3 Frequency Domain Representation of Continuous Signals and Systems

Σχετικά έγγραφα
Fourier transform of continuous-time signals

Lecture 12 Modulation and Sampling

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

6.003: Signals and Systems

6.003: Signals and Systems. Modulation

HMY 220: Σήματα και Συστήματα Ι

Fourier Transform. Fourier Transform

Fourier Series. Fourier Series

CT Correlation (2B) Young Won Lim 8/15/14

Assignment 1 Solutions Complex Sinusoids

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Ψηφιακή Επεξεργασία Φωνής

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Math221: HW# 1 solutions

HMY 220: Σήματα και Συστήματα Ι

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

What happens when two or more waves overlap in a certain region of space at the same time?

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

6.003: Signals and Systems. Modulation

If we restrict the domain of y = sin x to [ π 2, π 2

Spectrum Representation (5A) Young Won Lim 11/3/16

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

Nachrichtentechnik I WS 2005/2006

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Sampling Basics (1B) Young Won Lim 9/21/13

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Fundamentals of Signals, Systems and Filtering

Second Order RLC Filters

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

PARTIAL NOTES for 6.1 Trigonometric Identities

Example Sheet 3 Solutions

CRASH COURSE IN PRECALCULUS

The canonical 2nd order transfer function is expressed as. (ω n

INDIRECT ADAPTIVE CONTROL

ω = radians per sec, t = 3 sec

HMY 220: Σήματα και Συστήματα Ι

From the course textbook, Power Electronics Circuits, Devices, and Applications, Fourth Edition, by M.S. Rashid, do the following problems

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

Probability and Random Processes (Part II)

Linear singular perturbations of hyperbolic-parabolic type

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Numerical Analysis FMN011

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential


Tables in Signals and Systems

Magnetically Coupled Circuits

Section 8.3 Trigonometric Equations

Trigonometric Formula Sheet

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Femtosecond laser pulses

Section 9.2 Polar Equations and Graphs

Forced Pendulum Numerical approach

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Reminders: linear functions

ECE 468: Digital Image Processing. Lecture 8

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

LTI Systems (1A) Young Won Lim 3/21/15

HMY 220: Σήματα και Συστήματα Ι

D Alembert s Solution to the Wave Equation

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

BandPass (4A) Young Won Lim 1/11/14

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Introduction to Time Series Analysis. Lecture 16.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 1

Oscillatory Gap Damping

4.6 Autoregressive Moving Average Model ARMA(1,1)

D-Wave D-Wave Systems Inc.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

Section 8.2 Graphs of Polar Equations

Ανάλυση ΓΧΑ Συστημάτων

Riemann Hypothesis: a GGC representation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Quadratic Expressions

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Θεωρία Σημάτων και Γραμμικών Συστημάτων

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Fractional Colorings and Zykov Products of graphs

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

2 Composition. Invertible Mappings

Other Test Constructions: Likelihood Ratio & Bayes Tests

Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Transcript:

3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier Specrum / Line Specrum........... 3 3..3 Parseval s Theorem for Periodic Signals............. 7 3.2 Fourier Transform........................... 9 3.2. Definiion and Examples..................... 9 3.2.2 Properies of he Fourier Transform............... 2 3.2.3 Symmery of he Fourier Transform............... 2 3.2.4 Convoluion........................... 22 3.2.5 Parseval s Theorem for Energy Signals.............. 24 3.2.6 Fourier Transform of Periodic Signals.............. 25 3.3 Frequency Domain Descripion of LTI Sysems.............. 27 3.3. Frequency Response....................... 27 3.3.2 Bandwidh of Frequency Selecive Sysems............ 3 3.3.3 Disorionless Transmission................... 3 Dr. Tanja Karp

3. Fourier Series Represenaion of Periodic Signals 3.. Exponenial Fourier Series A large class of periodic signals f T () wih period T and fundamenal frequency = 2π/T can be represened as a sum of harmonic complex exponenial funcions: f T () = X k= F k exp(jk ) wih complex Fourier coefficiens: F k = T Z +T f T () exp( jk ) d Example: Recangular Pulse Train f T () T τ/2 τ/2 T Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 2

