ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005 ιάρκεια: 17:00-20:00 Υποθέστε ότι σχεδιάζετε έναν µεταγλωττιστή για κάποια µηχανή µε έναν καταχωρητή και τις παρακάτω εντολές: # Εντολή Περιγραφή Κόστος εντολής 1 DOUBLE ιπλασιάζει το περιεχόµενο του καταχωρητή n 2 ADD Προσθέτει 1 στο περιεχόµενο του καταχωρητή 1 3 SUB Αφαιρεί ένα από το περιεχόµενο του καταχωρητή 1 Μας ενδιαφέρει το πρόβληµα της καταχώρησης συγκεκριµένων τιµών στον καταχωρητή. Θεωρείστε ότι αρχικά στον καταχωρητή βρίσκεται η τιµή 1, ενώ στόχος µας είναι να καταχωρήσουµε την τιµή 7. Θεωρείστε ως ευρετική συνάρτηση την h(n)= 7-n. α) Λύστε το πρόβληµα µε την αναζήτηση πρώτα στο καλύτερο. (1) Υπόδειξη: Συµπληρώστε τον παρακάτω πίνακα για να παρουσιάσετε την εκτέλεση του αλγορίθµου: Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 x - 1 x 2 D y, 2 A z, 0 S w όπου οι δείκτες D, A κλπ δείχνουν το σύνολο των εντολών που εκτελέστηκαν (τα αρχικά τους γράµµατα) για να φθάσουµε από την αρχική στην τρέχουσα κατάσταση, ενώ οι εκθέτες είναι η βαθµολογία κάθε κατάστασης. β) Λύστε το ίδιο πρόβληµα µε την αναζήτηση Α*. Μεταξύ ισόβαθµων καταστάσεων (διανυθέν διάστηµα συν ευρετική τιµή), χρησιµοποιείστε ως δευτερεύον κριτήριο την ευρετική τιµή. (1) Υπόδειξη: Παρόµοια µε το ερώτηµα α), συµπληρώστε τον παρακάτω πίνακα για να παρουσιάσετε την εκτέλεση του αλγορίθµου: Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 x-y - 1 x-y 2 D z-w, 2 A a-b, 0 S c-d όπου το πρώτο νούµερο στον εκθέτη είναι η συνολική βαθµολογία της κατάστασης, ενώ το δεύτερο είναι η ευρετική τιµή της απόστασης από το στόχο (για χρήση σε περίπτωση ισοβαθµίας). γ) Σχολιάστε συγκριτικά τα αποτελέσµατα που βρήκατε στα ερωτήµατα α) και β). (0.5) Απάντηση: α) Στον παρακάτω πίνακα φαίνεται η διαδικασία επίλυσης του προβλήµατος µε τον αλγόριθµο πρώτα στο καλύτερο. Για κάθε κατάσταση µέσα στις αγκύλες φαίνεται το τρέχον περιεχόµενο του καταχωρητή, ενώ σαν εκθέτης φαίνεται η τιµή της ευρετικής συνάρτησης. Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα κατάσταση Παιδιά
1 6-1 6 2 D 5, 2 A 5, 0 S 7 2 D 5, 2 A 5, 0 S 7 1 6 2 D 5 4 DD 3, 3 DA 4, 1 DS 6, 4 DD 3, 3 DA 4, 2 A 5, 1 DS 6, 0 S 7 1 6, 2 D 5 4 DD 3 8 DDD 1, 5 DDA 2, 3 DDS 4 8 DDD 1, 5 DDA 2, 3 DDS 4, 2 A 5, 1 DS 6, 0 S 7 1 6, 2 D 5, 4 DD 3 8 DDD 1 16 DDDD 9, 9 DDDA 2, 7 DDDS 0 7 DDDS 0, 9 DDDA 2, 5 DDA 2, 3 DDS 4, 2 A 5, 1 DS 6, 0 S 7, 16 DDDD 9 1 13, 2 D 12, 4 DD 10, 7 DDDS 0 Λύση! 8 DDD 1 Η λύση που βρέθηκε αντιστοιχεί στην ακολουθία εντολών: DOUBLE-DOUBLE-DOUBLE- SUB, µε κόστος εκτέλεσης 1+2+4+1=8. β) Στον παρακάτω πίνακα φαίνεται η διαδικασία επίλυσης του προβλήµατος µε τον αλγόριθµο Α*. Για κάθε κατάσταση µέσα στις αγκύλες φαίνεται το τρέχον περιεχόµενο του καταχωρητή, ενώ σαν εκθέτης φαίνεται ο βαθµός της κατάστασης καθώς και η τιµή της ευρετικής συνάρτησης. Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 6-6 - 1 6-6 2 D 6-5, 2 A 6-5, 0 S 8-7 2 D 6-5, 2 A 6-5, 0 S 8-7 1 6-6 2 D 6-5 4 DD 6-3, 3 DA 6-4, 1 DS 8-6 4 DD 6-3, 3 DA 6-4, 2 A 6-5, 1 DS 8-6, 0 S 8-7 1 6-6, 2 D 6-5 4 DD 6-3 8 DDD 8-1, 5 DDA 6-2, 3 DDS 8-4 5 DDA 6-2, 3 DA 6-4, 2 A 6-5, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7 1 6-6, 2 D 6-5, 4 DD 6-3 5 DDA 6-2 10 DDAD 12-3, 6 DDAA 6-1, 4 DDAS 8-3 6 DDAA 6-1, 3 DA 6-4, 2 A 6-5, 4 DDAS 8-3, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7, 10 DDAD 12-3 7 DDAAA 6-0, 3 DA 6-4, 2 A 6-5, 5 DDAAS 8-2, 4 DDAS 8-3, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7, 10 DDAD 12-3, 12 DDAAD 16-5 1 6-6, 2 D 6-5, 4 DD 6-3, 6 DDAA 6-1 5 DDA 6-2 1 6-6, 2 D 6-5, 4 DD 6-3, 7 DDAAA 6-0 Λύση! 5 DDA 6-2, 6 DDAA 6-1 12 DDAAD 16-5, 7 DDAAA 6-0, 5 DDAAS 8-2 Η λύση που βρέθηκε αντιστοιχεί στην ακολουθία εντολών: DOUBLE- DOUBLE- ADD-ADD- ADD, µε κόστος εκτέλεσης 1+2+1+1+1=6. γ) Παρατηρούµε ότι ο αλγόριθµος Α* βρήκε καλύτερη λύση από τον αλγόριθµο πρώτα-στοκαλύτερο. Αυτό ήταν αναµενόµενο µιας και η ευρετική συνάρτηση στο συγκεκριµένο πρόβληµα είναι παραδεκτή, οπότε είναι σίγουρο ότι ο αλγόριθµος Α* θα βρει την βέλτιστη, από πλευράς κόστους, λύση. Βέβαια, θα µπορούσε, εάν είχαµε διαφορετικό στόχο (π.χ. τον αριθµό 6 αντί τον αριθµό 7), να βρει την βέλτιστη λύση και ο αλγόριθµος πρώτα στο καλύτερο. Ωστόσο, µε δεδοµένο ότι η ευρετική συνάρτηση είναι παραδεκτή, δεν υπάρχει περίπτωση ο αλγόριθµος πρώτα στο καλύτερο να βρει καλύτερη λύση από τον αλγόριθµο Α*. ΘΕΜΑ 2 ο (2.5 µονάδες)
Το πρόβληµα της ζέβρας: Υπάρχουν πέντε σπίτια στη σειρά (αριθµούνται από το 1 στα αριστερά έως το 5 στα δεξιά), κάθε ένα µε διαφορετικό χρώµα (C1, C2, C3, C4, C5), που κατοικούνται από ιδιοκτήτες διαφορετικής εθνικότητας (N1, N2, N3, N4, N5). Κάθε ιδιοκτήτης έχει ένα διαφορετικό ζώο (P1, P2, P3, P4, P5), πίνει διαφορετικό ποτό (D1, D2, D3, D4, D5) και καπνίζει διαφορετικά τσιγάρα (S1, S2, S3, S4, S5) από τους υπόλοιπους ιδιοκτήτες. 1 2 3 4 5 Μας δίνονται οι παρακάτω πληροφορίες: 1. Ο Άγγλος µένει στο κόκκινο σπίτι. 2. Ο Ισπανός έχει έναν σκύλο. 3. Ο ιδιοκτήτης του πράσινου σπιτιού πίνει καφέ. 4. Ο Ουκρανός πίνει τσάι. 5. Το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ σπίτι. 6. Ο ιδιοκτήτης που καπνίζει Oldgold, έχει ένα σαλιγκάρι. 7. Ο ιδιοκτήτης του κίτρινου σπιτιού καπνίζει Kools. 8. Ο ιδιοκτήτης του µεσσαίου σπιτιού πίνει γάλα. 9. Ο Νορβηγός κατοικεί στο πρώτο σπίτι στα αριστερά. 10. Αυτός που καπνίζει Chesterfield µένει δίπλα στον κάτοχο της αλεπούς. 11. Το κίτρινο σπίτι είναι δίπλα στον ιδιοκτήτη του αλόγου. 12. Αυτός που καπνίζει Lucky Strike πίνει χυµό. 13. Ο Γιαπωνέζος καπνίζει Parliament. 14. Ο Νορβηγός µένει δίπλα στο µπλε σπίτι. Απαντήστε στις παρακάτω ερωτήσεις: α) Ποιος πίνει νερό; (1.5) β) Ποιος είναι ο ιδιοκτήτης της ζέβρας; (1) Υπόδειξη: Χρησιµοποιείστε έναν πίνακα σαν τον παρακάτω για να εκτελέσετε διάδοση των περιορισµών. C1 κόκκινο, C2 κόκκινο, C3 κόκκινο, C4 κόκκινο, C5 κόκκινο, πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε N1 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P1 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N2 