Εαρινό Εξάμηνο 2012. 22.03.12 Χ. Χαραλάμπους ΑΠΘ

Σχετικά έγγραφα
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

1 ΘΕΩΡΙΑΣ...με απάντηση

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Μαθηματικά Α Τάξης Γυμνασίου

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

: :

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

x 2 + y 2 x y

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ιστορία των Μαθηματικών

2 η ΕΡΓΑΣΙΑ Παράδοση

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ


ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Κύλινδρος κοιμώμενος εντός κώνου

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...


ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

Ερωτήσεις επί των ρητών αριθµών

Transcript:

Εαρινό εξάμηνο 2012 22.03.12 Χ. Χαραλάμπους

Προσέγγιση για το π (Αρχιμήδης) "Κύκλου μέτρησις" Το θεώρημα εκφράζει τον λόγο της περιφέρειας του κύκλου ως προς τη διάμετρο του κύκλου, δηλ. το π. 3 10 / 71 < π < 3 1/ 7 (3.14085 < π < 3.14286)

Κατασκευάζει κανονικά 96-γωνα (ένα εγγεγραμένο και ένα περιγεγραμένο του κύκλου), διχοτομώντας διαδοχικά τις γωνίες. ΗΟΑείναι κάθετη στην εφαπτομένη. Έτσι οι γωνίες είναι π/ 6, π/12,

Χρησιμοποιεί τη Πρόταση 3, βιβλίο 6, Στοιχεία AD διχοτομεί την γωνία BAC Τότε BD: DC= AB: AC Μαζί με τη χρήση του Πυθαγορείου Θεωρήματος, συγκρίνει το λόγο της διαμέτρου του κύκλου με τις περιφέρειες των εγγεγραμμένων και περιγεγραμμένων 96-γώνων και παίρνει άνω και κάτω όρια.

Δος μοι πα στω και τα γαν κινάσω Βιβλίο 1, περί επιπέδων ισορροπιών ΤΑ ΜΕΓΕΘΕΑ ΙΣΟΡΡΟΠΕΟΝΤΙ ΑΠΟ ΜΑΚΕΩΝ ΑΝΤΙΠΕΠΟΝΘΟΤΩΣ ΤΟΝ ΑΥΤΟΝ ΛΟΓΟΝ ΕΧΟΝΤΩΝ ΤΟΙΣ ΒΑΡΕΣΙΝ. Τα μεγέθη Γ, Δ θα έρθουν σε ισορροπία ως προς το Ε όταν οι αποστάσεις τους απότοε, δηλ. ΒΕ, ΑΕ ικανοποιούν σχέση αντιστρόφως ανάλογες με το βάρος τους: Γ:Δ=AΕ: BE ΤΟ ΚΙΝΟΥΜΕΝΟΝ ΒΑΡΟΣ ΠΡΟΣ ΤΟ ΚΙΝΟΥΝ, ΤΟ ΜΗΚΟΣ ΠΡΟΣ ΤΟ ΜΗΚΟΣ ΑΝΤΙΠΕΠΟΝΘΕΝ.

Παλίμψηστος

Παλίμψηστα: αρχαίοι πάπυροι και περγαμηνές πολλαπλής χρήσης. Το παλίμψηστο (συλλογή προσευχών) εξετάστηκε το 1906 στη Κωνσταντινούπολη από τον Heiberg που αντιλήφθηκε τη σημασία του. Διάβασε 80%, και βρήκε 7 κείμενα του Αρχιμήδη. Χάθηκε 1922-1998. Βρέθηκε σε πολύ χειρότερη κατάσταση Το 1998 πουλήθηκε σε πλειστηριασμό του Christie s στην Νέα Υόρκη για 2,2 εκατομμύρια δολάρια. Αγοραστής: άγνωστος Σήμερα βρίσκεται στο Walters Art Museum

ΣτοΠαλίμψηστοβρίσκονται7 έργα του Αρχιμήδη «Περί επιπέδων ισορροπιών» «Κύκλου μέτρησις» «Περί των μηχανικών θεωρημάτων, προς Ερατοσθένη έφοδος» «Περί ελίκων» «Στομάχιον» «Περί των επιπλεόντων σωμάτων» «Περί σφαίρας και κυλίνδρου».

