Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν μέση τιμή 2mg/ml και διασπορά 4(mg/ml) 2. Για να διαπιστωθεί αν το κάπνισμα σχετίζεται με αύξηση της χοληστερίνης πάρθηκε ένα τυχαίο δείγμα από καπνιστές και τα επίπεδα χοληστερίνης τους βρέθηκαν να έχουν μέση τιμή 22.7mg/ml και (δειγματική) διασπορά 324 (=8 2 ) (mg/ml) 2. (α) Σε επίπεδο σημαντικότητας 5%, μπορούμε να ισχυριστούμε ότι το κάπνισμα αυξάνει την χοληστερίνη; (β) Βρείτε 95% διάστημα εμπιστοσύνης για την μέση χοληστερίνη των καπνιστών. (γ) Βρείτε 95% διάστημα εμπιστοσύνης για την διασπορά των επιπέδων χοληστερίνης του πληθυσμού των καπνιστών. Τι υποθέσεις χρειάστηκε να κάνετε για να απαντήσετε στο ερώτημα αυτό; Στα (α) και (β); 2. Σε ένα πείραμα που πρόκειται να εκτελεστεί, εικάζεται ότι το ph του εδάφους μπορεί να επηρεάζει σε σημαντικό βαθμό τα αποτελέσματα του πειράματος. Για τον λόγο αυτό, πάρθηκαν είκοσι δείγματα χώματος από ένα αγροτεμάχιο, υποψήφιο για την διεξαγωγή του πειράματος, και προσδιορίστηκε το ph σε κάθε δείγμα: 6.56 5.92 6.8 6. 5.7 5.86 6.43 6.5 6.29 6.54 5.99 6.9 6. 7. 6.2 6.27 7.8 6.9 6.6 7.6. (α) Δώστε 95% διάστημα εμπιστοσύνης για το μέσο ph του αγροτεμαχίου. (β) Αν έχει αποφασιστεί ότι το πείραμα θα εκτελεστεί σε αγροτεμάχιο του οποίου το μέσο ph είναι μεγαλύτερο από 6, τι απόφαση πρέπει να ληφθεί για το εν λόγω αγροτεμάχιο σε επίπεδο σημαντικότητας %; Διατυπώστε κατάλληλες στατιστικές υποθέσεις και κάντε κατάλληλο έλεγχο. (γ) Τι υποθέσεις χρειάστηκε να κάνετε για να απαντήσετε στα ερωτήματα (α) και (β); Τι θα κάνατε για να απαντήσετε στο (β) αν δεν ίσχυαν αυτές οι υποθέσεις; 3. Για τους ταύρους της Άσκησης του φυλλαδίου «. Περιγραφική Στατιστική» ελέγξτε σε επίπεδο σημαντικότητας 5% αν η μέση τεστοστερόνη στον πληθυσμό από τον οποίο προέρχονται οι ταύροι διαφέρει από την τιμή 6. Επαναλάβατε για ταύρους φυλής Α και φυλής Β ξεχωριστά. Για ταύρους ηλικίας 5 ετών ή λιγότερο, μπορούμε σε επίπεδο σημαντικότητας % να ισχυριστούμε ότι η μέση τεστοστερόνη στον πληθυσμό (ταύρων ηλικίας 5 ετών και κάτω) είναι μικρότερη από 6; Για ταύρους ηλικίας 6 ετών ή περισσότερο, μπορούμε σε επίπεδο σημαντικότητας % να ισχυριστούμε ότι η μέση τεστοστερόνη στον πληθυσμό (ταύρων ηλικίας 6 ετών και άνω) είναι μεγαλύτερη από 6; Τι υποθέσεις χρειάστηκε να κάνετε για τα δεδομένα για να απαντήσετε στα ερωτήματα αυτά; Ελέγξτε