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P2 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N3 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P3 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N4 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P4 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N5 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P5 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα D1 καφές, τσάι, D2 καφές, τσάι, D3 καφές, τσάι, D4 καφές, τσάι, D5 καφές, τσάι, γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός, νερό, νερό, νερό, νερό, νερό S1 Oldgold, Kools, S2 Oldgold, S3 Oldgold, Kools, S4 Oldgold, Kools, S5 Oldgold, Chesterfield, LuckyStrike, Kools, Chesterfield, Chesterfield, LuckyStrike, Chesterfield, LuckyStrike, Kools, Chesterfield,
Parliament LuckyStrike, Parliament Parliament Parliament LuckyStrike, Parliament Απάντηση: Συµβολίζουµε µε κεφαλαία γράµµατα τις µεταβλητές, όπως στην εκφώνηση. Έχουµε συνολικά 25 µεταβλητές, για το χρώµα, την εθνικότητα, το ζώο, το ποτό και τα τσιγάρα (προσοχή: εν είναι µεταβλητές τα ίδια τα σπίτια αλλά οι ιδιότητες των σπιτιών). Σχετικά µε τα πεδία αυτών των µεταβλητών παρατηρούµε τα εξής: Στην εκφώνηση αναφέρονται πέντε χρώµατα, τα {c1=κόκκινο, c2=πράσινο, c3=κρεµ, c4=κίτρινο, c5=µπλε}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών C1, C2, C3, C4, C5. Στην εκφώνηση αναφέρονται πέντε εθνικότητες, οι {n1=άγγλος, n2=ισπανός, n3=ουκρανός, n4=νορβηγός, n5=γιαπωνέζος}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών Ν1, Ν2, Ν3, Ν4, Ν5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ζώα, τα {p1=σκύλος, p2=σαλιγκάρι, p3=αλεπού, p4=άλογο, p5=ζέβρα}, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών P1, P2, P3, P4, P5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ποτά, τα {d1=καφές, d2=τσάι, d3=γάλα, d4=χυµός, d5=νερό }, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών D1, D2, D3, D4, D5. Στην εκφώνηση αναφέρονται πέντε µάρκες τσιγάρων, οι {s1=oldgold, s2=kools, s3=chesterfield, s4=luckystrike, s5=parliament}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών S1, S2, S3, S4, S5. Ο παρακάτω πίνακας έχει τα αρχικά πεδία ορισµού όλων των µεταβλητών. C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n1,n2,n3,n4,n5 N2 n1,n2,n3,n4,n5 N3 n1,n2,n3,n4,n5 N4 n1,n2,n3,n4,n5 N5 n1,n2,n3,n4,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Θεωρούµε δεδοµένο ότι το πρόβληµα έχει λύση. Θα εφαρµόσουµε τη γνωστή τεχνική διάδοσης περιορισµών, µε σκοπό να διαγράψουµε όσο το δυνατόν περισσότερες τιµές από τα πεδία των µεταβλητών, µέχρις να µην µπορεί να διαγραφεί καµία άλλη τιµή. Στο σηµείο αυτό ελπίζουµε ότι κάποιες µεταβλητές θα έχουν πάρει µοναδική τιµή, ώστε να είναι δυνατή η απάντηση των ερωτήσεων. Από την πρόταση 9 προκύπτει ότι Ν1=n4, άρα η τιµή n4 αφαιρείται από τις µεταβλητές N2, N3, N4, N5: C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Από την πρόταση 14 προκύπτει ότι το δεύτερο σπίτι είναι µπλε. Άρα C2=c5 και η τιµή c5 αφαιρείται από τα πεδία των µεταβλητών C1, C3, C4, C5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5