Παλίμψηστος--ευχολόγιον

Αρχιμήδης, Περί των μηχανικών θεωρημάτων προς Ερατοσθένην έφοδος Καὶ γάρ τινα τῶν πρότερόν μοι φανέντων μηχανικῶς ὕστερον γεωμετρικῶς ἀπεδείχθη διὰ τὸ χωρὶς ἀποδείξεως εἶναι τὴν διὰ τούτου τοῦ τρόπου θεωρίαν ἑτοιμότερον γάρ ἐστι προλαβόντα διὰ τοῦ τρόπου γνῶσίν τινα τῶν ζητημάτων πορίσασθαι τὴν ἀπόδειξιν μᾶλλον ἤ μηδενὸς ἐγνωσμένου ζητεῖν. Άλλωστε κάποιες ιδιότητες που στην αρχή μου αποκαλύφθηκαν με τη μηχανική στη συνέχεια αποδείχθηκαν με τη γεωμετρία, διότι η προσέγγιση που γίνεται με τη μέθοδο αυτή δεν επιδέχεται απόδειξης. Είναι ευκολότερο να οδηγηθείς στην απόδειξη, εάν έχεις αποκτήσει εκ των προτέρων κάποια γνώση του πράγματος, παρά αν ψάχνεις κάτι για το οποίο δεν έχεις την παραμικρή ιδέα.

Ο Αρχιμήδης στην Έφοδο για την μέθοδό του: για να βρούμε ένα ζητούμενο εμβαδόν ή όγκο κόβουμε την επιφάνεια ή το σώμα σ' ένα πολύ μεγάλο αριθμό λεπτές, παράλληλες και επίπεδες λωρίδες ή λεπτές παράλληλες φέτες και (νοητά) κρεμάμε αυτά τα κομμάτια στο ένα άκρο δεδομένου μοχλού με τέτοιον τρόπο, ώστε αυτά να βρίσκονται σε ισορροπία με ένα σχήμα του οποίου η περιεκτικότητα και το κέντρο βάρους είναι γνωστά.

Αρχιμήδης Ο όγκος του κυλίνδρου (με ακτίνα r και ύψος 2r) είναι 3/2 του όγκου της σφαίρας (με ακτίνα r)!

Ογκος κυλίνδρου

Όγκος σφαίρας

Όγκος κώνου εγκάρσια τομή κύκλος με ακτίνα r(h-z)/h

Κόκκινος κύλινδρος: ακτίνα 2r, ύψος 2r μπλέ κώνος: ακτίνα 2r, ύψος 2r (προσοχή: ο κύλινδρος(και ο κώνος) έχει βάση με ακτίνα διπλάσια από αυτή του θεωρήματος του Αρχιμήδη ) Γνωστό από τον Ευκλείδη: Κύλινδρος LEFG=3 κώνος AEF, [Στοιχεία, Πρόταση 7.10] Κύλινδρος =3 κώνος [Στοιχεία, Πρόταση 13.10]

Θα ισορροπήσουμε το σύστημα σφαίρας,κώνου, κυλίνδρου ως προς Α, τη κορυφή του κώνου. Έστω ΗΑ=ΑC=2r

Οι εγκάρσιες τομές σφαίρας, κώνου και του κυλίνδρου, είναι κύκλοι!! Θεωρούμε την τομή MN Από ιδιότητες ομοίων τριγώνων προκύπτει ότι HA: AS= MN 2 : (OP 2 +QR 2 ) Όμως το πρώτο τετράγωνο αντιστοιχεί στο εμβαδόν του κύκλου με διάμετρο MN ενώ τα άλλα δύο τετράγωνα αντιστοιχούν στο εμβαδόν του κύκλου με διάμετρο OP και στο εμβαδόν του κύκλου με διάμετρο QR

Είδαμε ότι HA: AS= (π/4 MN 2 ): ((π/4 OP 2 )+ (π/4 QR 2 )) Άρα το σύστημα που αποτελείται από τη φέτα του κυλίνδρου (με βάσηef) τη φέτα της αρχικής σφαίρας και τη φέτα του κώνου (με βάση EF) όλα με ελάχιστο πάχος στο MN ισορροπεί ως προς το Α αν θέσουμε τις φέτες της σφαίρας και του κώνου στο H και τη φέτα του κυλίνδρου στο S, (το κέντρο βάρους για αυτή τη φέτα).

