Solving integral equations based on radial basis function interpolation

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


NUMERICAL EVALUATION OF HIGHLY OSCILLATORY INTERGRALS WITH WEAK SINGULARITIES

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

2 SFI

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Math-Net.Ru Общероссийский математический портал

v w = v = pr w v = v cos(v,w) = v w

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

High order interpolation function for surface contact problem

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ανώτερα Μαθηματικά ΙI

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Lecture 5: Numerical Integration

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Editorís Talk. Advisor. Editorial team. Thank

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Solutions_3. 1 Exercise Exercise January 26, 2017

Oscillatory integrals

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

INTEGRAL INEQUALITY REGARDING r-convex AND

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

Déformation et quantification par groupoïde des variétés toriques

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

p din,j = p tot,j p stat = ρ 2 v2 j,

Ó³ Ÿ , º 4(181).. 501Ä510

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Εφαρμοσμένα Μαθηματικά

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ανώτερα Μαθηματικά ΙI

Blowup of regular solutions for radial relativistic Euler equations with damping

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

tan(2α) = 2tanα 1 tan 2 α

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

On the fractional derivatives of radial basis functions

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

arxiv: v1 [math.dg] 3 Sep 2007

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

Research Article The Study of Triple Integral Equations with Generalized Legendre Functions

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Ανώτερα Μαθηματικά ΙI

Second Order Partial Differential Equations

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

Ó³ Ÿ , º 7(205) Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ŠÊ Íμ,.. Ê ±μ,.. ² μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Transcript:

2017 9 31 Ð 3 Sept. 2017 Communiction on Applied Mthemtics nd Computtion Vol.31 No.3 DOI 10.3969/j.issn.1006-6330.2017.03.003 ÀÆ Þµ Å Đ Ò Î Í Ï ( ÄÇ ÏÁ ±Å Ø Ä 400044)  ÕÉ ¹ (rdil bsis function, RBF) º Æ Þ ÊÆ ¹ ±Ý» RBF Á Á ß»Á Á Á Æ Ï ÊÆ¹ Ð ±Ý RBF ß º Þ Ø ÜÃ˵ (multiqudric, MQ) ¹ Ñ Í «Ð ÒÒ ÚÀ RBF Ü» ¹ ½ «½ ºÖ Û Ú ² «½ Æ RBF ºÚ² à ³ «ÉÆ ºÆ Ø Ô½ ܽ Fredholm ¼ Volterr Æ ±¹Å ßÞ ØÔ ¼ÒÒ «ßÔ Ð Æ Ï ß Ü Á Á ÕÉ ¹ (rdil bsis function, RBF) º Ø ÜÃ˵ (multi-qudric, MQ); º ß 2010 Ö ß 45A05; 45G10 È¾Ö ß O241.83 ÌÇ A ÃËß 1006-6330(2017)03-0275-15 Solving integrl equtions bsed on rdil bsis function interpoltion ZHANG Huiqing, CHEN Yu, NIE Xin (The Stte Key Lbortory of Trnsmission Equipment nd System Sfety nd Electricl New Technology, Chongqing University, Chongqing 400044, Chin) Abstrct In order to cquire numericl method with high precision chrcteristic nd multi-dimensionl dptbility for solving integrl equtions, the rdil bsis function (RBF) is introduced. Specificlly, the unknown function is firstly expressed s liner combintion of RBF, then the integrl eqution is trnsformed to discrete liner or nonliner equtions through the colloction method, nd finlly, n pproximte representtion for the unknown function is obtined fter determining the weights of RBF. The multi-qudric (MQ) function is dopted due to its superior interpoltion performnce. In ddition, solving three or higher dimensionl integrl equtions re esily implemented becuse the RBF is function of distnce nd the only chnging is the distnce formul. The Guss qudrture formul, the geometric splitting nd numericl integrl methods re employed ³Ú 2014-04-26; 2014-11-11 Ð ²Æ ǽ (51377174) ¼ ÌÄ Â ĐÊ À»Ä E-mil: zhnghuiqing@cqu.edu.cn