Από την πρόταση 8 προκύπτει ότι D3=D3 και η τιµή d3 αφαιρείται από τα πεδία των µεταβλητών D1, D2, D4, D5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Γνωρίζοντας ότι στο πρώτο σπίτι κατοικεί ο Νορβηγός, και λαµβάνοντας υπόψη διάφορες προτάσεις σχετικά µε ζώα, χρώµατα, ποτά και τσιγάρα διαφόρων άλλων ιδιοκτητών, αφαιρούµε τις αντίστοιχες τιµές από το πεδίο των µεταβλητών που αναφέρονται στο πρώτο σπίτι. Έτσι, λαµβάνοντας υπόψη τις προτάσεις 1, 2, 4 και 13, έχουµε: C1 c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Η πρόταση 5 µας λέει ότι το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ. Με δεδοµένο ότι το δεύτερο σπίτι είναι µπλε, το κρεµ σπίτι πρέπει να είναι είτε το τρίτο, είτε το τέταρτο, και αντίστοιχα το πράσινο σπίτι πρέπει να είναι είτε το τέταρτο είτε το πέµπτο. Άρα η τιµή c3=κρεµ αφαιρείται από τις µεταβλητές C1, C2 και C5, ενώ η τιµή c2=πράσινο αφαιρείται από τις µεταβλητές C1, C2 και C3. Επιπλέον, η µεταβλητή C4 µπορεί να έχει τιµή είτε c3=κρεµ είτε c2=πράσινο: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Βλέπουµε ήδη ότι το πρώτο σπίτι είναι c4=κίτρινο! Έτσι µπορούµε να βγάλουµε τα παρακάτω συµπεράσµατα: από την 1 προκύπτει ότι σε αυτό δεν µένει ο n1=άγγλος, από την 4 προκύπτει ότι ο ιδιοκτήτης του πρώτου σπιτιού δεν πίνει d1=καφέ, από την 7 προκύπτει ότι o ιδιοκτήτης του πρώτου σπιτιού καπνίζει s2=kools, οπότε η τιµή s2 αφαιρείται από τις S2, S3, S4 και S5, από την 11 προκύπτει ότι ο ιδιοκτήτης του δεύτερου σπιτιού έχει p4=άλογο, οπότε η τιµή p4 αφαιρείται από τις P1, P3, P4, P5. Έτσι τα πεδία των µεταβλητών γίνονται: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p5 P2 p4 P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s2 S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι ο Νορβηγός, που µένει στο πρώτο σπίτι, δεν πίνει d4=χυµό, άρα η τιµή d4 αφαιρείται από την D1 και αποµένει η τιµή d5=νερό, η οποία µε τη σειρά της αφαιρείται από τις D2, D3, D4, D5. Επίσης από την 6 προκύπτει ότι ο Νορβηγός δεν έχει p2=σαλιγκάρι: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d1,d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5
Έχουµε λοιπόν απαντήσει στο ερώτηµα α) σχετικά µε το ποιος πίνει νερό: Είναι ο Νορβηγός, ο οποίος µένει στο πρώτο σπίτι. Από την 3 και µε δεδοµένο ότι η τιµή c2=πράσινο εµφανίζεται µόνο στο 4 ο και το 5 ο σπίτι, προκύπτει ότι η τιµή d1=καφές µπορεί να εµφανίζεται µόνο σε αυτά τα σπίτια, οπότε αφαιρείται από την D2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 1 προκύπτει ότι η τιµή n1=άγγλος δεν µπορεί να είναι ιδιοκτήτης κανενός σπιτιού το οποίο δεν µπορεί να είναι c1=κόκκινο. Έτσι η τιµή n1 αφαιρείται από την Ν2 και από την Ν4. C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι ο Ουκρανός δεν µένει στο τρίτο σπίτι, µιας και αν έµενε εκεί θα έπινε