, o R είναι ακέραια περιοχή, τότε q(x) και r(x) είναι τα μοναδικά πολυώνυμα που ικανοποιούν την (*) Στην περίπτωση που ο R δεν είναι ακέραια περιοχή τα q(x), r(x) δεν είναι απαραιτήτως μοναδικά Παράδειγμα 131 Στον δακτύλιο Z 6 [x] θεωρούμε τα πολυώνυμα Παρατηρούμε ότι f(x) = [2]x 3 + [2]x + [2], και g(x) = [2]x 2 + [2] [2]x 3 + [2]x + [2] = q 1 (x)g(x) + r 1 (x), q 1 (x) = [3]x 2 + x, r 1 (x) = 2, deg r 1 = 0 < 2 = deg g(x) και [2]x 3 + [2]x + [2] = q 1 (x)g(x) + r 1 (x), q 2 (x) = x + [3], r 2 (x) = 2, deg r 2 = 0 < 2 = deg g(x) Θεώρημα 131 Ο δακτύλιος πολυωνύμων F[x] μιας μεταβλητής υπεράνω ενός σώματος F είναι ΠΚΙ Απόδειξη Σύμφωνα με την Πρόταση 122 ο δακτύλιος F[x] είναι ακέραια περιοχή Έστω I ένα ιδεώδες τού F[x] Αν I = {0 F[x] }, τότε I = 0 F[x] Αν I {0 F[x] }, τότε το I περιέχει και μη μηδενικά πολυώνυμα Μεταξύ αυτών των μη μηδενικών πολυωνύμων τού I θεωρούμε ένα g(x) I ελαχίστου βαθμού Θα δείξουμε ότι κάθε f(x) I είναι πολλαπλάσιο τού g(x) Πράγματι, εκτελώντας την Ευκλείδεια Διαίρεση τού f(x) δια τού g(x) έχουμε: f(x) = q(x)g(x) + r(x), deg r(x) < deg g(x) Παρατηρώντας ότι το πολυώνυμο r(x) = f(x) q(x)g(x) ανήκει στο I, (αφού τα f(x) και q(x)g(x) ανήκουν στο ιδεώδες I), συμπεραίνουμε ότι το r(x) οφείλει να ισούται με το μηδενικό πολυώνυμο, επειδή στην αντίθετη περίπτωση το πολυώνυμο g(x) I δεν είναι ένα ελαχίστου βαθμού μη μηδενικό πολυώνυμο τού I Ώστε, f(x) = q(x)g(x) και συνεπώς I = g(x) 9 Ν Μ

1 Π Έ Προσέξτε ότι αν ένας δακτύλιος R είναι ΠΚΙ, τότε δεν έπεται απαραιτήτως ότι και ο R[x] είναι ΠΚΙ Παράδειγμα 132 Ο δακτύλιος Z είναι ΠΚΙ, αλλά ο Z[x] δεν είναι ΠΚΙ Πράγματι, ας θεωρήσουμε το ιδεώδες που παράγεται από τα 2, x Z[x] 2, x = {f(x)2 + g(x)x f(x), g(x) Z[x]} Z[x] (*) Μια άλλη περιγραφή τού 2, x είναι ότι αποτελείται από τα πολυώνυμα τού Z[x] που έχουν τον σταθερό τους όρο άρτιο Ιδιαιτέρως το 2, x περιέχεται γνήσια εντός τού Z[x], αφού 1 / 2, x Υποθέτοντας ότι το ιδεώδες 2, x είναι κύριο, δηλαδή ότι υπάρχει l(x) Z[x] με l(x) = 2, x, θα καταλήξουμε σε άτοπο Πράγματι, αν ήταν έτσι θα είχαμε 2 l(x) και x l(x) Επομένως, 2 = α(x)l(x), x = β(x)l(x), α(x), β(x) Z[x] Στον Z[x] ο βαθμός τού γινομένου δύο πολυωνύμων ισούται με το άθροισμα των βαθμών τους και έτσι deg 2 = deg(α(x)l(x)) = deg α(x) + deg