Calculaion of Fourier coefficiens F k : F k = T Z +τ/2 τ/2 exp( jk ) d = T " # τ/2 exp( jk ) jk τ/2 = k T exp( jk τ/2) exp(jk τ/2) j = 2 sin(k τ/2) k T = τ T sin(k τ/2) k τ/2 = τ T Sa(k τ/2) = τ T Sa(kπτ/T ) Sa(x) = sin(x)/x: sine-over-argumen funcion 3..2 Discree Fourier Specrum / Line Specrum Definiion: Graph of he (complex) Fourier coefficiens F k as a funcion of he angular frequency. f T () = X k= F k exp(jk ) For a periodic signal, he Fourier specrum exiss only a discree values of : =, ±, ±2, ±3,... Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 3

Example: Recangular Pulse Train T =, τ varies: f T () = < τ/2 τ/2 < < /2, F k = τ sin(kπτ) kπτ = τ Sa(kπτ) F k.2. ampliude specra τ=.2 F k 3 2 2 3.2 τ=.. F k 3 2 2 3.2 τ=.5. 3 2 2 3 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 4

τ =.2, T varies: f T () = <.. < < T/2, F k =.2 T Sa(.2kπ/T ) F k.2. ampliude specra T= F k 6 4 2 2 4 6.2 T=2. F k 6 4 2 2 4 6.2 T=4. 6 4 2 2 4 6 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 5

Magniude and Phase Specra: For complex Fourier coefficiens F k he magniude and phase is generally ploed separaely resuling in he magniude and phase specrum. Example: Sinusoids f T () = sin( ) = 2j {z} F exp(j ) + exp( j ) 2j {z} F F = 2j = 2 ( j) = 2 exp( jπ/2) = 2 π/2 F = 2j = 2 j = 2 exp(jπ/2) = 2 π/2 /2 F k π/2 F k π/2 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 6

3..3 Parseval s Theorem for Periodic Signals A periodic signal f T () is a power signal wih average power: P = T Z +T f T () 2 d = T Z +T Exponenial Fourier Series of complex conjugae funcion: Average Power: P = T = f T () = @ X Z +T X k= F k k= F k exp(jk ) A = f T ()f T () d = T h T Z +T Z +T X k= f T () f T () exp( jk ) d {z } F k f T ()f T () d F k exp( jk ) X k= i = F k X k= exp( jk ) d F k 2 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 7

Example: Sinusoids f T () = sin( ) = 2j {z} F exp(j ) + exp( j ) 2j {z} F Average Power: Z T/2 P = T T/2 sin 2 ( ) d = F 2 + F 2 = 2 Dr. Tanja Karp 3. Fourier Series Represenaion of Periodic Signals 8

3.2. Definiion and Examples 3.2 Fourier Transform Frequency represenaion of an aperiodic signal. Fourier Transform: Inverse Fourier Transform: F () = f() exp( j)d f() = 2π F () exp(j) d The Fourier Transform is aken over all imes, i.e. all ime resuluion is los. F () is called Fourier Transform/specral-densiy funcion/(fourier) specrum of f(). I is generally a complex valued funcion. Each poin of F () indicaes he relaive weighing of each frequency. Shor-hand noaion: F () = F{f()}, F () f(), f() F () Sufficien condiion for he exisence of he Fourier Transform: f() d < Dr. Tanja Karp 3.2 Fourier Transform 9

Example: Gae Funcion Fourier Transform: F () = = Euler s Ideniy: f() = rec(/τ) τ/2 Z τ/2 rec(/τ) rec(/τ) exp( j)d = exp( j)d τ/2 τ/2 j exp( j) = (exp( jτ/2) exp(jτ/2)) j τ/2 cos( τ/2) + j sin( τ/2) cos(τ/2) j sin(τ/2) F () = j τ/2 = 2 sin(τ/2) = τ sin(τ/2) τ/2 = τ Sa(τ/2) rec(/τ) τ Sa(τ/2) Dr. Tanja Karp 3.2 Fourier Transform

rec() Sa(.5).8.6.4.2.5.2.5.5.5 5 5 Example: Uni Impulse Funcion f () Fourier Transform: F{δ()} = f() = δ() δ() exp( j)d () F() = exp( j) = Dr. Tanja Karp 3.2 Fourier Transform