γάλα. Άρα η τιµή n3=ουκρανός αφαιρείται από τη µεταβλητή N3: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 3 ο σπίτι δεν καπνίζει s4=luckystrike: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 2 προκύπτει ότι στο 2 ο σπίτι δεν κατοικεί n2=ισπανός, άρα αφαιρείται η τιµή n2 από τη µεταβλητή Ν2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 6 προκύπτει ότι στο 2 ο σπίτι δεν καπνίζουν s1=oldgold: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Στο σηµείο αυτό δεν µπορούµε να κόψουµε άλλες τιµές, οπότε επιλέγουµε να κάνουµε κάποια ανάθεση. Έστω ότι C4=c2=πράσινο. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C3=c3 και άρα C5=c1:
N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n3,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 4 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 5 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Από την 4 προκύπτει ότι ο n3=ουκρανός µένει στο 2 ο σπίτι και πίνει d2=τσάι. Οι τιµές αυτές αφαιρούνται από τις υπόλοιπες µεταβλητές, µε αποτέλεσµα να προκύψει ότι ο Άγγλος πίνει χυµό : N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Πλέον, από την 12 προκύπτει ότι ο Άγγλος καπνίζει s4=luckystrike. Η τιµή αυτή διαγράφεται από τις υπόλοιπες µεταβλητές: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s4=luckystrike Από την 6 προκύπτει ότι ο Άγγλος δεν έχει p2=σαλιγκάρι και από την 2 προκύπτει ότι ο Άγγλος δεν έχει p1=σκύλο. Επίσης από την 13 προκύπτει ότι ο Ουκρανός δεν καπνίζει s5=parliament: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike
Παρατηρώντας τις τιµές των µεταβλητών P1, P3, P4, P5, οι οποίες πρέπει να είναι όλες διαφορετικές µεταξύ τους, βλέπουµε ότι δύο µεταβλητές, οι P1 και P5, µοιράζονται τις ίδιες δύο τιµές, p3 και p5. Άρα, αυτές οι δύο τιµές, p3 και p5, δεν µπορούν να εµφανίζονται στις µεταβλητές Ρ3 και Ρ4: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Από την 10 προκύπτει ότι δίπλα στο 2 ο σπίτι θα υπάρχει p3=αλεπού. Λαµβάνοντας υπόψη τα πεδία των µεταβλητών P1 και P3 φαίνεται ότι η αλεπού είναι στο πρώτο σπίτι, οπότε προκύπτει ότι στο 5 ο σπίτι είναι η p5=ζέβρα: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3=αλεπού P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Στο σηµείο αυτό δεν έχουµε τελειώσει, πρέπει να δούµε εάν υπάρχουν τιµές και για τις υπόλοιπες µεταβλητές που δεν έχουν πάρει τιµή. υστυχώς φαίνεται ότι καταλήγουµε σε άτοπο: Πράγµατι, από τις 2 και 6 προκύπτει ότι ο Ισπανός δεν καπνίζει Oldgold, άρα καπνίζει Parliament, που όµως είναι η µάρκα που σύµφωνα µε την 13 καπνίζει ο Γιαπωνέζος. Στο σηµείο αυτό επιστρέφουµε στο σηµείο που κάναµε επιλογή σχετικά µε τα χρώµατα των σπιτιών, και κάνουµε την άλλη επιλογή. Έστω ότι C4=c3=κρεµ. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C5=c2=πράσινο και άρα C3=c1=κόκκινο: N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 5 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 3 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5