276 31 Ð in clculting the integrl in RBF interpoltion mtrix. Numericl exmples s Fredholm or Volterr equtions in one or two-dimension hve been crried out. The results show tht the proposed method is esily to implement, nd it hs the dvntge of high precision nd convenience. Therefore, it is new nd suitble method for solving integrl equtions. Key words liner integrl eqution; nonliner integrl eqution; rdil bsis function (RBF) interpoltion; multi-qudric (MQ); numericl integrtion method 2010 Mthemtics Subject Clssifiction 45A05; 45G10 Chinese Librry Clssifiction O241.83 0» º Ð º Ð ÂÔ Ð Ð Ï ¹ ¹ ÓÐ ¹  РÂÔ Ë ¹ ßÙ Ï ÅÑÑ ¹ Ð Ó Úº f(p) = µ k(p, Q)F[f(Q)]dQ + g(p), P, Q Ω, (1) Ω Ú g(p) º Æ k(p, Q) ºº F[f(Q)] ºÉÅ Ö Ω º È µ ºÖ ¼ Û F[f(Q)] Ú ºÀ» À º Fredholm» Volterr ¹ Þ É Þ ¹Å Þ Â Þ Ô º Þ ¼ ÎÐÞ ¹Ð Ð ¹Å È Þ Þ ¾ Hr ˵ Å Ó À Fredholm Ð [1] ; Hr ˵ŠӼ [2]»Û¼ [3] À Ð Ì ƫDubechie ˵ ¾È ÞÅ Û À Volterr Ð [4] ; Đ Sinc ½ÞÅ Ó¼ Ó À [5]» À Fredholm Ð [6] ; ű ÞÅ Ó Volterr Ð [7], ű» ¾ÞÅ À Fredholm-Volterr Ð [8] ; Chebyshev ½ÐÞÅ Û¼À Ð [9] Đ Å± ÞÅ Û¼ Fredholm-Volterr Ð [10] ; ÆÚ [11] «Å º Û Fredholm Å» Ú Chebyshev ÆÚ Ë µ Ì ÆÚ È Ø ¹ «Ëµ ¹ Â Ô Æ Û¼ ¼ ¾ ¹ ßÁ ¾ ÑÓ ¹ÑÑÅ ¾ ¼ ÔÈ (rdil bsis function, RBF) Â Þ 1968 Hrdy ¼ Û ¹ Ô È¼ ¹ÑÑ Å ßÙ ¹ Ï Đ [12]. 1990 Kns [13] ÂÏ RBF Đ Ð Å ¹ Ó µ Þ ¼ RBF ¹ Ç RBF Å Ð ÓÝ»³ Ù Ï RBF Ð Ï Ð Å Ù [14-15] Ï Đ Å Ó¼ Û À Ð À - Ð [16] À

3 Á Å ÕÉ ¹ º Æ 277 Volterr-Fredholm-Hmmerstein Ð [17] À Ð [18-20]. Ò» Å Å Û¼ È Û Fredholm Ð [21]. Ð Ö ¾Ë Î ßÁ ĐÏ RBF ÐÞÐ Ï Ð Å RBF ¹ RBF Å À À Ð ÐÞ Ó Â ÐÆ µó¼ Û¼ ¹ ÐÞ Â 1 RBF ÆÁ RBF φ: R + R ( Û º R d ) Þ ÕÆ ß r = x x j [22]. RBF Û Ð φ(r) = r 2 lnr Å φ(r) = e βr2 Hrdy ÛÂÊ (multi-qudric, MQ) Frnke 1982 µ MQ ÐÞÞ 29 Û ¹ÐÞ ¾  ßÁ MQ ź ¹ ÅÚº φ(x) = x c 2 + α 2, (2) Ú c Þ α º ¼ Ó «ÈßÂ Í Õ Ì α = βh, h º Èß β Ù ¼ RBF ¹ØÞ RBF À À¾ ܾ Ô ÓÀ Û RBF ܺ (x m, f(x m )), m = 1, 2,, N, Ï ¹È Ú f(x) = λ i φ i (x) = λ i (x ci ) 2 + α 2, (3) f(x m ) = λ i φ i (x m ) = λ i (xm c i ) 2 + α 2, (4) Ù± ܺ [Φ d ][λ] = [f d ], (5) Ú [f d ] = [f(x 1 ), f(x 2 ),, f(x N )] T º Û ¹ [λ] = [λ 1, λ 2,, λ N ] T ºÉ [Φ d ] º ¹Ù± Ù± ÆÂ Úº Φ mn = (x m c n ) 2 + α 2. Å Ú (5) ßÁ Ú x ¹ f(x) º [λ] = [Φ d ] 1 [f d ]. (6) f(x) = [Φ(x)][λ] = [Φ(x)][Φ d ] 1 [f d ]. (7)

