ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ2 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Θεωρίας Γραφηµάτων. Η εργασία πρέπει να γραφεί ηλεκτρονικά και να σταλεί µε e-mail στον Σύµβουλο Καθηγητή σας το αργότερο µέχρι την ευτέρα 9 Φεβρουαρίου 24, ώρα 3:. Οδηγίες προς τους φοιτητές:. Μην αφαιρείτε ΚΑΜΙΑ σελίδα από την αρχική µορφή της εργασίας, ούτε την εισαγωγική. 2. Συµπληρώστε πρώτα τα στοιχεία σας στο ΕΝΤΥΠΟ Α της τελευταίας σελίδας. Π.χ. για να συµπληρώστε το όνοµα κάντε διπλό κλικ στο σκιασµένο µέρος <Όνοµα> (προσοχή, µην το σβήσετε). Στην φόρµα που θα εµφανιστεί, στη θέση του προεπιλεγµένου κειµένου, συµπληρώστε το όνοµά σας. Επαναλάβετε την ίδια διαδικασία για κάθε σκιασµένο µέρος. 3. Τα άλλα πεδία στην σελίδα 2 ενηµερώνονται αυτόµατα. 4. Σε κάθε ερώτηµα, αµέσως µετά την εκφώνηση, γράψτε τον τίτλο Απάντηση, σβήστε τη φράση και γράψτε την απάντησή σας. Μπορείτε να διαµορφώσετε το χώρο όπως επιθυµείτε, και δεν υπάρχει περιορισµός στο πόσο χώρο θα καταλάβει η απάντησή σας. 5. Αφήστε όπως είναι το πλαίσιο. Θα συµπληρωθεί κατά την αξιολόγηση.
ΕΛΤΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Το έντυπο αυτό που συµπληρώνεται και υπογράφεται από τον καθηγητή σύµβουλο για κάθε γραπτή εργασία, αποστέλλεται στο φοιτητή µαζί µε α) αντίγραφο της διορθωµένης εργασίας και β) ξεχωριστό φύλλο µε Σχόλια προς τον Φοιτητή. Αντίγραφο του ελτίου Αξιολόγησης και των Σχολίων στέλνεται και στο Ε.Α.Π. Επίσης, ο καθηγητής κρατά για το δικό του αρχείο: α) την διορθωµένη εργασία και β) το φύλλο µε τα Σχόλια. Σε περίπτωση που υπήρξε καθυστέρηση µεγαλύτερη των 7 ηµερών για την παράδοση της γραπτής εργασίας, επισυνάπτεται το γραπτό σηµείωµα του Συντονιστή της Θ.Ε. Ονοµατεπώνυµο Φοιτητή <Όνοµα> <Επώνυµο> Προσωπικός Αριθµός Φοιτητή <ΑΜ> Ηµεροµηνία Αποστολής της Εργασίας από το Φοιτητή 9/2/4 Ηµεροµηνία Αποστολής Εργασίας στο Φοιτητή 23/2/4 Βαθµολογία Υπογραφή Καθηγητή Ονοµατεπώνυµο Καθηγητή Σχολή Θετικών Επιστηµών και Τεχνολογίας Θεµατική Ενότητα ιακριτα Μαθηµατικα και Μαθηµατικη Λογική Κωδικός Θεµατικής Ενότητας ΠΛΗ 2 Άυξων Αριθµός Γραπτής Εργασίας 3η Ακαδηµαϊκό έτος 23-24
Κ Ρ Ι Τ Η Ρ Ι Α Α Ξ Ι Ο Λ Ο Γ Η Σ Η Σ Ερώτηµα Μέγιστος βαθµός Βαθµός 2 5 3 4 5 5 6 5 7 5 8 Συνολικός Βαθµός: Γενικά Σχόλια: <γενικά σχόλια για την εργασία από το Σύµβουλο-Καθηγητή>