Example: Complex Exponenial Funcion f() = exp(j ) The only frequency componen presen in he signal is. Inverse Fourier Transform: F {δ( )} = 2π δ( ) exp(j)d = 2π exp( ) exp(j ) 2πδ( ) 3.2.2 Properies of he Fourier Transform Lineariy / Superposiion: where k f () + k 2 f 2 () k F () + k 2 F 2 () f () F (), f 2 () F 2 (), k, k 2 : arbiray consans Dr. Tanja Karp 3.2 Fourier Transform 2

Example: Sinusoidal Signals F {cos( )} cos( ) = 2 exp(j ) + 2 exp( j ) (π) (π) exp(j ) 2πδ( ) exp( j ) 2πδ( + ) F{cos( )} = πδ( ) + πδ( + ) F {sin( )} sin( ) = 2j exp(j ) 2j exp( j ) F{sin( )} = jπδ( ) + jπδ( + ) ( jπ) ( jπ) Complex Conjugae: Proof: F{f ()} = f() F (), f () exp( j)d = f () F ( ) f() exp(j)d = F ( j) Dr. Tanja Karp 3.2 Fourier Transform 3

Example: Complex Exponenial Funcion exp(j ) 2πδ( ) [exp(j )] = exp( j ) 2πδ( ) = 2πδ( + ) F {exp( j )} F {exp( j )} (2π) (2π) Coordinae Scaling (Reciprocal Spreading) f(a) a F a, a : real valued consan For a = : f( ) F ( ) Dr. Tanja Karp 3.2 Fourier Transform 4

Example: Gae Funcion rec().8.6.4.2.5 Sa(.5).2.5.5 rec(2).5 5 5.5 Sa(.25).8.6.4.2.5.2.5.5.5 5 5 Dr. Tanja Karp 3.2 Fourier Transform 5

Time Shifing (Delay): f( ) F () exp( j ), : real valued consan Example: Shifed Recangular Pulses f() = rec( + 2) + rec( 2), rec() Sa(/2) f() Sa(/2) exp(j2) exp( j2) = Sa(/2) 2 cos(2) rec(+2)+rec( 2) 2 2 Sa(/2)cos(2).8.6.4.2.2 3 2 2 3.5.5.5.5 2 5 5 Dr. Tanja Karp 3.2 Fourier Transform 6

Frequency Shifing (Modulaion) f() e j F ( ) Example: Ampliude Modulaion of a Triangular Pulse f() = Λ() cos( ) = 2 Λ()(exp(j ) + exp( j )) f() 2 Λ() Sa 2 (/2) Sa 2 (( )/2) + Sa 2 (( + )/2) Λ() cos(25 ).5.5(Sa 2 (( 25)/2+Sa 2 ((+25)/2))).4.5.3.2.5. 2 2 5 25 25 5 Dr. Tanja Karp 3.2 Fourier Transform 7

Differeniaion Example: Gae Funcion d d f() j F () Wha is he Fourier Transform of d rec() = δ( +.5) δ(.5) d Wih: d d Compare o: rec() Sa(/2) rec() jsa(/2) = jsin(/2) /2 = 2j sin(/2) rec().5.5.5 () d d rec().5 ( ) δ( +.5) δ(.5) exp(j/2) exp( j/2) = 2j sin(/2) Dr. Tanja Karp 3.2 Fourier Transform 8

Inegraion Z f(τ) dτ j F () + π F () δ() Example: Uni Sep Funcion u(): u() = Z δ(τ) dτ, δ() u() = Z δ(τ) dτ j + π δ() Dr. Tanja Karp 3.2 Fourier Transform 9

3.2.3 Symmery of he Fourier Transform f() = f r () + jf i () = f r,e () + f r,o () + j(f i,e () + f i,o ()) f r (): real par of f() f i (): imaginary par of f() f r,e () / f i,e (): even symmery par of he real / imaginary par of f() f r,o () / f i,o (): odd symmery par of he real / imaginary par of f() F () = f() exp( j)d = f() (cos() j sin()) d = = 2 (f r,e () + f r,o () + jf i,e () + jf i,o ()) (cos() j sin()) d f r,e () cos()d 2j {z } even symmery, real + 2j {z } even symmery, imaginary f i,e () cos()d + 2 f r,o () sin()d {z } odd symmery, imaginary f i,o () sin()d {z } odd symmery, real Dr. Tanja Karp 3.2 Fourier Transform 2

f() real, even real, odd imaginary, even imaginary, odd real imaginary even real par, odd imaginary par odd real par, even imaginary par even real par, even imaginary par odd real par, odd imaginary par F () real, even imaginary, odd imaginary, even real, odd even real par, odd imaginary par odd real par, even imaginary par real imaginary even real par, even imaginary par odd real par, odd imaginary par Dr. Tanja Karp 3.2 Fourier Transform 2