l(x) 0 = deg α(x) + deg l(x) Επομένως, τα a(x) και l(x) είναι ακέραιοι αριθμοί Αλλά τότε το l(x) = ±1, ±2 Επειδή 2, x Z[x] έπεται ότι l(x) ±1 και συνεπώς l(x) = ±2 Τώρα όμως, λόγω τής (*), έπεται ότι x = ±2β(x) Αυτό όμως είναι άτοπο, αφού ο συντελεστής τού x ισούται με 1, ενώ ο συντελεστής τού ±2β(x) είναι σε κάθε περίπτωση άρτιος Τίθεται λοιπόν το ερώτημα, πώς βρίσκουμε τον γεννήτορα κάποιου ιδεώδους πολυωνυμικού δακτυλίου υπεράνω ενός σώματος; Η απάντηση βρίσκεται στην έννοια τού μέγιστου κοινού διαιρέτη Έστω (R, +, ) ένας μεταθετικός μοναδιαίος δακτύλιος και a, b R Το στοιχείο a διαιρεί το στοιχείο b αν, υπάρχει c R με b = ac (Σύμβολο: a b) Τα στοιχεία a, c ονομάζονται διαιρέτες τού b Τα επόμενα είναι προφανή: (αʹ) a b b a (βʹ) a R, a 0 R (γʹ) 0 R a a = 0 R (δʹ) a R, a a (εʹ) a 1 R a αντιστρέψιμο στοιχείο τού R Ν Μ 10

13 Ι Π Ι Ορισμός 134 Έστω R μια ακέραια περιοχή και f(x), g(x) δύο πολυώνυμα τού R[x] Ονομάζουμε μέγιστο κοινό διαιρέτη των f(x), g(x) ένα πολυώνυμο d(x) R[x] με τις ακόλουθες ιδιότητες: (αʹ) d(x) f(x) και d(x) g(x), (βʹ) αν d (x) R[x] με d (x) f(x) και d (x) g(x), τότε d (x) d(x), (γʹ) τέλος απαιτούμε το d(x) να είναι μονοστό πολυώνυμο Συμβολίζουμε τον μέγιστο κοινό διαρέτη των f(x), g(x) με ΜΚΔ(f(x), g(x)) Παρατηρήσεις 131 Αν υπάρχει ο ΜΚΔ δύο πολυωνύμων f(x), g(x) R[x], όπου τουλάχιστον ένα από τα δύο είναι 0 R, τότε είναι μοναδικός Πράγματι, ας είναι d 1 (x) d 2 (x) δύο μέγιστοι κοινοί διαιρέτες των f(x), g(x) Προφανώς, d 1 (x) 0 R και d 2 (x) 0 R Τότε d 1 (x) d 2 (x) και d 2 (x) d 1 (x) και συνεπώς d 2 (x) = l(x)d 1 (x), d 1 (x) = λ(x)d 2 (x) (*), όπου l(x), λ(x) R[x] Επομένως, d 1 (x) = λ(x)d 2 (x)l(x)d 1 (x) και αφού ο R είναι ακέραια περιοχή έπεται deg d 1 = deg λ + deg l + deg d 1 deg λ + deg l = 0 deg λ = deg l = 0 Ώστε τα λ(x), l(x) είναι σταθερά μη μηδενικά πολυώνυμα τού R[x], δηλαδή μη μηδενικά στοιχεία τού R Ας πούμε λ(x) = λ R, l(x) = l R Τώρα, από την (*) έπεται ότι ο επικεφαλής συντελεστής τού d 1 (x) (επειδή το d 2 (x) είναι μονοστό) ισούται με λ Αλλά και το d 1 (x) είναι επίσης μονοστό και γι αυτό λ = 1 και συνεπώς d 1 (x) = d 2 (x) Πρόταση 132 Έστω ότι το F είναι ένα σώμα και f(x), g(x) είναι δύο πολυώνυμα τού F[x] με g(x) 0 R Τότε υπάρχει ο ΜΚΔ(f(x), g(x)) = d(x) και