Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Σχετικά έγγραφα
ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

2) Να λύσετε την παρακάτω εξίσωση και να εξετάσετε αν έχει τις ίδιες λύσεις με την παραπάνω εξίσωση.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας.

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι

ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

( ) ( ( 2 ) ( 2 ) y να υπολογιστεί η α) Για ποιες τιμές του χ δεν ορίζεται η διπλανή παράσταση. Β) Να απλοποιηθεί η διπλανή παράσταση.

Β Γυμνασίου. Θέματα Εξετάσεων

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

1 ΘΕΩΡΙΑΣ...με απάντηση

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

Γυμνάσιο Μαθηματικά Τάξη Γ

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

Μαθημαηικά Γ Γυμμαζίου

Μαθηματικά Γ Γυμνασίου

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

Επαναληπτικές ασκήσεις για το Πάσχα.

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ερωτήσεις αντιστοίχισης

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Γυμνάσιο Μαθηματικά Τάξη B. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Επαναληπτικές Ασκήσεις

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

ΙΑΓΩΝΙΣΜΑ 3. 2 ο Θέµα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

Transcript:

Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα του Θαλή. Β. Στο διπλανό σχήμα ισχύει ότι είναι ε 1 // ε // ε 3. Να γράψετε τους ίσους λόγους που προκύπτουν σύμφωνα με το θεώρημα του Θαλή.. Πότε δύο πολύγωνα είναι όμοια; Να αποδείξετε την παρακάτω ισότητα: (x 1) (x + ) (x 1) (4x 3) + x (x 1) = (x ) 3 10x + Άσκηση η Να λυθεί η εξίσωση: ε 1 ε ε 3 Z δ 1 δ 10 3x 6x x 4 x 3 + x x x + = 0 ίνεται ισόπλευρο τρίγωνο ΑΒ. Στην πλευρά Β παίρνουμε τμήμα Β, στην πλευρά Α παίρνουμε τμήμα Ε και στην πλευρά ΑΒ Z παίρνουμε τμήμα ΑΖ, ώστε Β = Ε = ΑΖ. Να δείξετε ότι: Α. Τρίγωνο ΒΖ = Τρίγωνο Ε Β. Ζ = Ε.

Α. Πότε λέμε ότι δύο τρίγωνα είναι ίσα; (ορισμός) Β. ράψτε τα κριτήρια ισότητας δύο τριγώνων. Είναι τα ΑΒ και ΕΖ ίσα; (δικαιολογήστε την απάντηση σας) Ε Ζ Θέμα ο Α. Να συμπληρώσετε τις ταυτότητες: α. (α + β) =. β. (α β) 3 =. γ. (α + β)(α β) =.. Β. Να αποδείξετε την ταυτότητα: α 3 β 3 = (α β)(α + αβ + β ). Να παραγοντοποιηθούν οι παραστάσεις: x 16 και x 5x + 4 Β. Να βρεθεί το Ε. Κ. Π. των παραστάσεων: (x 16), (x 5x + 4), (4 x). Να λυθεί η εξίσωση: 1 x 16 + 1 x = 0 x 5x + 4 + 1 4 x Άσκηση η Να λυθεί το σύστημα: (y + x) 3(y 3) = x y + 11 x + y = y + x 3 3 Να αποδείξετε ότι: εφ 54 συν 54 + συν 16 =1

Α. Τι ονομάζεται μονώνυμο, από ποια μέρη αποτελείται, τι λέγεται βαθμός του μονωνύμου και πότε δύο μονώνυμα λέγονται όμοια; (Να δώσετε παραδείγματα). Β. Να συμπληρώσετε τις παρακάτω ισότητες: α. (α β) = β. (α + β) 3 = γ. α β = δ. α 3 + β 3 =. Να αποδείξετε τη δ. Θέμα ο Α. Σε ορθοκανονικό σύστημα αξόνων να ορίσετε τους τριγωνομετρικούς αριθμούς γωνίας ω με 0 ω 180. (Να κάνετε σχήμα) Β. Να συμπληρώσετε τις παρακάτω ισότητες: α. ημ90 = β. συν180 = γ. εφ0 = δ. ημ60 = ε. συν45 = στ. εφ30 = ζ. ημ150 = η. συν135 = θ. εφ10 = Στο διπλανό σχήμα είναι ΑΒ = 5cm, Α = 1cm, = 6cm. Α. Να αποδείξετε ότι τα τρίγωνα Ε και ΑΒ είναι όμοια. Β. Να υπολογίσετε τα x, y και να y 1cm x 5cm βρείτε το λόγο ομοιότητάς τους.. Να βρείτε το λόγο των εμβαδών 6cm των δύο τριγώνων. Άσκηση η 3x + y x + 4y = + y + 6 Να λύσετε το σύστημα: x + y x + 5 x = 3 Να ερμηνεύσετε γεωμετρικά το αποτέλεσμα που βρήκατε. Να λύσετε την εξίσωση: x + x x +1 +1= 3 x x