D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 2 προκύπτει ότι στο 3 ο σπίτι, όπου κατοικεί ο Άγγλος, δεν µπορεί να έχουν p1=σκύλο: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Στο σηµείο αυτό δεν µπορεί να γίνει περαιτέρω διαγραφή τιµών, οπότε καταφεύγουµε και πάλι σε επιλογή. Έστω D2=d2=τσάι, οπότε D4=d4=χυµός : N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s5 S3 s1,s3 S4 s4=luckystrike S5 s1,s3,s5 Από την 13 προκύπτει ότι ο n5=γιαπωνέζος είναι στο 5 ο σπίτι, µιας και δεν θα µπορούσε να είναι πλέον στο 4 ο και καπνίζει s5=parliament. Άρα στο 2 ο σπίτι είναι ο Ισπανός, ενώ ο Ουκρανός καπνίζει s3=chesterfield και ο Άγγλος s1=oldgold: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament Πλέον, από τις 2, 6 και 10 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε σύµφωνα µε αυτή τη λύση τη ζέβρα την έχει ο Γιαπωνέζος. Πρέπει όµως να ελέγξουµε και την εναλλακτική περίπτωση στο τελευταίο σηµείο επιλογής. Έστω λοιπόν ότι D2=d4=χυµός και, οπότε D4= d2=τσάι: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές
S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n5=γιαπωνέζος N3 n1=άγγλος N4 n3=ουκρανός N5 n2=ισπανός P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές S1 s2=kools S2 s4=luckystrike S3 s1,s3 S4 s1,s3,s5 S5 s1,s3,s5 Στο σηµείο αυτό όµως έχουµε καταλήξει σε άτοπο, γιατί παραβιάζεται η πρόταση 13. Άρα δεν υπάρχει δεύτερη λύση, οπότε η µοναδική πλήρης λύση του προβλήµατος είναι η: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε τη ζέβρα την έχει ο Γιαπωνέζος! ΘΕΜΑ 3 ο (2.5 µονάδες) Έστω το παιχνίδι της τρίλιζας, στο οποίο ο παίκτης MAX, που παίζει πρώτος, έχει τα Χ, ενώ ο MIN τα O. Έστω ότι οι δύο παίκτες έχουν ήδη πραγµατοποιήσει από µια κίνηση ο καθένας, και η κατάσταση στην τρίλιζα έχει ως εξής: Ο X Τώρα είναι η σειρά του MΑΧ να κάνει τη δεύτερή του κίνηση. Βρείτε ποια θα είναι αυτή, κατασκευάζοντας το δένδρο του παιχνιδιού µέχρι βάθος δύο στρώσεων (δηλαδή µία κίνηση του MΑΧ και µια απάντηση του MΙΝ), ξεκινώντας από την παραπάνω κατάσταση. Χρησιµοποιείστε για ευρετική συνάρτηση την εξής: Για µια κατάσταση p, ο βαθµός h(p) ορίζεται ως: h(p) = +, εάν η κατάσταση p είναι τελική όπου κερδίζει ο MAX. h(p) = -, εάν η κατάσταση p είναι τελική όπου κερδίζει ο MIN. h(p) = το πλήθος των γραµµών, στηλών, διαγωνίων στις οποίες ο MIN δεν κατέχει καµία θέση, µείον το πλήθος των γραµµών στηλών, διαγωνίων στις οποίες ο MAX δεν κατέχει καµία θέση, εφόσον η κατάσταση p δεν είναι τελική. Για παράδειγµα ο βαθµός της παρακάτω καταστάσης είναι h(p)=4-2=2. O X Ο X Υπόδειξη: Για να περιορίσετε το πλήθος των κλαδιών του δένδρου του παιχνιδιού, λάβετε υπόψη σας την συµµετρία για να κλαδέψετε καταστάσεις. Για παράδειγµα, οι παρακάτω δύο καταστάσεις, που αντιστοιχούν σε διαφορετικές δεύτερες κινήσεις του MΑΧ (µε δεδοµένες τις πρώτες κινήσεις και των δύο παικτών, όπως αυτές ορίστηκαν παραπάνω), είναι συµµετρικές, άρα χρειάζεται να συµπεριλάβετε στο δένδρο του παιχνιδιού µόνο µία από αυτές.