αν οι υποθέσεις αυτές ικανοποιούνται (κατά προσέγγιση τουλάχιστον) από τα δεδομένα. Τι εναλλακτικές λύσεις έχετε αν οι υποθέσεις αυτές δεν ισχύουν (ή έχετε αμφιβολίες του κατά πόσο ισχύουν); Απαντήστε στα παραπάνω ερωτήματα χρησιμοποιώντας αυτές τις εναλλακτικές λύσεις (δηλαδή χωρίς να κάνετε υποθέσεις για τα δεδομένα σας). Τέλος, σε κάθε περίπτωση δώστε 95%
διάστημα εμπιστοσύνης για την μέση τεστοστερόνη στον πληθυσμό που μας ενδιαφέρει (όλοι οι ταύροι, φυλής Α, φυλής Β, 5 ετών και κάτω, 6 ετών και άνω). Αναφέρατε και πάλι τυχόν υποθέσεις που κάνετε για τα δεδομένα σας. 4. Ο παρακάτω πίνακας δίνει τα επίπεδα χοληστερίνης για ένα δείγμα αρσενικών και ένα δείγμα θηλυκών χελωνών, από έναν πληθυσμό θαλάσσιων χελωνών που ζουν σε κάποια περιοχή. Επίπεδο χοληστερίνης (mg/ml) Αρσενικά Θηλυκά 22.3 23.7 226. 223.9 225.8 228.3 225.6 228. 225.8 228.9 22.4 22.5 227.6 227.8 224.7 22.4 26.8 225. 227.5 (α) Ελέγξτε, σε επίπεδο σημαντικότητας 5%, αν η μέση χοληστερίνη του αρσενικού πληθυσμού διαφέρει από την μέση χοληστερίνη του θηλυκού πληθυσμού. (β) Ποιες θεωρητικές υποθέσεις κάνατε για να απαντήσετε το ερώτημα (α); Ελέγξτε αν αυτές ισχύουν. Τι θα κάνατε αν οι υποθέσεις αυτές δεν ισχύουν; (γ) Δώστε 99% διάστημα εμπιστοσύνης για την μέση χοληστερίνη των χελωνών της συγκεκριμένης περιοχής. 5. Τα δεδομένα της Άσκησης του πρώτου φυλλαδίου (. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ) δίνουν τις τιμές τεστοστερόνης για 22 ταύρους, 9 της φυλής και 3 της φυλής B. (α) Ελέγξτε σε επίπεδο σημαντικότητας 5%, αν οι διασπορές των δύο πληθυσμών ταύρων από όπου προέρχονται τα δείγματα, δηλαδή ταύρων της φυλής και ταύρων της φυλής B, είναι ίσες. (β) Ελέγξτε σε επίπεδο σημαντικότητας 5%, αν υπάρχει διαφορά στα επίπεδα τεστοστερόνης μεταξύ των δύο φυλών. (γ) Δώστε 95% διάστημα εμπιστοσύνης για την διαφορά στα επίπεδα τεστοστερόνης μεταξύ των δύο φυλών. (δ) Δώστε 95% διάστημα εμπιστοσύνης για την μέση τεστοστερόνη ταύρων της φυλής B. (ε) Εξηγείστε επακριβώς πως αντιλαμβάνεστε τα παραπάνω διαστήματα εμπιστοσύνης σε κάθε περίπτωση. (στ) Εξηγείστε υπό ποιες προϋποθέσεις είναι σωστές οι απαντήσεις σας στα (α) (δ) (δηλαδή αναφέρετε, ανά περίπτωση, τι υποθέσεις κάνατε για να απαντήσετε στα (α) (δ)). 6. Για να εξεταστούν οι τυχόν παρενέργειες ενός νέου σκευάσματος για την αντιμετώπιση κάποιας πάθησης, μετρήθηκε, μεταξύ άλλων, η συστολική