Ερώτηµα. Ε ρ ω τ ή µ α τ α Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού µεταξύ των κορυφών v και v 8 µε τον αλγόριθµο του Dijkstra. Να περιγράψετε αναλυτικά τα βήµατα του αλγορίθµου. Ποιο είναι το αντίστοιχο µικρότερο µονοπάτι µεταξύ των κορυφών v και v 8. Είναι µοναδικό; 4 v 2 v 5 2 2 2 6 9 v 3 v v 8 v 6 3 2 9 v 4 2 v 7 : / Ερώτηµα 2.. Να αποδείξετε ή να δώσετε αντιπαράδειγµα για την ακόλουθη πρόταση: «Σε ένα γράφηµα µε βάρη, το µικρότερο µονοπάτι µεταξύ δύο κορυφών <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ]
δεν µεταβάλλεται αν όλα τα βάρη πολλαπλασιαστούν µε τον ίδιο θετικό αριθµό». Για παράδειγµα, 2 3 2 4 6 2 2. Να αποδείξετε ή να δώσετε αντιπαράδειγµα για την ακόλουθη πρόταση: «Σε ένα γράφηµα µε βάρη, το µικρότερο µονοπάτι µεταξύ δύο κορυφών δεν µεταβάλλεται αν σε όλα τα βάρη προστεθεί ο ίδιος θετικός αριθµός». Για παράδειγµα, 2 3 +2 4 5 3 3. Ο αλγόριθµος του Dijkstra υπολογίζει το µήκος του µικρότερου µονοπατιού µεταξύ δύο κορυφών ενός γραφήµατος µε µη αρνητικά βάρη. Θεωρείστε την ακόλουθη επέκταση του αλγόριθµου του Dijkstra όταν κάποιες ακµές του γραφήµατος έχουν αρνητικό βάρος: Έστω a το µικρότερο (αρνητικό) βάρος που εµφανίζεται στο γράφηµα (a > ). Προσθέτουµε το a > στα βάρη όλων των ακµών και εκτελούµε τον αλγόριθµο του Dijkstra για τα νέα βάρη, κανένα από τα οποία δεν είναι αρνητικό. Υπολογίζει αυτός ο αλγόριθµος σωστά το µήκος του µικρότερου µονοπατιού όταν το γράφηµα έχει αρνητικά βάρη; Τεκµηριώστε την απάντησή σας αποδεικνύοντας την ορθότητα του αλγόριθµου ή δίνοντας αντιπαράδειγµα. <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 2
: / 5 Ερώτηµα 3.. Για το γράφηµα του Ερωτήµατος να υπολογιστούν: To µητρώο σύνδεσης / πίνακας γειτνίασης (adjacency matrix) για τη διάταξη κορυφών v, v 2,, v 8. O πίνακας εφαπτόµενων ακµών / πίνακας πρόσπτωσης (incidence matrix). Ονοµάστε και διατάξτε τις ακµές όπως εσείς επιθυµείτε. 2. Να σχεδιαστούν τα απλά γραφήµατα που αντιστοιχούν: Στο παρακάτω µητρώο σύνδεσης / πίνακα γειτνίασης (adjacency matrix). Στον παρακάτω πίνακα εφαπτόµενων ακµών / πίνακα πρόσπτωσης (incidence matrix). <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 3
: / Ερώτηµα 4. Έστω Α το µητρώο σύνδεσης / ο πίνακας γειτνίασης (adjacency matrix) ενός απλού µη κατευθυνόµενου γραφήµατος G µε n κορυφές. Έστω επίσης ο πίνακας Υ n i = = Α i που ορίζεται στη ραστηριότητα 4.6, Βιβλίο Γ. Βούρου. Ορίζουµε τον πίνακα Χ ως εξής: αν Υ[ i, j] = ή i = j Χ[ i, j] = διαφορετικά. Να υπολογίσετε τον πίνακα Χ αν το γράφηµα G είναι συνδεδεµένο. 2. Να δείξετε ότι αν το G δεν είναι συνδεδεµένο, το γράφηµα που αντιστοιχεί στο µητρώο σύνδεσης / πίνακα γειτνίασης Χ επίσης δεν είναι συνδεδεµένο. : / 5 <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 4