278 31 Ð 2 RBF ÓÐ Å ØÓ Á RBF Å Ð ÅÅ RBF ÞÅ Ð ÉÅ RBF À À¾ Ü È Ð Đ ½ÐÞ Î Ù ¾ Ð ½Ð Ù± ÆÞ RBF Â Ú Ù Þ Ð RBF ØÝ À» À Ð RBF Å µ 2.1 ÙÔ RBF Ó¼À Ð Ó Úº f(x) = µ b x k(x, t)f(t)dt + g(x), x [, b], (8) Ú b x Ü º b º x, ²ÔĐ Fredholm Volterr Ð b º Í» RBF Õ ÏÉÅ f(x) ܺ RBF À¾ À ¾ [,b]»ó x m À Рͺ b λ i φ i (x m ) µ λ i k(x m, t)φ i (t)dt = g(x m ), x m [, b]. (9) Ì M Æ Ð Ù± Úº [Φ µk][λ] = [G], (10) Ú Φ mn = (x m c n ) 2 + α 2, K mn = b k(x m, t) (t c n ) 2 + α 2 dt, [G] = [g(x 1 ), g(x 2 ),, g(x M )] T, x m, c n ²ÔĐº ½» RBF ½ x m» c n Ì Ó ßÁ Æ M» Æ N Â Φ Ù±ºÐ± Ù± K mn º» Å Å Ú 1 1 h(ξ)dξ Q A q h(ξ q ). (11) q=1 µ t=(b + )/2+(b )ξ/2=p(ξ) ÈÈ Â Úº K mn = b b 2 k(x m, t)φ n (t)dt = b 2 1 1 k[x m, p(ξ)]φ n [p(ξ)]dξ Q A q k[x m, p(ξ q )]φ n [p(ξ q )]. (12) q=1

3 Á Å ÕÉ ¹ º Æ 279 2.2 ÙÔ RBF Û¼À Ð Ó Úº f(x, y)=µ k(x, y, t, s)f(s, t)dsdt + g(x, y), (x, y) Ω, (13) RBF ¹ Úº λ i φ i (x m, y m ) = µ λ i Ω Ω k(x m, y m, s, t)φ i (s, t)dsdt + g(x m, y m ), (14) Ì M Æ ½ ¹Ù± [Φ µk][λ] = [G]. Ȳ K mn = Ω k(x m, y m, s, t)φ n (s, t)dsdt ºÛ¼ Ú ² Ù» È Â ÐÆ (i) Ù È Â ÍÙ È Ω º [,b] [c,d] Õ Đ Û¼Å Å Ú µ t=(b+)/2+(b )ξ/2=p(ξ), s=(d + c)/2+(d c)η/2=q(η) ÈÈ K mn = d b c (b )(d c) 4 k(x m, y m, s, t)φ n (s, t)dsdt n 1 n 2 A i A j k[x m, y m, p(ξ i ), q(η j )]φ n [p(ξ i ), q(η j )]. (15) j=1 (ii) È Â Í È Ω º È Õ» Å Ú» ¹Å ÐÞ ³ Þ Óµ» ¹ ÐÞ Ï È À½  ²Æ È Å» ¹ µ K mn = k(x m, y m, s, t)φ n (t, s)dsdt = k(x m, y m, s, t)φ n (t, s)dsdt I i, (16) Ω i Ω i i Ú Ω i Ü i Æ È Û¼ È Ë Đ ßÙ» Í È Ô i Æ Ë Đ Û ¹ Ú I i = S 3 i k(x m, y m, x icj, y icj )φ n (x icj, y icj ), (17) 3 j=1 Ú Æ (x ij,y ij )(j = 1, 2, 3) Â Ë S i Æ (x icj, y icj ). 2.3 Õ ÙÔ RBF Ó¼ À Ð Ó Úº f(x) = µ b x k(x, t)f[f(t)]dt + g(x), x [, b]. (18)