πίεση γυναικών στις οποίες χορηγήθηκε το φάρμακο. Πάρθηκαν μετρήσεις της συστολικής πίεσης των γυναικών πριν αρχίσει η λήψη του φαρμάκου και επίσης μετά την λήψη του φαρμάκου επί εξάμηνο. Οι μετρήσεις είχαν ως εξής: Γυναίκα 2 3 4 5 6 7 8 9 Πριν 7.8 7. 8.3 7.2 7.3 8.9 8. 8.3 8.4 8.7 Μετά 7.9 6.8 8.4 7. 7. 9. 8. 8.4 8.2 8.6 (α) Σε επίπεδο σημαντικότητας 5%, δείχνουν τα δεδομένα αυτά πτώση της συστολικής πίεσης μετά την λήψη του σκευάσματος; (β) Δώστε 95% διάστημα εμπιστοσύνης για την μεταβολή στην συστολική πίεση πριν μετά την λήψη του σκευάσματος. (γ) Τι υποθέσεις κάνατε σε κάθε περίπτωση; Τι θα κάνατε για να απαντήσετε στο (α) στην περίπτωση που οι υποθέσεις που κάνατε δεν ικανοποιούνταν (ή είχατε αμφιβολία του κατά πόσο ικανοποιούνται) από τα δεδομένα; 7. Σε μία έρευνα, μετρήθηκε η συγκέντρωση γλυκόζης στο αριστερό και δεξί μάτι σε κάθε ένα από 35 υγιή σκυλιά, και οι μετρήσεις δίνονται στον πίνακα που ακολουθεί. (α) Να εξετάσετε σε επίπεδο σημαντικότητας 5%, αν υπάρχει διαφορά στην συγκέντρωση γλυκόζης μεταξύ των δύο ματιών. Εξηγείστε γιατί αντιμετωπίζετε τα δεδομένα αυτά σαν ανεξάρτητα δείγματα ή σαν ζευγαρωτές παρατηρήσεις. (β) Βρείτε 95% διάστημα εμπιστοσύνης για την διαφορά στην συγκέντρωση γλυκόζης μεταξύ των δύο ματιών. (γ) Τι υποθέσεις κάνατε σε κάθε περίπτωση; Αριθμός Γλυκόζη (mg/dli) Αριθμός Γλυκόζη (mg/dli) Ζώου Αριστερό Δεξί Ζώου Αριστερό Δεξί 79 79 9 89 9 2 8 82 2 87 9 3 87 9 2 7 69 4 85 86 22 92 93 5 87 92 23 9 87 6 73 74 24 2 7 72 74 25 6 3 8 7 66 26 84 8 9 67 67 27 78 8 69 69 28 94 95 77 78 29 2 2 77 77 3 74 73 3 84 83 3 99 4 83 82 32 78 79 5 74 75 33 93 95 6 8 8 34 87 85 7 78 78 35 9 92 8 2
8. Το ποσοστό των καπνιστών στον ενήλικο πληθυσμό της χώρας το 98 ήταν 65.6%. Σε μία έρευνα που έγινε φέτος, ρωτήθηκαν, μεταξύ άλλων, τα άτομα του δείγματος και αν καπνίζουν ή όχι. Ποσοστό 49% απάντησε ότι δεν καπνίζει. Μπορούν οι διεξάγοντες την έρευνα να ισχυριστούν σε επίπεδο σημαντικότητας % ότι το ποσοστό των καπνιστών έχει μειωθεί; Μπορούν να ισχυριστούν ότι έχει μειωθεί περισσότερο από 5 ποσοστιαίες μονάδες σε επίπεδο σημαντικότητας 5%; Δώστε 95% διάστημα εμπιστοσύνης για το τωρινό ποσοστό καπνιστών. 9. Το ποσοστό των ταύρων της χώρας με επίπεδα τεστοστερόνης μεγαλύτερο του 5 το 2 ήταν 65%. Με βάση το δείγμα των 22 ταύρων της Άσκησης του πρώτου φυλλαδίου (. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ), υπάρχει μεταβολή στο ποσοστό των ταύρων με επίπεδα τεστοστερόνης μεγαλύτερο του 5; Δώστε 95% διάστημα εμπιστοσύνης για το φετινό ποσοστό ταύρων με επίπεδα τεστοστερόνης μεγαλύτερο του 5. (Θεωρείστε ότι οι 22 ταύροι αποτελούν τυχαίο δείγμα από τον φετινό πληθυσμό ταύρων της χώρας.). Σε μια έρευνα για την σύγκριση οθονών ηλεκτρονικών υπολογιστών δύο διαφορετικών κατασκευαστών, βρέθηκε ότι σε ένα δείγμα 2 οθονών του κατασκευαστή E, ποσοστό 5% παρουσίασε βλάβη (μη οφειλόμενη στους χρήστες) κατά τον πρώτο χρόνο λειτουργίας, ενώ το αντίστοιχο ποσοστό σε ένα δείγμα 25 οθονών του κατασκευαστή P ήταν 7%. (α) Σε επίπεδο σημαντικότητας 5%, μπορεί ο κατασκευαστής E να ισχυριστεί ότι οι οθόνες του υπερέχουν έναντι αυτών του P ; (β) Βρείτε 95% διαστήματα εμπιστοσύνης για τα ποσοστά οθονών που παθαίνουν βλάβη κατά τον πρώτο χρόνο λειτουργίας, για τον κατασκευαστή E και τον κατασκευαστή P αντίστοιχα.. Δοκιμάστηκαν δύο φάρμακα, και B, σε 25 και 25 μοσχάρια που πάσχουν από κάποια ασθένεια, και βρέθηκε ότι η κατάσταση της υγείας βελτιώθηκε σε 74 από τα 25 που πήραν το φάρμακο και σε 92 από τα 25 που πήραν το φάρμακο B. (α) Σε επίπεδο σημαντικότητας 5%, μπορούμε να ισχυριστούμε ότι τα δύο φάρμακα διαφέρουν σε αποτελεσματικότητα; (β) Βρείτε 95% διάστημα εμπιστοσύνης για την διαφορά στα ποσοστά μεταξύ του φάρμακου και του φάρμακου B. (γ) Βρείτε 95% διάστημα εμπιστοσύνης για το ποσοστό των ζώων των οποίων η κατάσταση της υγείας βελτιώθηκε με το φάρμακο.
ΑΠΑΝΤΗΣΕΙΣ. (α) Όχι: p - value =. 683985 = 2, H > 2 ). (β) 22.7 ± 3. 576. (γ) [ 5.84 2, 2.92 2 ]. Υπόθεση για (γ): Πληθυσμός έχει κανονική κατανομή. Για (α), (β) καμία υπόθεση (μεγάλο δείγμα, Κεντρικό Οριακό Θεώρημα). 2. (α) 6.3665 ±. 939. (β) Να γίνει το πείραμα: p - value =. 49792 = 6 (ή λιγότερο), H > 6). (γ) Πληθυσμός έχει κανονική κατανομή. Αν δεν έχει, μη παραμετρικοί έλεγχοι: sign test p - value =. 69534, οδηγεί στο ίδιο συμπέρασμα: να γίνει το πείραμα. signed rank test p - value =. 854979, ίδιο συμπέρασμα και πάλι. 3. Όχι: p - value =. 7862 = 6, H 6 ). Για φυλή : Όχι: p - value =. 74742 = 6, H 6 ). Για φυλή B : Όχι: p - value =. 44555 B = 6, H B 6 ). Για ηλικία 5 : Ναι: p - value =. 577599 = 6, H < 6 ). Για ηλικία 6 : Ναι: p - value =.56927 = 6, H > 6 ). 95% Δ.