Ο Χ Ο Χ Χ Χ Απάντηση: Ο παίκτης MΑΧ έχει στην διάθεσή του δύο τέσσερις µη συµµετρικές κινήσεις, οι οποίες φαίνονται παρακάτω: Ο Χ Ο Χ Ο Ο Χ Χ Χ Χ Χ Α Β C D Χ Εάν ο ΜΑΧ επιλέξει την κίνηση Α, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Χ Ο Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Χ Χ Ο Χ Χ Χ Ο Χ Ο Ο Ο Ε F G H I J Εάν ο ΜΑΧ επιλέξει την κίνηση Β, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Χ Ο Χ Χ Χ Χ Χ Ο Ο Ο Ο K L M N O P Εάν ο ΜΑΧ επιλέξει την κίνηση Γ, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Ο Ο Ο Ο Ο Ο Ο Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Ο Χ Χ Ο Ο Ο Q R S T U V Τέλος, εάν ο ΜΑΧ επιλέξει την κίνηση, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 3 και είναι οι εξής: Ο Ο Ο Ο Ο Χ Χ Χ Ο Χ Χ Χ W X Y Παρακάτω φαίνεται το δένδρο του παιχνιδιού, από την τρέχουσα κατάσταση και για βάθος 2. Τα φύλλα του δένδρου έχουν βαθµολογηθεί και οι τιµές έχουν µεταφερθεί µέχρι τη ρίζα µε τον αλγόριθµο minimax. Από το δένδρο είναι φανερό ότι η κίνηση που πρέπει να επιλέξει ο παίκτης MΙΝ είναι η Α.
MAX ΜIN Α=0 Β=1 C=-1 D=1 K=2 M=1 O=1 W=2 X=1 Y=1 L=2 N=1 P=1 E=0 G=0 I=0 Q=1 S=0 U=0 F=0 H=0 J=1 R=0 T=-1 V=0 Παρατηρούµε ότι υπάρχει ισοβαθµία µεταξύ των κινήσεων Β και D. Ο παίκτης MAX πρέπει να επιλέξει µια από τις δύο αυτές κινήσεις τυχαία, ή να επεκτείνει το δένδρο σε µεγαλύτερο βάθος, ώστε να βγάλει πιο ακριβή συµπεράσµατα. ΘΕΜΑ 4 ο (2.5 µονάδες) Αναπαραστήστε τις παρακάτω προτάσεις σε λογική πρώτης τάξης: α) Μερικοί φοιτητές εγγράφηκαν στο µάθηµα των Γαλλικών την άνοιξη του 2001. (0.7) β) Κάθε φοιτητής που εγγράφεται στο µάθηµα των Γαλλικών το περνά (δηλαδή ο βαθµός του είναι µεγαλύτερος ή ίσος του 5). (0.7) γ) Μόνο ένας φοιτητής εγγράφηκε στο µάθηµα των Ελληνικών την άνοιξη του 2001. (0.7) δ) Ο καλύτερος βαθµός στα Ελληνικά είναι πάντα µεγαλύτερος από τον καλύτερο βαθµό στα Γαλλικά. (0.4) Υπόδειξη: Χρησιµοποιείστε τα παρακάτω κατηγορήµατα: Φοιτητής(x): Ο x είναι φοιτητής Εγγραφή(x,y,z,w): Ο x εγγράφηκε στο µάθηµα y κατά το εξάµηνο z της χρονιάς w. Βαθµός(x,y,z,w,v): Ο βαθµός του x στο µάθηµα y κατά το εξάµηνο z της χρονιάς w είναι ίσος µε v. Απάντηση: α) x, Φοιτητής(x) Εγγραφή(x, Γαλλικά, Άνοιξη, 2001). β) x, z, w, Φοιτητής(x) Εγγραφή(x, Γαλλικά, z, w) Βαθµός(x, Γαλλικά, z, w, v) v 5. γ) x, Φοιτητής(x) Εγγραφή(x, Ελληνικά, Άνοιξη, 2001) y, x y Φοιτητής(y) Εγγραφή(y, Ελληνικά, Άνοιξη, 2001). δ) x1, x2, v1, v2, z, w, Φοιτητής(x1) Φοιτητής(x2) Βαθµός(x1,Ελληνικά,z,w,v1) Βαθµός(x2,Γαλλικά,z,w,v2) ( x10, v10, Φοιτητής(x10) Βαθµός(x10,Ελληνικά,z,w,v10) v1 v10) ( x20, v20, Φοιτητής(x20) Βαθµός(x20,Γαλλικά,z,w,v20) v2 v20) v1>v2.