Συμπέρασμα: Το σύστημα ισορροπεί ως προς το Α αν θέσουμε στο Η την σφαίρα και τον κώνο και στο Κτονκύλινδρο(αφού Κ είναι το κέντρο βάρους του κυλίνδρου).

Άρα ΗΑ: AK=κύλινδρος: σφαίρα + κώνος Αφού HA=2 ΑΚ έπεται ότι κύλινδρος =2(σφαίρα+ κώνος) Αφού κύλινδρος = 3 * κώνος έπεται ότι κώνος= 2 *σφαίρα

κώνος EAF= 2 σφαίρα Σύμφωνα με 12.12, Στοιχεία έχουμε ότι κώνος EAF = 8 κώνος ΒΑD Άρα σφαίρα = 4 κώνος BAD Επίσης (12.10, Στοιχεία) κύλινδρος VXBD = 3 κώνος BAD ενώ κύλινδρος VXYW = 2 κύλινδρος VXBD Άρα κύλινδρος VXYW = 6 κώνος BAD= 6/4 σφαίρα =3/2 σφαίρα

Ισορροπία και εμβαδά Το εμβαδόν ανάμεσα στην παραβολή και τέμνουσα ισούται τα 4/3 του αντίστοιχου τριγώνου Ιδιότητα τριγώνου: τέμνουσα παράλληλη με εφαπτομένη στο C Μία απόδειξη ήταν Γεωμετρική. Χρησιμοποίησε τη μέθοδο της εξάντλησης και υπολόγισε ένα άπειρο άθροισμα (όριο σειράς?).

Απόδειξη βασισμένη στην έννοια της ισορροπίας (θέμα παρουσίασης) BC εφαπτομένη στο Β, BD=DP Τρίγωνο ABC = 4 τρίγωνο ΑΒV Ιδιότητες παραβολής Βασική ιδέα: παίρνουμε τομές και θεωρούμε ότι το τρίγωνο ABC και το κομμάτι ανάμεσα στη παραβολή και τέμνουσα ΑΒ αποτελείται από ευθύγραμμα τμήματα που θα ισορροπήσουμε ως προς D.

Διόφαντος ~τρίτος αιώνας μ.χ. Έργα του: Αριθμητική (13 βιβλία, σώζονται 6) Περί πολυγώνων αριθμών Πορίσματα

Σε ελεύθερη μετάφραση Παλατινή ανθολογία 8.126(6 ος αιώνας μ.χ.): Σ' ΑΥΤΟΝ ΤΟΝ ΤΑΦΟ ΑΝΑΠΑΥΕΤΑΙ Ο ΔΙΟΦΑΝΤΟΣ. Η ΕΠΙΣΤΗΜΗ ΘΑ ΔΩΣΕΙ ΤΟ ΜΕΤΡΟ ΤΗΣ ΖΩΗΣ ΤΟΥ. ΑΚΟΥΣΕ. Ο ΘΕΟΣ ΤΟΥ ΕΠΕΤΡΕΨΕ ΝΑ ΕΙΝΑΙ ΝΕΟΣ ΓΙΑ ΤΟ ΕΝΑ ΕΚΤΟ ΤΗΣ ΖΩΗΣ ΤΟΥ. ΑΚΟΜΑ ΕΝΑ ΔΩΔΕΚΑΤΟ ΚΑΙ ΦΥΤΡΩΣΕ ΤΟ ΜΑΥΡΟ ΓΕΝΙ ΤΟΥ. ΜΕΤΑ ΑΠΟ ΕΝΑ ΕΒΔΟΜΟ ΑΚΟΜΑ, ΗΡΘΕ ΤΟΥ ΓΑΜΟΥ ΤΟΥ Η ΜΕΡΑ. ΤΟΝ ΠΕΜΠΤΟ ΧΡΟΝΟ ΑΥΤΟΥ ΤΟΥ ΓΑΜΟΥ, ΓΕΝΝΗΘΗΚΕ ΕΝΑ ΠΑΙΔΙ. ΤΙ ΚΡΙΜΑ, ΓΙΑ ΤΟ ΝΕΑΡΟ ΤΟΥ ΓΙΟ. ΑΦΟΥ ΕΖΗΣΕ ΜΟΝΑΧΑ ΤΑ ΜΙΣΑ ΧΡΟΝΙΑ ΑΠΟ ΤΟΝ ΠΑΤΕΡΑ ΤΟΥ, ΓΝΩΡΙΣΕ ΤΗΝ ΠΑΓΩΝΙΑ ΤΟΥ ΘΑΝΑΤΟΥ. ΤΕΣΣΕΡΑ ΧΡΟΝΙΑ ΑΡΓΟΤΕΡΑ, Ο ΔΙΟΦΑΝΤΟΣ ΒΡΗΚΕ ΠΑΡΗΓΟΡΙΑ ΣΤΗ ΘΛΙΨΗ ΤΟΥ, ΦΤΑΝΟΝΤΑΣ ΣΤΟ ΤΕΛΟΣ ΤΗΣ ΖΩΗΣ ΤΟΥ. (1/6)n + (1/12)n + (1/7)n 5 + (1/2)n +4 = n Λύση: n=84