Ε.: Όλοι: 643.82 ± 243. 39. Φυλή : 53.44 ± 474. 29. Φυλή B : 72.62 ± 36. 76. Ηλικία 5 : 28.36 ± 282. 97. Ηλικία 6 : 279.27 ± 3. 522. Υποθέσεις: Πληθυσμός όλων των ταύρων έχει κανονική κατανομή, για το δείγμα όλων των ταύρων, πληθυσμός ταύρων φυλής έχει κανονική κατανομή, για το δείγμα των ταύρων φυλής, κοκ. Στις περιπτώσεις που δεν ισχύουν οι υποθέσεις κάνουμε μη παραμετρικούς ελέγχους. 4. (α) Έλεγχος για ισότητα διασπορών πληθυσμών 2 2 2 2 : σ = σ 2, H : σ σ 2 ): p - value =. 864835, τα δεδομένα δεν δείχνουν διαφορά διασπορών. Έλεγχος για ισότητα μέσων = μ 2, H μ ): 2 p - value =.293668 (υποθέτοντας ίσες διασπορές), δεδομένα δεν δείχνουν διαφορά μεταξύ αρσενικών θηλυκών. (β) Δύο πληθυσμοί ακολουθούν κανονικές κατανομές (ο καθένας ξεχωριστά), διασπορές πληθυσμών ίσες. Αν δεν ικανοποιούνται, μη παραμετρικός έλεγχος: p - value =. 25468, που οδηγεί στο ίδιο συμπέρασμα με (α). (γ) 225 ± 2. 3952. 5. (α) p - value =. 52283, δεδομένα δεν δείχνουν διαφορά διασπορών. (β) p - value =. 437784, δεδομένα δεν δείχνουν διαφορά. (γ) 9.7± 5. 6. (δ) 72.62 ± 36. 76.
Υποθέσεις: Πληθυσμός ταύρων φυλής έχει κανονική κατανομή, πληθυσμός ταύρων φυλής B έχει κανονική κατανομή, διασπορά πληθυσμού ταύρων φυλής και διασπορά πληθυσμού ταύρων φυλής B είναι ίσες, για (α), (β) και (γ). Για (δ): Πληθυσμός ταύρων φυλής B έχει κανονική κατανομή. 6. (α) Όχι: p - value =. 8469 = μ2, H > μ ). 2 (β).5 ±. 828. Υποθέσεις: Πληθυσμός διαφορών πιέσεων πριν μετά ακολουθεί κανονική κατανομή. Αν όχι, μη παραμετρικοί έλεγχοι: sign test p - value =.37593, οδηγεί στο ίδιο συμπέρασμα με (α). signed rank test p - value =. 647, ίδιο συμπέρασμα και πάλι. 7. (α) Όχι: p - value =. 53488 = μ2, H μ 2 ). Ζευγαρωτές. (β) Α Δ:.22857±. 7493. (γ) Καμία (δείγματα μεγάλα). 8. Ναι: p - value =. 832 : p. 656, H : p. 656 ). Για διαφορά = <. πάνω από 5%: H : p =. 66, H : p <. 66 p - value =.322484, επομένως μπορούν να ισχυριστούν μείωση κατά περισσότερο από 5% σε επίπεδο σημαντικότητας 5%. 95% Δ.Ε.: [ 4.836%, 6.356% ]. 9. Όχι: p - value =. 9479 : p =. 65, H : p. 65 ). 95% Δ.Ε.: [ 45.257%, 86.34% ].. (α) Όχι: p - value =. 8542 : p E = pp, H : p E < pp ). (β) 95% Δ.Ε. για p E : [ 2.42342%, 9.275% ]. Για p E : [ 4.6642%,.928% ]. (α) Όχι: p - value =. 873863 : p = pb, H : p pb ). (β) 95% Δ.Ε. για p pb : [ 5.435%,.349% ]. (γ) 95% Δ.Ε. για p : [ 24.37%, 35.6775% ].