Ερώτηµα 5.. Βρείτε ένα (απλό µη κατευθυνόµενο) αυτοσυµπληρωµατικό γράφηµα µε 5 κορυφές. 2. Να αποδείξετε ότι η ιδιότητα «το γράφηµα G έχει κύκλο Hamilton» είναι αναλλοίωτη ιδιότητα (σε ισοµορφικά γραφήµατα). : / Ερώτηµα 6.. Να εξετάσετε ποια από τα παρακάτω γραφήµατα είναι ισοµορφικά µεταξύ τους. Για κάθε ζεύγος ισοµορφικών γραφηµάτων, να δοθεί ένας ισοµορφισµός (δηλαδή µία αντιστοιχία των κορυφών, εφόσον πρώτα τις ονοµάσετε). Για κάθε ζεύγος µη ισοµορφικών γραφηµάτων, να αναφερθεί µία αναλλοίωτη ιδιότητα η οποία δεν ικανοποιείται και από τα δύο γραφήµατα. 2. Να γίνει το ίδιο για τα παρακάτω γραφήµατα. <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 5
: / 5 Ερώτηµα 7.. Χρησιµοποιώντας το Θεώρηµα του Kuratowski, να δείξετε ότι το γράφηµα Petersen (Βιβλίο Μ. Μαυρονικόλα, Σχήµα.9) δεν είναι επίπεδο. 2. Να δείξετε ότι το συµπληρωµατικό γράφηµα του γραφήµατος Petersen δεν είναι επίπεδο. Μπορείτε να χρησιµοποιήσετε το αποτέλεσµα της Άσκησης Αυτοαξιολόγησης 4.8, Βιβλίο Γ. Βούρου. 3. Να αποδείξετε ότι τα παρακάτω γραφήµατα είναι επίπεδα δίνοντας αποτυπώσεις τους. Να επαληθεύσετε τον τύπο του Euler σε αυτά τα γραφήµατα. <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 6
: / 5 Ερώτηµα 8. ίνεται σαν δεδοµένο ότι κάθε επίπεδο γράφηµα έχει χρωµατικό αριθµό µικρότερο ή ίσο του 4 (βλέπε σελ. 23 και 24 στο Βιβλίο του Μ. Μαυρονικόλα). Με άλλα λόγια, κάθε επίπεδο γράφηµα είναι ένα k -µερές γράφηµα, για κάποιο ακέραιο k 4 (Ορισµός.8, Βιβλίο Μ. Μαυρονικόλα). Να αποδείξετε ότι για κάθε επίπεδο γράφηµα G µε τουλάχιστον 7 κορυφές, το συµπληρωµατικό γράφηµα G είναι µη επίπεδο. : / <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 7
ΕΝΤΥΠΟ Α ΣΥΝΟ ΕΥΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΡΓΑΣΙΕΣ Το έντυπο αυτό το συµπληρώνετε και το στέλνετε µαζί µε τη γραπτή εργασία σας στον Καθηγητή Σύµβουλο. Θυµηθείτε ότι θα πρέπει να κρατήσετε φωτοτυπία της γραπτής εργασίας σας. < Συµπληρώστε τα στοιχεία σας µέσα στα σκιασµένα µέρη > Συµπληρώνεται από το φοιτητή(-τρια) Στοιχεία Φοιτητή (-τριας) Όνοµα: <Όνοµα> Επώνυµο: <Επώνυµο> Αριθµός Μητρώου Φοιτητή: <ΑΜ> ιεύθυνση Επικοινωνίας: Οδός / Αριθµός: Περιοχή: Πόλη: Ταχ. Κώδικας: Νοµός: Τηλέφωνο: Fax: e-mail: ΣΧΟΛΗ Πληροφορικής ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ιακριτά Μαθηµατικά και Μαθηµατική Λογική (ΠΛΗ2) ΚΩ ΙΚΟΣ ΤΜΗΜΑΤΟΣ ΑΥΞΩΝ ΑΡΙΘΜΟΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ 3η Ακαδηµαϊκό έτος: 23-24 Ηµεροµηνία Αποστολής: 9/2/4 <Όνοµα> <Επώνυµο>, 3η εργασία, ΠΛΗ 2 [ ] 8