Σύμβολα του Διόφαντου (συγκεκομμένη άλγεβρα) ς : άγνωστος x Δ Y : x 2 ( δύναμις) K Y : x 3 ( κύβος) Δ Y Δ: x 4 ( δυναμοδύναμις) ΔK Y : x 5 ( δυναμόκυβος) K Y K: x 6 (κυβόκυβος ) ς X : 1/x = x 1 (ειδικές ονομασίες για αντίστροφα) ις : ίσος

H «Αριθμητική» του Διόφαντου είναι συλλογή 150 περίπου προβλημάτων, με συγκεκριμένα αριθμητικά παραδείγματα. Απόαυτήτημελέτη: λείπει η συστηματική μελέτη των αλγεβρικών πράξεων, και η συστηματική μελέτη επίλυσης εξισώσεων. δεν γίνεται προσπάθεια εύρεσης όλων των πιθανών λύσεων. ο Διόφαντος αναγνωρίζει μόνο τις θετικές ρητές ρίζες αν υπάρχουν δύο θετικές ρίζες, αναγνωρίζει μόνο τη μεγαλύτερη. δεν αναγνωρίζει καθόλου τις αρνητικές λύσεις. στα αόριστα προβλήματα (με άπειρο αριθμό λύσεων) δίνει μόνο μία απάντηση.

Τα μεγάλα θετικά (εκτός από τον μερικό συμβολισμό): Ο Διόφαντος έδωσε κανόνες για μαθηματικές εκφράσεις: μεταφορά όρων από το ένα μέρος της εξίσωσης στο άλλο, ακύρωση όμοιων όρων από τις δύο πλευρές της ισότητας. Όρισε αρνητικές δυνάμεις για τους αγνώστους και τους κανόνες για τους εκθέτες Έδωσε κανόνες για το γινόμενα που αφορούν όρους με αρνητικούς συντελεστές: παρ. ( -)(-)=(+) Απομάκρυνση από την γεωμετρική άλγεβρα, (οι όροι δεν χρειάζεται να είναι ομογενείς), δουλεύει με δυνάμεις μεγαλύτερες του 3.

Πρόβλημα Ι 28 Να βρεθούν δύο αριθμοί έτσι ώστε το άθροισμά τους και το άθροισμα των τετραγώνων τους να είναι δοθέντες αριθμοί: Σήμερα: Λύση: Διόφαντος: Έστω το άθροισμα είναι 20 και το άθροισμα τωντετραγώνωνείναι208. Τότε έστω ότι η διαφορά των δύο αριθμών (του μεγαλύτερου από τον μικρότερο) είναι 2x.

Τo10 είναι το μισό του πρώτου αθροίσματος. Άρα και ο αριθμός x είναι 2 ενώ οι ζητούμενοι αριθμοί είναι 8 και 12. Ερμηνεία (δική μας): έστω z,y οι δύο αριθμοί όπου z>y. Αν λοιπόν το z διαφέρει από το y κατά 2x τότε αφού z+y=20 έχουμε ότι 2z-2x=10 και άρα z=10+x, ενώ y=10-x. Αντικαθιστούμε z και y στη σχέση των τετραγώνων και λύνουμε ως προς x.