280 31 Ð b º» RBF ÏÉÅ f(x) ܺ RBF À¾ λ i φ i (x) = µ b N ] k(x, t)f λ i φ i (t) dt + g(x), x [, b]. (19) [, b]»ó x m º Ú Üº λ i φ i (x m ) µ b N ] k(x m, t)f λ i φ i (t) dt g(x m ) = 0, x m [, b]. (20) Ì M Æ À Ð À Ù±Úº [Φ][λ] µ[k] [G] = 0, (21) Ë K m = [ b ] k(x m, t)f λ i φ i (t) dt = b h(t)dt Þ Î [λ] À» ÈÐÞÅ Ô È ²Ó¹ ÛÎ [λ] = [λ 1, λ 2,, λ N ] T Í ¹ Ú (21) ÆÐ  ŠK m Å Ú K m = b 2 b 2 1 1 q=1 2.4 Õ ÙÔ RBF N ] k[x m, p(ξ)]f λ i φ i (p(ξ)) dξ Q N ] A q k[x m, p(ξ)]f λ i φ i (p(ξ)). (22) Û¼ À Ð Ó Úº f(x, y) = µ k(x, y, t, s)f[f(t, s)]dtds + g(x, y), (x, y) Ω, (23) RBF ¹ Úº Ω λ i φ i (x m, y m ) = µ k(x m, y m, t, s)f Ω [ N ] λ i φ i (t, s) dtds + g(x m, y m ). (24) Ì M Æ ½ À Ð À Ù± Ú [Φ][λ] µ[k] [G] = 0, K m Â Ô Ù È Đ Û¼Å Å Úº K m (b )(d c) 4 n 1 n 2 N A i A j k[x m, y m, p(ξ i ), q(η j )]F j=1 ] λ i φ i (p (ξ i ), q(η j )). (25)

3 Á Å ÕÉ ¹ º Æ 281 Ô È» ¹Å ÐÆ ÄÙ» K m = Ω = i N ] k(x m, y m, t, s)f λ i φ i (t, s) dtds N ] k(x m, y m, t, s)f λ i φ i (t, s) dtds, (26) Ω i N ] k(x m, y m, t, s)f λ i φ i (t, s) dtds Ω i = S i 3 3 N ] k(x m, y m, x icj, y icj )F λ i φ i (x icj, y icj ). (27) j=1 2.5 RBF «ÙÔ ± ÏÉ Ï RBF Å À Ð Ó¹ ¾ (i) RBF ½Ò½ ÉÅ Û Ò½ RBF c, ¼ α ½ x m ; (ii) Î Ð À Ï RBF ¹ ÚÈ Ð Đ Í Ð À À Ð Õ Ù± Úº [Φ µk][λ] = [G], À ÕÂĐº [Φ][λ] µ[k] [G] = 0; (iii)  ٱ Æ Ô Ó¼ Û¼Ù È Đ Å Þ «ÙÔ Û¼È È Â È Å»«(iv)  ΠÔÀ Ð Đ SVD Å ¹Ù±Ð [Φ µk][λ] = [G], Ù Ô À Ð Đ Ö ÈÞÅ [Φ][λ] µ[k] [G] = 0; (v)  ÉÅ f(x) RBF Ú f(x) f(x) = [Φ(x)][λ]. 3 Æ ¹ Ø ¹ Ӽà Fredholm л Volterr Ð Û¼Ù» È Ð º ÐÞ ÑÑ» Ð ¼ Ò f e (x k )» f cl (x k ) ² Ü x k ¹»Â ¹ Ð Ûº φ RMS = 1 [f e (x k ) f cl (x k )] N 2. (28) 3.1 ÙÔ «º 1 Ó¼ Volterr À Ð f(x) + x 0 k=1 (x t)f(t)dt = 1, 0 x 1,