μάλιστα f(x), g(x) = d(x) από όπου έπεται ότι ο ΜΚΔ(f(x), g(x)) = d(x) είναι τής μορφής d(x) = α(x)f(x) + β(x)g(x), α(x), β(x) F[x] Απόδειξη Το ιδεώδες f(x), g(x) που παράγεται από τα f(x), g(x) είναι μη μηδενικό και επειδή ο F[x] είναι ΠΚΙ, βλ Θεώρημα 131, υπάρχει κάποιο μη μηδενικό πολυώνυμο d(x) F[x] με d(x) = f(x), g(x) (*) Επιπλέον, μπορούμε να δεχθούμε χωρίς περιορισμό τής γενικότητας ότι το d(x) είναι μονοστό πολυώνυμο, αφού το ιδεώδες d(x) ισούται με το ιδεώδες a 1 d(x), όπου a 1 είναι ο επικεφαλής συντελεστής τού d(x) Παρατηρούμε ότι d(x) = α(x)f(x) + β(x)g(x)(**), αφού λόγω τής (*), d(x) f(x), g(x) Έχουμε f(x) d(x) και g(x) d(x) και συνεπώς d(x) f(x) και d(x) g(x) Αν d (x) F[x] με d (x) f(x) και d (x) g(x), τότε λόγω τής (**) έπεται ότι d (x) d(x) Επομένως, το πολυώνυμο d(x) είναι ο ΜΚΔ των f(x), g(x) 11 Ν Μ

1 Π Έ Προσδιορισμός ΜΚΔ δύο πολυωνύμων, όπου τουλάχιστον ένα δεν είναι το μηδενικό Έστω f(x), g(x) F[x] με g(x) 0 Εκτελούμε τη διαίρεση τού f(x) δια τού g(x) Αν το υπόλοιπο r 1 (x) τής διαίρεσης ισούται με μηδέν, τότε θα δείξουμε ότι ο ΜΚΔ(f(x), g(x))= a 1 g(x), όπου a είναι ο επικεφαλής συντελεστής τού g(x) Αν το r 1 (x) 0, τότε διαιρούμε το g(x) δια τού r 1 (x) Αν το υπόλοιπο r 2 (x) τής διαίρεσης ισούται με μηδέν, τότε θα δείξουμε ότι ο ΜΚΔ(f(x), g(x))= a 1 1 r 1(x), όπου a 1 είναι ο επικεφαλής συντελεστής τού r 1 (x) Αν το r 2 (x) 0, τότε διαιρούμε το r 1 (x) δια τού r 2 (x) Αν το υπόλοιπο r 3 (x) τής διαίρεσης ισούται με μηδέν, τότε θα δείξουμε ότι ο ΜΚΔ(f(x), g(x))= a 1 2 r 2(x), όπου a 2 είναι ο επικεφαλής συντελεστής τού r 2 (x) Συνεχίζουμε αυτήν τη διαδικασία διαιρώντας κάθε μη μηδενικό υπόλοιπο με το αμέσως προηγούμενο μη μηδενικό υπόλοιπο, μέχρις ότου να προκύψει μηδενικό υπόλοιπο Αυτό είναι βέβαιο ότι θα συμβεί, αφού deg g(x) > deg r 1 (x) > deg r 2 (x) > και ούτω καθεξής Στην αμέσως επόμενη σειρά ισοτήτων, βλ (*), παρουσιάζουμε ακριβώς αυτήν τη διαδικασία f = q 1 g + r 1 deg(r 1 ) < deg(g) g = q 2 r 1 + r 2 deg(r 2 ) < deg(r 1 ) r 1 = q 3 r 2 + r 3 deg(r 3 ) < deg(r 2 ) r n 2 = q n r n 1 + r n deg(r n ) < deg(r n 1 ) r n 1 = q n+1 r n + r n+1 deg(r n+1 ) < deg(r n ) r n = q n+2 r n+1 Θα δείξουμε ότι το a 1 n+1 r n+1(x), όπου a n+1 είναι ο επικεφαλής συντελεστής τού r n+1 (x) είναι ο ΜΚΔ(f(x), g(x)) Αρχίζοντας από την τελευταία ισότητα, παρατηρούμε ότι r n+1 r n και τώρα χρησιμοποιώντας την προτελευταία ισότητα έχουμε ότι r n+1 r n 1 Ανεβαίνοντας βήμα βήμα προς την πρώτη ισότητα, έχουμε διαδοχικά ότι r n+1 r n 2, r n+1 r n 3, r n+1 r 3, r n+1 r 2, r n+1 r 1, r n+1 g, r n+1 f Συνεπώς το πολυώνυμο a 1 n+1 r n+1(x) διαιρεί και αυτό τα f(x) και g(x) Αν τώρα ένα πολυώνυμο s(x) διαιρεί τα f(x) και g(x), τότε από την πρώτη ισότητα των σχέσεων (*), έπεται ότι s r 1 Κατόπιν από τη δεύτερη ισότητα των (*) έπεται ότι s r 2 και συνεχίζοντας κατ αυτόν τον τρόπο καταλήγουμε ότι s r n+1 Συνεπώς, το s(x) διαιρεί και το a 1 n+1 r n+1(x) Ώστε a 1 n+1 r n+1(x) =ΜΚΔ(f(x), g(x)) Παρατήρηση 131 Προσέξτε ότι η προηγούμενη κατασκευή τού μέγιστου κοινού διαιρέτη δύο πολυωνύμων F[x] εκτελείται εντός τού F[x] Συνεπώς ο ΜΚΔ(f(x), g(x)) των f(x), g(x) F[x] παραμένει ο ίδιος αν θεωρήσουμε τα f(x), g(x) ως στοιχεία ενός «ευρύτερου» πολυωνυμικού δακτυλίου K[x], όπου K σώμα με F K Ν Μ 12 (*)

14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς πρώτα ως πολυώνυμα τού F[x], δηλαδή ΜΚΔ(f(x), g(x))= 1, τότε ΜΚΔ(f(x), g(x))= 1 και ως πολυώνυμα τού K[x], όπου K υπέρσωμα τού F 14 Ομομορφισμοί και Πηλικοδάκτυλιοι Ομομορφισμοί Έστω R και S δύο μοναδιαίοι μεταθετικοί δακτύλιοι Υπενθυμίζουμε ότι Ορισμός 141 Ένας ομομορφισμός δακτυλίων από τον δακτύλιο R στον δακτύλιο S είναι μια απεικόνιση ϕ : R S που ικανοποιεί τα (αʹ) a, b R, ϕ(a + b) = ϕ(a) + ϕ(b), (βʹ) a, b R, ϕ(ab) = ϕ(a)ϕ(b), (γʹ) ϕ(1 R ) = 1 S Ονομάζουμε πυρήνα τού ομομορφισμού ϕ : R S, το σύνολο Kerϕ = {r R ϕ(r) = 0 S } Γνωρίζουμε ότι Λήμμα 141 Ο πυρήνας Kerϕ οποιουδήποτε ομομορφισμού ϕ : R S είναι ένα ιδεώδες τού R Υπενθυμίζουμε ότι ένας ομομορφισμός ϕ : R S ονομάζεται (αʹ) μονομορφισμός αν, ο ομομορφισμός ϕ είναι μια «1-1» απεικόνιση, (βʹ) επιμορφισμός αν, ο ομομορφισμός ϕ είναι μια «επί» απεικόνιση, (γʹ) ισομορφισμός αν, ο ομομορφισμός ϕ είναι μια «1-1» και «επί» απεικόνιση, Είναι γνωστά τα εξής: Λήμμα 142 (α ) Ένας ομομορφισμός δακτυλίων ϕ : R S είναι μονομορφισμός, αν και μόνο αν, Kerϕ = {0 R } (β ) Αν ϕ : R S είναι ένας ισομορφισμός,τότε και η αντίστροφη απεικόνιση ϕ 1 : S R, s ϕ 1 (s) = r όταν ϕ(r) = s, είναι επίσης ένας ισομορφισμός δακτυλίων 13 Ν Μ