ΘΕΜΑ 5 ο (2.5 µονάδες) Έστω ένα απλοποιηµένο πρόβληµα συναρµολόγησης της µηχανής ενός αυτοκινήτου, το οποίο απαιτεί πρώτα να µπει η µηχανή, µετά οι τροχοί και τέλος να γίνει η επιθεώρηση. Έχουµε τρεις ενέργειες: Action(ΠροσθήκηΜηχανής(e, c), ΠΡΟΫΠΟΘΕΣΕΙΣ: Μηχανή(e, c, d ) Σασί(c) ΜηχανήΕντός(c), ΕΠΙ ΡΑΣΕΙΣ: ΜηχανήΕντός( c ) ιάρκεια( d )) Action(ΠροσθήκηΤροχών(w, c), ΠΡΟΫΠΟΘΕΣΕΙΣ: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), ΕΠΙ ΡΑΣΕΙΣ: ΤροχοίΕπί(c) ιάρκεια(d)) Action(Επιθεώρηση(c), ΠΡΟΫΠΟΘΕΣΕΙΣ: ΜηχανήΕντός(c) ΤροχοίΕπί(c) Σασί(c), ΕΠΙ ΡΑΣΕΙΣ: Έτοιµο(c) ιάρκεια(10)) Η αρχική κατάσταση και οι στόχοι είναι οι εξής: Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C 2, 15)) Goal(Έτοιµο(C 1 ) Έτοιµο(C 2 )) Τα κατηγορήµατα των παραπάνω δηλώσεων έχουν την εξής σηµασία: Μηχανή(e,c,d): Η µηχανή e µπορεί να τοποθετηθεί στο σασί c σε χρόνο d. Σασί(c): Υπάρχει το σασί c. ΜηχανήΕντός(c): Έχει ήδη τοποθετηθεί µηχανή στο σασί c. Τροχοί(w, c, d): Οι τροχοί w µπορούν να τοποθετηθούν στο σασί c σε χρόνο d. ΤροχοίΕπί(c): Έχουν ήδη τοποθετηθεί τροχοί στο σασί c. Έτοιµο(c): Έχει ολοκληρωθεί ο έλεγχος στο σασί c. α) Καταστρώστε ένα πλάνο που να λύνει το πρόβληµα, χωρίς να λάβετε υπόψη σας τις διάρκειες των ενεργειών. εν είναι απαραίτητο να δείξετε τα βήµατα που ακολουθήσατε για να βρείτε το πλάνο. (0.5) β) Βρείτε το κρίσιµο µονοπάτι σε αυτό το πλάνο. Με βάση το µήκος του κρίσιµου µονοπατιού, υπολογείστε τον νωρίτερο και τον αργότερο χρόνο έναρξης όλων των ενεργειών στο πλάνο που βρήκατε. (1) γ) Θεωρείστε ότι υπάρχει ένα µόνο βαρούλκο για την ανύψωση της µηχανής, ένας σταθµός τοποθέτησης τροχών και δύο επιθεωρητές. Πώς τροποποιείται το πλάνο που βρήκατε στο ερώτηµα (β); Ποιος είναι τώρα ο ελάχιστος χρόνος εκτέλεσης του πλάνου; (διερευνείστε όλες τις περιπτώσεις) (1) Απάντηση: α, β)
γ) Ο συνολικός χρόνος εκτέλεσης θα ήταν µεγαλύτερος, εάν επιλέγαµε να τοποθετήσουµε τη µηχανή πρώτα στο δεύτερο όχηµα. ΑΠΑΝΤΗΣΤΕ 4 ΑΠΟ ΤΑ ΠΑΡΑΠΑΝΩ 5 ΘΕΜΑΤΑ