282 31 Ð Ð º f(x)=cos(x).» Ì RBF Èß h=0.1, ¼ β=10, º 11; ¹ » 60 Å Ú«ÌÈß h t =0.001 1 001 ƾ ÐÞ Â ³º ¾ ÂÆ Ô º 3.302 2 10 6, Ð º 2.605 0 10 6, ÂÔ ÂÆ¹º 4.713 1 10 4. Ù [15] Ì ¼» 1 000 ƾ Ð º 3.514 16 10 5. Ë ÐÞ Ð Ì Å ÑÑ [23] Ó¼À Ð x f(x) + e xs f(s)ds = g(x), 1 g(x) = e 4x + 1 x + 4 (ex(x+4) e (x+4) ), 1 x 1, º f(x) = e 4x. Å È [ 1,1] Èß h = 1 3 Ì ¼ α=8.8, ¹ » 7 Å Ú ¾Èߺ h t =0.2. ÐÞ Â ³º ¾ ÂÆ Ô º 2.465 8 10 1, Ð º 9.311 43 10 1, ÂÔ ÂÆ¹º 1.563, ¹Ù± Í 6.050 9 10 14. Èß h=0.25 Ì» ¼ α=4.2,» 9 Å Ú ¾Èߺ h t =0.2. ÐÞ Â ³º ¾ ÂÆ Ô º 2.258 8 10 2, Ð º 9.976 9 10 3, ÂÔ ÂÆ¹º 6.963 8 10 2, ¹ Ù± Í º 4.342 4 10 14. 1 Ë ÐÞ ( ¹» 7 9 Å )» [23] ÐÞ (Legendre- Guss-Lobtto ) ÂÆ Ô Ó» 6 8 Å Æ Ú Ù RBF ¹ ÓÉ Ø ± Ïż Í RBF N=10 Õ Ð Å 1.329 5 10 3. Í 1 [23] Ñ É Ñ Ý Ê N=6 N=8 ß 2.465 8 10 1 2.258 8 10 2 [23] ß 3.660 0 10 1 1.880 0 10 2 2 Ó¼ Fredholm À Ð 1 e (x+1)t f(t)dt = g(x), 0 g(x) = 1 0 x 1, ex+1 (x + 1) 2 + ex+1 x + 1, Ð º f(x) = x. Ì RBF Èß h=0.1, ¼ β=20, Æ º 11;» 20 Å Â ³ 2 Ü [1]» Hr ˵ÐÞ Í Ñ j=4

b3b 9I ^? qq?- 4.\B ~ N 283 q }:6. 3.809 9 10, JN~p:6. 0.035 0, JNJp:6. 8.248 9 10 ; U j=6 q J. 3.627 0 10, 0.012 8 / 3.009 0 10. u 3}z[`'p. 7.327 7 10, 2.133 1 10 / 6.300 8 10. U 2 48 [1] mk Q4mk yir K do# Z T*{ (j=4) T*{ (j=6) 4~{ 4 2 5 6 2 5 5 0.1 0.1 0.094 212 996 807 86 0.102 953 271 231 79 0.099 993 699 159 086 0.2 0.2 0.216 497 767 731 13 0.193 982 016 790 95 0.199 992 714 173 504 0.3 0.3 0.278 668 297 286 35 0.302 220 067 436 13 0.299 999 166 429 188 0.4 0.4 0.404 535 603 105 57 0.396 346 237 628 25 0.400 003 345 436 062 0.5 0.5 0.467 982 147 763 49 0.491 283 482 643 49 0.500 002 711 688 808 0.6 0.6 0.595 167 200 545 31 0.602 413 447 203 73 0.599 999 256 619 412 0.7 0.7 0.721 572 548 697 16 0.697 325 532 381 44 0.699 996 680 817 208 0.8 0.8 0.783 975 300 318 31 0.806 706 792 323 44 0.799 997 531 348 708 0.9 0.9 0.905 983 819 893 75 0.898 402 237 956 90 0.900 000 440 606 391 1.0 1.0 0.965 040 447 791 85 0.987 233 083 204 06 0.999 997 601 459 995 3 w0" P H A }? Fredholm Z 1Z f (x, y) = u(x, y) + 1 (t sin(s) + 1)f (s, t)dsdt, 0 0 u(x, y) = x cos(y) sin(1)(3 + sin(1))/6, 0 6 x, y 6 1, }?[?Yb. f (x,y) = xcos(y). #3 T RBF 3X P{ h=0.1, [>0 β=35, ; /3X Æ. 121 w0 A 3 x, y }P T 20 Æ A 2 P{. h =0.05,. 441. #`'$, 2 [JN~p:6. 5.530 9 10, } :6. 2.658 3 10, Jp :6JN-. 1.607 7 10. -b[:6r(/jp:6r(`$ 1 x 3E [3] Hr S)}z (α=4, m=32) q[jn~p:6. 8.32 10. t 6 6 4 5 2 6\ ;i6\ 2 1