Α. Τι γνωρίζετε για τη συνάρτηση y = αx με α 0; (σχήμα) Β. Έστω η συνάρτηση y = αx + βx + γ, α 0. Τι παριστάνει; Θέμα ο Ποιες οι συντεταγμένες της κορυφής της; Πότε έχει ελάχιστο, πότε μέγιστο και ποιο είναι αυτό; Α. Να διατυπωθεί το Θεώρημα του Θαλή και σε σχήμα να γραφούν οι σχέσεις που το εκφράζουν. Β. Σε δύο τρίγωνα ΑΒ και Α Β έχουμε: α. α = α, β = β, Β = Β β. α = α, =, Β = Β γ. α = α, β = β, = δ. Α = Α, Β = Β, = Σε ποιες περιπτώσεις τα τρίγωνα είναι ίσα και γιατί; Α = (x 3x + 1) 1 = x 3 x x + Α. Να παραγοντοποιηθούν οι Α, Β. Β. ια ποιες τιμές του x έχει νόημα η παράσταση Α Β και κατόπιν να απλοποιηθεί.. Να λυθεί η εξίσωση Α Β = 1 Άσκηση η Έστω το σύστημα: x + 3y = 3α + β x y = α + β Να προσδιοριστούν τα α, β αν το (Σ) έχει λύση (x, y) = (,3). Σε ισοσκελές τρίγωνο ΑΒ προεκτείνω τη βάση Β και από τις δύο μεριές και παίρνω τμήματα Β = Ε. Αν Μ, Ν είναι τα μέσα των ΑΒ και Α αντίστοιχα, να δειχθεί ότι Ν = ΜΕ. Αν η Ν και η ΜΕ τέμνονται στο Κ και φέρω την ΚΖ κάθετη στην Ε, να δειχθεί ότι: το Ζ είναι μέσον της Ε.

Α. Να συμπληρώσετε τις ταυτότητες: α. (α + β) = β. (α + β) (α β) =.. γ. (α β) 3 =.. δ. (α β) (α + αβ + β ) =.. Β. Να αποδείξετε την πρώτη και την τέταρτη ταυτότητα. Θέμα ο ίνεται η εξίσωση αx + βx + γ = 0 με α 0. Να γράψετε τον τύπο της διακρίνουσας = α. Πότε η εξίσωση έχει δύο άνισες λύσεις; ράψτε τον τύπο των λύσεων. β. Πότε η εξίσωση έχει μια διπλή λύση; ράψτε τον τύπο της. γ. Πότε η εξίσωση είναι αδύνατη; Να λύσετε την εξίσωση: 4 x 1 1 x = x + x Άσκηση η Να λύσετε το σύστημα: x +1 y = 1 3 x + y = 6 ίνεται ισοσκελές τρίγωνο ΑΒ με ΑΒ = Α. Από το μέσο Μ της βάσης Β, φέρνουμε τα τμήματα Μ ΑΒ και ΜΕ Α. Να αποδείξετε ότι: Α. Μ = ΜΕ Β. Το τρίγωνο ΑΕ είναι ισοσκελές.

Α. Να αποδειχτεί η ταυτότητα: (α + β) 3 = α 3 + 3 α β + 3αβ + β 3. Β. Να συμπληρωθούν οι ταυτότητες: α. α αβ + β =. β. α 3 β 3 = γ. (α β) (α + β) =. δ. (α + β) (α αβ + β ) = Θέμα ο Α. Να γράψετε τα κριτήρια ισότητας τριγώνων. Β. Να γράψετε τα κριτήρια ισότητας ορθογωνίων τριγώνων. Να λυθεί η εξίσωση: 9(x + ) 18(x + 3) = 8x + 14 + 4x(x 1). Άσκηση η Αν για μία γωνία ω δίνεται 90 ω 180 και ημω =, να υπολογιστούν το συνω και η 3 εφω. Να λυθεί το σύστημα: x + 6 = x y y x y + = 4 3