3.2.4 Convoluion Time Convoluion: f () f 2 () = f (τ)f 2 ( τ)dτ F () F 2 () Example: Triangular Funcion rec() rec() * = Λ().5.5.5.5 Λ() = rec() rec() Sa(/2) Sa(/2) = Sa 2 (/2) Example: Uni Impulse Funcion f() δ() F () f() f() δ( ) F (j) e j f( ) Dr. Tanja Karp 3.2 Fourier Transform 22

Frequency Convoluion: F () F 2 () = F (ν) F 2 ( ν) dν 2π f () f 2 () Example: Ampliude Modulaion of a Triangular Pulse f() = Λ() cos( ) = 2 Λ()(exp(j ) + exp( j )) Λ() Sa 2 (/2), exp(±j ) 2πδ( ) f() 2π Sa2 (/2) (πδ( ) + πδ( + )) Λ() cos(25 ).5.5(Sa 2 (( 25)/2+Sa 2 ((+25)/2))).4.5.3.2.5. 2 2 5 25 25 5 Dr. Tanja Karp 3.2 Fourier Transform 23

3.2.5 Parseval s Theorem for Energy Signals E = f() 2 d = 2π F () 2 d Example: f() = Sa(/2) = sin(/2) /2 2πrec() = F () E = f() 2 d = sin 2 (/2) (/2) 2 d = 2π = 2π Z.5.5 F () 2 d = 2π d = 2π 4π 2 rec 2 () d Dr. Tanja Karp 3.2 Fourier Transform 24

3.2.6 Fourier Transform of Periodic Signals Exponenial Fourier Series represenaion of a periodic signal: f T () = X k= F k exp(jk ) Fourier Transform of a periodic signal f T (): F{f T ()} = F{ = X k= X k= F k exp(jk )} = F k 2πδ( k ) X k= F k F{exp(jk )} Example: Sum of Two Cosine Signals f T () = cos( ).5 cos(3 ) =.5 exp(j ) + exp( j ).25 exp(j3 ) + exp( j3 ) F = F =.5 F 3 = F 3 =.25 Dr. Tanja Karp 3.2 Fourier Transform 25

3 /2 F k /4 3 (π) F() (π) 3 ( π/2) 3 ( π/2) Dr. Tanja Karp 3.2 Fourier Transform 26

3.3 Frequency Domain Descripion of LTI Sysems 3.3. Frequency Response Time Domain: Frequency Domain: f () LTI sysem h() g() F() LTI sysem H() G() h(): Impulse Response H(): Frequency Response g() = f() h() G() = F () H() An LTI sysem does no generae new frequency componens. Example: RC Lowpass Filer v i () v i () R C v o () v o () T T /RC h() Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 27

For T =, RC=: Magniude Specrum V i ().5 5 4 3 2 2 3 4 5 H().5 5 4 3 2 2 3 4 5 V o ().5 5 4 3 2 2 3 4 5 Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 28

Phase Specrum 2 V i () 2 5 4 3 2 2 3 4 5 2 H() 2 5 4 3 2 2 3 4 5 5 V o () 5 5 4 3 2 2 3 4 5 Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 29

3.3.2 Bandwidh of Frequency Selecive Sysems Lowpass Filer: A H() A/ 2 Bandpass Filer: A H() A/ 2 c c 2 2 Bandwidh: B = c Bandwidh: B = 2 Highpass Filer: A H() A/ 2 Bandsop Filer: A H() A/ 2 c c 2 2 Only posiive frequencies are couned for he bandwidh. Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 3

3.3.3 Disorionless Transmission A ransmission sysem is called disorionless, if he oupu signal g() is a scaled and delayed copy of he inpu signal f(): g() = K f( ) G() = K F () exp( j ) f () LTI sysem h() g() F() LTI sysem H() G() Sysem Frequency Response: H() = K exp( j ) K H() H() The ransmission sysem mus have a consan magniude response and is phase shif mus be linear wih frequency (resuling in he same delay of all frequency componens of he inpu). Dr. Tanja Karp 3.3 Frequency Domain Descripion of LTI Sysems 3