284 31 Ð 4 Û¼ È Volterr Ð f(x, y) (t sin(s) + 1)f(s, t)dsdt = xcos(y) 0.280 405 715 7, Ω Ω = {(x, y) R 2 : 0 y 1, 0.25 (y 0.5) 2 x } 1 4(y 0.5) 2, Ð º f(x,y) = xcos(y). Ì RBF» 2 Ü º 35, ¼ α=βh=2.5. Ω º È Đ ÍÏ º 2 272 Æ Ë» 1 225 Æ Ì Ë Åº¾ Ù± Æ Â È ¹» ÛÂ Ú ³ ¾ ÂÆ Ô º 4.011 7 10 5, Ð º 2.955 8 10 5, ÂÔ ÂÆ¹º 3.072 0 10 2. Ù [20] Ì 33 Â Õ Ð º 1.96 10 4,» Å Å Ð º 1.65 10 4. ¾ 2 RBF È ¾² 3.2 Õ Ô «º 5 Ó¼ Fredholm À Ð f(x) = x 1 Ð º f(x) = 2 x 2. Ì RBF Èß h= 1 9 0 t f(t)dt + 2 1 3 (2 2 1)x x 2, 0 x 1,, ¼ β=8, º 10; » 10 Šګ̾Èß h t =0.05. Ð Þ ¾ ÂÆ Ô º 5.883 1 10 6, Ð º 2.846 5 10 6, ÂÔ ÂÆ¹º 4.943 8 10 6 ; Ù [6] ÐÞ» ÐÞ ¾ Ô ³Ë 3. Ë RBF ÐÞ Ð Ì Å ÑÑ ÐÞ Å Æ

3 Á Å ÕÉ ¹ º Æ 285 Í 3 [6]» Ñ É Ñ Ý x t [6], N=10 ß 0.1 4.94 10 5 3.45 10 6 0.3 8.55 10 5 4.74 10 7 0.5 1.04 10 4 3.75 10 6 0.7 6.78 10 5 2.72 10 6 0.9 1.41 10 5 5.88 10 6 ÃÇĐÕ 2.18 10 4 5.88 10 6 6 Ó¼ Volterr À Ð f(x) = 3 2 1 2 e 2x x 0 [f 2 (t)+f(t)]dt, 0 x 1, Ð º f(x) = e x. Ì ¼ β=7,» 10 Å º» [2] ³Ä ÕÂÌ RBF Èß h= 1 3, h=1 7, h= 1 15» h= 1 31, ¾Èß h t=0.05. 4 Ì«À Æ Â ³ 3 Þ» ÐÞ ÂÆ Ô ³ Ô º» [8] ÄÔ Ì RBF Èß h = 1 5,  ³ 5 Ü 3 4» 5 Ë Ç Æ Å ÑÑ RBF ÐÞ Ñѳ Í 4 Êν Û» Ý N=4 N=8 N=16 N=32 RMS 5.02 10 4 1.06 10 5 2.40 10 6 9.89 10 7 ÃÇĐÕ 8.11 10 4 3.91 10 5 6.80 10 6 2.37 10 6 ÃÇÃÕ 1.54 10 3 4.11 10 5 1.76 10 5 4.72 10 6 ¾ 3 [2]» Ñ É Ñ Ë ¾

286 31 Ð Í 5 [8]» Ñ É Ñ Ý Ê x t [8], M=3, N=6 ß N=6 0 0 7.361 2 10 12 0.1 1.626 8 10 4 8.865 8 10 5 0.2 2.438 2 10 4 3.278 2 10 5 0.3 1.275 4 10 4 5.689 3 10 5 0.4 2.858 7 10 4 1.034 1 10 5 0.5 3.999 3 10 4 1.150 7 10 5 0.6 2.250 4 10 4 1.191 4 10 5 0.7 3.594 6 10 4 2.969 1 10 5 0.8 1.043 8 10 4 3.180 2 10 6 0.9 2.968 3 10 4 3.209 5 10 5 [23] À Ð x f(x) + e x 3s [f 2 (s)]ds = g(x), 1 1 g(x)= 2(1+36π 2 ) [(1+36π2 )e x e x cos(6πx)+6πe x sin(6πx) 36eπ 2 ]e x +e x sin(3πx), Ð º f(x) = e x sin(3πx). Å È [ 1, 1] Èß h = 1 3 Ì» «¼ α=0.5; ¹  ²» 7 Å Ú«¾Èߺ h t =0.1; ÐÞ¾ ÂÆ Ì» ¼ α=1.3,» 9 Ô º 2.662 9 10 1. Èß h = 1 4 Å Ú ¾Èߺ h t =0.1, ÐÞ¾ ÂÆ Ô º 2.024 8 10 3. Í 6 É Ñ [23] Ñ Ë Ê N=6 N=8 ß 2.662 9 10 1 2.024 8 10 3 [23] ß 2.330 0 10 2 7.220 0 10 4 6 ÐÞ ÂÆ Ô À Ð Å Õ [23] Ñ ß Å RBF À Ð ÈÐÞÐ Æ ÄÙ Â ÑÑ Å Ù» MATLAB ÑÑ Û ÜÅ Ð 7 Û¼ È Volterr À Ð y x f(x, y) = g(x, y) + (x + y t s)f 2 (t, s)dtds, 0 0 g(x, y) = x + y 1 12 xy(x3 + 4x 2 y + 4xy 2 + y 3 ), Ð º f(x, y) = x + y. 0 x, y 1, Ì RBF Èß h=0.2, ¼ β=5, Æ º 36 x, y ÐÈ Ì 10 ÆÅ ¾Èߺ h t =0.1, º 121. ³ ¾