Α. Να αποδείξετε την ταυτότητα (α β) = α αβ + β. Β. Τι λέγεται παραγοντοποίηση;. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες. α. Ισχύει (α + β) = α + β. β. Η εξίσωση αx + βx + γ = 0 με α 0 έχει δύο άνισες ρίζες αν = 0. γ. Το πολυώνυμο P(x) = 010 είναι μηδενικού βαθμού. δ. Η εξίσωση 5x = 0 είναι αδύνατη. ε. Κλασματική λέγεται κάθε εξίσωση που περιέχει ένα τουλάχιστον κλάσμα. Θέμα ο Α. Να γράψετε τα κριτήρια ισότητας τριγώνων. Β. Να γράψετε τα κριτήρια ισότητας ορθογωνίων τριγώνων.. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες. α. Αν δύο τρίγωνα έχουν τις γωνίες τους μία προς μία ίσες, τότε είναι ίσα. β. Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία και μια γωνία ίση, τότε είναι ίσα. γ. Το ευθύγραμμο τμήμα που συνδέει τα μέσα δύο πλευρών ενός τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της. Α. Να λύσετε την εξίσωση: 3x + 5x = 0.. Αν η πιθανότητα Ρ(Α) ενός ενδεχομένου Α είναι ρίζα της παραπάνω εξίσωσης να υπολογιστεί η Ρ(Α ). Αν ακόμη δίνονται Ρ(Β) = 1 και Ρ(Α Β) = 1 να υπολογίσετε την Ρ(Α Β). 6 Άσκηση η Αν για την αμβλεία γωνία ω ισχύει ημω = 1 να υπολογίσετε: 13 13συνω συν10 Α. το συνω, Β. την εφω,. την τιμή της παράστασης Α = 5εφω Α. Να λύσετε το σύστημα: x 5y = 5 x + y = 54. Να υπολογίσετε την τιμή της παράστασης: Κ = 4 + x + 14 + y xy όπου (x, y) η λύση του συστήματος του ερωτήματος Α.

Α. Να χαρακτηρίσετε τις ακόλουθες προτάσεις γράφοντας στην κόλλα σας την ένδειξη Σωστή ή Λάθος δίπλα στον αριθμό της κάθε ερώτησης. α. ύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα. β. Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία και την περιεχόμενη γωνία τους ίση, τότε είναι ίσα. γ. ύο τρίγωνα είναι ίσα όταν δύο γωνίες και δύο πλευρές τους είναι ίσες μία προς μία. Β. α. Να διατυπώσετε το θεώρημα του Θαλή. β. Αν είναι ε 1 // ε // ε 3 και τέμνουν τις ευθείες δ 1, δ στα σημεία Α, Β,, και Α, Β,, αντίστοιχα γράψτε την επόμενη ισότητα ορθά συμπληρωμένη: ΑΒ... =...... =...... Θέμα ο Α. Να αντιστοιχίσετε τις ταυτότητες της στήλης Α με τα αντίστοιχα αναπτύγματα της στήλης Β. Η αντιστοίχηση να γραφτεί στην κόλλα σας, γράφοντας δίπλα στο γράμμα της στήλης Α τον αριθμό που αντιστοιχεί στη στήλη Β, ως εξής: Α, Β,, ΣΤΗΛΗ Α Α. (α + β) 3 Β. (α + β)(α β). (α β). α 3 β 3 Β. Να αποδείξετε ότι (α + β) = α + αβ + β ΣΤΗΛΗ Β 1. (α + β)(α αβ + β ). α αβ + β 3. α 3 + β 3 4. α β 5. α 3 + 3α β + 3αβ + β 3 6. (α β)(α + αβ + β ) 3 Έστω γωνία ω με 0 ω 180, για την οποία ισχύει συνω =. 5 Α. Η γωνία ω είναι οξεία ή αμβλεία; Να δικαιολογήσετε την απάντησή σας. Β. Να αποδείξετε ότι: α. ημω = 4 4 β. εφω = 5 3 εφω συν10. Να υπολογίσετε την τιμή της παράστασης: ημω εφ135. Άσκηση η ίνονται οι παραστάσεις: Α = (x + ) x + x 4(x + 5) και Β = x 1 : 1 6x 6 Α. Να αποδείξετε ότι: Α = x 16. Να αποδείξετε ότι: Β = 6x. Να λύσετε την εξίσωση: Α + Β = 0. (x + 3)(x 1) y = x + 1 ίνεται το ακόλουθο σύστημα: x (y ) = y + 0 x y = 4. Να αποδείξετε ότι μετά από πράξεις γράφεται στη μορφή: x+ 4y = 4 Β. Να λύσετε το σύστημα στη νέα μορφή.

Α. Να συμπληρώσετε τις ταυτότητες: (α β) =. και (α + β)(α αβ + β ) = Β. Να αποδείξετε την ταυτότητα: (α β) 3 = α 3 3α β + 3αβ β 3 Θέμα ο Α. Ποια είναι τα κύρια στοιχεία ενός τριγώνου και ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου; Β. Να διατυπώσετε τα κριτήρια ισότητας δύο τριγώνων. Να λύσετε την εξίσωση: 1 x 1 3 x + x = x +1 3x + 6 Άσκηση η x y 4 5x = Να λύσετε το σύστημα: 3 6 y x = 3 Στο διπλανό σχήμα τα τρίγωνα ΑΒ και Ε είναι ορθογώνια με Α = 90 και Ε = 90. Επίσης δίνονται ΑΒ = 9cm, Ε = 3cm, Ε = 5cm, ΑΕ = x και = x 3. Α. Να αποδείξετε ότι τα τρίγωνα ΑΒ και Ε είναι όμοια. Β. Να υπολογίσετε το x.. Να υπολογίσετε την πλευρά Β του τριγώνου ΑΒ. x 9cm 3cm 5cm x-3cm