Πότε δουλεύει αυτή η τεχνική σύμφωνα με τον Διόφαντο? ( ας θυμηθούμε ότι για λύσεις αναγνωρίζει μόνο θετικούς ρητούς.) Ξανά το γενικό πρόβλημα : να βρεθούν θετικοί ρητοί z και y έτσι ώστε Μέθοδος του Διόφαντου: Αντικατάσταση στη δεύτερη εξίσωση:

Έτσι και άρα και Θα έχουμε «λύση» (σύμφωνα με τον Διόφαντο) όταν είναι «ρητός» δηλαδή αν και μόνο αν είναι τετράγωνο

Την συνθήκη αυτή ο Διόφαντος, την δίνει αμέσως μετά την παράθεση του προβλήματος στη γενική μορφή και πριν ξεκινήσει με την λύση της συγκεκριμένης περίπτωσης: λέει «πρέπει δύο φορές το άθροισμα των τετραγώνων των αριθμών μείον το τετράγωνο του αθροίσματος των αριθμών να είναι τετράγωνο.» Στο συγκεκριμένο πρόβλημα:

Στο γενικό λοιπόν πρόβλημα των δύο εξισώσεων σύμφωνα με τον Διόφαντο, οι λύσεις είναι: αρκεί βέβαια 2b a*α να είναι τετράγωνο! Παρατήρηση: Δεν υπάρχει γεωμετρική μεθοδολογία στις μεθόδους του Διόφαντου.

Σήμερα θα λύναμε ως εξής τις δύο εξισώσεις Οι δύο λύσεις που παίρνουμε για το y δίνουν τις τιμές για το y και z.

Το τελευταίο θεώρημα του Fermat (1993, 1995) Pierre de Fermat (1601-1665) Sir Andrew John Wiles (1953--)

Ας παύση η πραγματεία των μαθηματικών. Διότι εάν τις δημοσία ή κατ' ιδίαν, καθ' ημέραν ή νύκτωρ συλληφθή αναστρεφόμενος εν τη απαγορευμένη πλάνη, αμφότεροι ας πληγούν δια κεφαλικής ποινής. Διότι δεν είναι διάφορον αμάρτημα το διδάσκεσθαι κεκωλυμένα ή το διδάσκειν». Κώδιξ Θεοδοσιανός (Ουαλεντιανού και Ουάλεντος), ΙΧ, 16, 8. (438μ.Χ.) «Οι μαθηματικοί, εάν μή ώσιν έτοιμοι, καυθέντων των κωδίκων της ιδίας πλάνης υπό τα όμματα των Επισκόπων, να δώσουν πίστιν εις την λατρείαν της καθολικής πίστεως, ότι δεν θα επανέλθουν εις την παλαιάν πλάνην, ου μόνον από της πόλεως Ρώμης, αλλάκαιεκπασώντωνπόλεωναποφασίζομεννα εκδιωχθούν. Εάν δε δεν κάμνουν τούτο και παρά την σωτηρίαν απόφασιν της ημετέρας επιεικείας, συλληφθούν εν ταις πόλεσιν είτε παρεισάγουν τα μυστικά της πλάνης, θα τύχωσι της ποινής της εξορίας». Αυτοκράτορες Ονώριος και Θεοδόσιος προς τον Καικιλιανό Ύπαρχο. «Η μαθηματική τέχνη αξιόποινος ούσα απαγορεύεται». Ιουστινιάνειος Κώδιξ, ΙΧ, 18, 2.

ΗυπόθεσητουRiemann: τα μη τετριμμένα μηδενικά της ζ(s) έχουν τη μορφή ½+i t όπου t πραγματικός.

Παρένθεση: Η συνάρτηση ζ(s) του Riemann (1826-1866) και Κατανομή πρώτων αριθμών (1859) Όταν Re(s)>1 τότε Και όταν 0< Re(s)<1 ισχύει (τα s=-2,-4, μηδενίζουν την ζ(s) και είναι τα τετριμμένα μηδενικά της)

Perelman (1966-) Ρωσία 2002 (η απόδειξη) 2006 (η αποδοχή) 2006: Fields medal [κάθε 4 χρόνια] (αρνήθηκε) 2010: βραβείο 1,000,000 $ Clay Institute (αρνήθηκε) (Θέμα παρουσίασης)