3 Á Å ÕÉ ¹ º Æ 287 ÂÆ Ô º 2.703 4 10 4, Ð º 6.684 7 10 5, ÂÔ ÂÆ¹º 1.351 7 10 3. ¹ Ô Ê»ÂÔ Ê 4 Ü [3] Hr ˵ÐÞ (α = 4, m = 32) Õ ÂÆ Ô º 4.58 10 4, ÐÞ ÑÑ ¾ 4 ¾ 8 Û¼ È Volterr À Ð x f(x, y) Ω 1 + y (1 + t + s)f2 (t, s)dtds = g(x, y), 1 0.027 138 047 1x g(x, y) =, (1 + x + y) 2 1 + y Ð º f(x, y) = 1/(1 + x + y) 2. È Ω 5 Ü Ì RBF» Æ º 38, ¼ α = βh = 0.45. Đ ÍÏ È º 288 Æ Ë» 185 Æ Ó¹Ñ Ï 657 Æ Åº¾ Â Ô Ë È ¹» ÛÂ Ú ³ ¾ ÂÆ Ô º 3.755 8 10 3, Ð º 2.834 9 10 4, ÂÔ ÂÆ¹º 2.347 4 10 2. ¾ 5 RBF È ¾² 4 Ï RBF Ð Ï Ð ½ RBF ÐÞÅ Ð Ô ½ Ð À Ù± Æ Â ÐÆ Ð ÀÅ ÐÞ Ì

288 31 Ð ¾Ô RBF ÌÐÞ Þ Å ÐÆ ÑÑ «¹ Þ Ä Ö Ì (i) Ê RBF Å Ð ÅÅ Ï RBF Ð Ï Ð Å RBF À À¾ ÉÅ Û ÔĐÀ À È Ð À ²Đ SVD ÈÐÞ Î Ù Ð (ii) Ð ÀÔĐ Ù± ÆÂ Ô Ó¼»Û¼Ù È» Å Å ÐÆ«ÙÔ È» ¹ ÐÆ Ó¼ Û¼ À» À Ð Å ³ ÐÞÝ ÓлÑÑ Å Þ ¾ Ð Å ÎÐÞ (iii) MQ ¹ Ý Ð Ì Å ÑÑ ßÙÂ Ë Ó ¹ RBF ÐÞ Ð Õ Ð ÅÏ 10 5 ÑÑ Ù RBF Þß ¼ ż ¹Õ ß Â Ú Þ Åº ßÙ ± Ïż Ð Å [1] Rbbni M, Mleknejd K, Aghzdeh N, Mollpoursl R. Computtionl projection methods for solving Fredholm integrl eqution [J]. Applied Mthemtics nd Computtion, 2007, 19: 1140-143. [2] Aziz I, Sirj-ul-Islm. New lgorithms for the numericl solution of nonliner Fredholm nd Volterr integrl equtions using Hr wvelets [J]. Journl of Computtionl nd Applied Mthemtics, 2013, 239: 333-345. [3] Bbolin E, Bzm S, Lim P. Numericl solution of nonliner two-dimensionl integrl equtions using rtionlized Hr functions [J]. Commun Nonliner Sci Numer Simult, 2011, 16: 1164-1175. [4] Sberi-Ndjfi J, Mehrbinezhd M, Akbri H. Solving Volterr integrl equtions of the second kind by wvelet-glerkin scheme [J]. Computers nd Mthemtics with Applictions, 2012, 63: 1536-1547. [5] Mleknejd K, Mollpoursl R, Alizdeh M. Convergence nlysis for numericl solution of Fredholm integrl eqution by Sinc pproximtion [J]. Commun Nonliner Sci Numer Simult, 2011, 16: 2478-2485. [6] Mleknejd K, Nedisl K. Appliction of Sinc-colloction method for solving clss of nonliner Fredholm integrl equtions [J]. Computers nd Mthemtics with Applictions, 2011, 62: 3292-3303. [7] Mleknejd K, Rhimi B. Modifiction of block pulse functions nd their ppliction to solve numericlly Volterr integrl eqution of the first kind [J]. Commun Nonliner Sci Numer Simult, 2011, 16: 2469-2477. [8] Mirzee F, Hoseini A A. Numericl solution of nonliner Volterr-Fredholm integrl equtions using hybrid of block-pulse functions nd Tylor series [J]. Alexndri Engineering Journl,

3 Á Å ÕÉ ¹ º Æ 289 2013, 52(3): 551-555. [9] Bbolin E, Abbsbndy S, Ftthzdeh F. A numericl method for solving clss of functionl nd two dimensionl integrl equtions [J]. Applied Mthemtics nd Computtion, 2008, 198: 35-43. [10] Bbolin E, Mleknejd K, Mordd M, Rhimi B. A numericl method for solving Fredholm- Volterr integrl equtions in two-dimensionl spces using block pulse functions nd n opertionl mtrix [J]. Journl of Computtionl nd Applied Mthemtics, 2011, 235: 3965-3971. [11] Xie W J, Lin F R. A fst numericl solution method for two dimensionl Fredholm integrl equtions of the second kind [J]. Applied Numericl Mthemtics, 2009, 59: 1709-1719. [12] Hrdy R L. Multiqudric equtions of topogrphy nd other irregulr surfces [J]. Journl of Geophysicl Reserch, 1971, 76: 1905-1915. [13] Kns E J. Multiqudrics A scttered dt pproximtion scheme with pplictions to computtionl fluid dynmics I. Surfce pproximtions nd prtil derivtive estimtes [J]. Computers nd Mthemtics with Applictions, 1990, 19(8/9): 127-145. [14] Golbbi A, Seifollhi S. Numericl solution of the second kind integrl equtions using rdil bsis function networks [J]. Applied Mthemtics nd Computtion, 2006, 174: 877-883. [15] Golbbi A, Seifollhi S. An itertive solution for the second kind integrl equtions using rdil bsis functions[j]. Applied Mthemtics nd Computtion, 2006, 181: 903-907. [16] Golbbi A, Seifollhi S. Rdil bsis function networks in the numericl solution of liner integro-differentil equtions [J]. Applied Mthemtics nd Computtion, 2007, 188: 427-432. [17] Prnd K, Rd J A. Numericl solution of nonliner Volterr-Fredholm-Hmmerstein integrl equtions vi colloction method bsed on rdil bsis functions [J]. Applied Mthemtics nd Computtion, 2012, 218: 5292-5309. [18] Alipnh A, Dehghn M. Numericl solution of the nonliner Fredholm integrl equtions by positive definite functions [J]. Applied Mthemtics nd Computtion, 2007, 190: 1754-1761. [19] Golbbi A, Mmmdov M, Seifollhi S. Solving system of nonliner integrl equtions by n RBF network [J]. Computers nd Mthemtics with Applictions, 2009, 57: 1651-1658. [20] Assri P, Adibi H, Dehghn M. A numericl method for solving liner integrl equtions of the second kind on the non-rectngulr domins bsed on the meshless method [J]. Applied Mthemticl Modelling, 2013, 22(37): 9269-9294. [21] Alipnh A, Esmeili S. Numericl solution of the two-dimensionl Fredholm integrl equtions using Gussin rdil bsis function [J]. Journl of Computtionl nd Applied Mthemtics, 2011, 235: 5342-5347. [22] ÕÉ ¹ Ü ¹ º [J]. 2002, 19(2): 1-12. [23] Tng T, Xu X, Cheng J. On spectrl methods for Volterr integrl equtions nd the convergence nlysis [J]. J Comput Mth, 2008, 26(6): 825-837.