ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Σχετικά έγγραφα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

H επίδραση των ουρών στην κίνηση ενός δικτύου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

P (M = n T = t)µe µt dt. λ+µ

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Διαδικασίες Markov Υπενθύμιση

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Απλα Συστήματα Αναμονής Υπενθύμιση

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

ΔΙΚΤΥΑ (15-17) Π. Φουληράς

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Κεφάλαιο 5: Τοπικά ίκτυα

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μοντέλα Αναµονής. Μία Ουρά Αναµονής FIFO

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Ethernet Ethernet ΙΕΕΕ CSMA/CD

ΗΥ335 - Δίκτυα Υπολογιστών Χειμερινό εξάμηνο Φροντιστήριο Ασκήσεις στο TCP

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

HY-335 : Δίκτυα Υπολογιστών

Δίκτυα Υπολογιστών II Εργασία 1 η

ΔΙΚΤΥΑ Η/Υ ΙΙ. Αρχές δρομολόγησης

8 η ιάλεξη: σε δίκτυα δεδομένων

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 9: Δίκτυα απωλειών μορφής γινομένου

A1. Φυσικό επίπεδο 1. Αντιπαραθέσετε (κάνετε τη σύγκριση) με 2-3 προτάσεις την στατιστική πολυπλεξία και την πολυπλεξία με διαίρεση χρόνου.

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

ιαδίκτυα & Ενδοδίκτυα Η/Υ

Καθυστέρηση επεξεργασίας (processing delay) Έλεγχος επικεφαλίδας Καθορισµός εξερχόµενης ζεύξης 3

How do loss and delay occur?

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 11: Συστήματα υπερροής

Παραδείγµατα δικτυακών τεχνολογιών. Ethernet Internet ATM

ΔΙΑΣΥΝΔΕΣΗ ΔΙΚΤΥΩΝ (INTERNETWORKING)

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

Υπόστρωμα Ελέγχου Πρόσβασης Μέσου. Medium Access Control Sub-layer.

Αρχές Δικτύων Επικοινωνιών. Επικοινωνίες Δεδομένων Μάθημα 4 ο

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ενότητα 1. Εισαγωγή στις βασικές έννοιες των ικτύων ΗΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΚΤΥΩΝ

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

Άσκηση Διάλεξης 5. Router. Δεδομένα: Οι ζεύξεις ειναι τεχνολογίας ενσύρματου Ethernet των 10 Mbps και 100 Mbps αντίστοιχα.

Transcript:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν Σειρά - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018

ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ (1/2) Θεώρημα Burke: Η έξοδος πελατών από ουρά Μ/Μ/1 ακολουθεί κατανομή Poisson με ρυθμό τον ρυθμό εισόδου λ ΑΠΟΔΕΙΞΗ Θεωρούμε δύο εκθετικές ουρές Q1, Q2 (π.χ. μεταγωγείς πακέτου) με χρόνους εξυπηρέτησης ανεξάρτητες εκθετικές μεταβλητές με μέσους όρους 1/μ 1, 1/μ 2 Προσέγγιση με Παραδοχή Ανεξαρτησίας Leonard Kleinrock σε δίκτυα μεταγωγής πακέτου: Οι χρόνοι εξυπηρέτησης (ανάλογοι του μήκους πακέτου) δεν διατηρούν τα μεγέθη τους όταν προωθούνται μεταξύ συστημάτων (ουρών) εξυπηρέτησης. Οι χρόνοι εξυπηρέτησης ανατίθενται σε κάθε σύστημα σαν ανεξάρτητες εκθετικές τυχαίες μεταβλητές Η είσοδος στην Q1 είναι Poisson με ρυθμό λ (η Q1 είναι Μ//1), λ < {μ 1, μ 2 } για εργοδικότητα (ισορροπία) Η κατάσταση του συστήματος περιγράφεται από το διάνυσμα n = (n 1, n 2 ) όπου n 1 # πελατών στην Q1, n 2 # πελατών στην Q2 Καταστρώνουμε το διάγραμμα μεταβάσεων καταστάσεων arkov σε δύο διαστάσεις και γράφουμε τις εξισώσεις ισορροπίας Εξετάζουμε αν οι εργοδικές πιθανότητες έχουν μορφή γινομένου (product form solution) P n = P n 1, n 2? = P n 1 P n 2? = n 1 ρ 1 ρ 1 1 n 1 ρ 2 ρ 2 n 2 = Kρ 1 n 1 ρ 2 2 όπου ρ 1 = λ μ 1, ρ 2 = λ μ 2 και K = (1 ρ 1 )(1 ρ 2 ) η Σταθερά Κανονικοποίησης: P n = 1 n Οι εξισώσεις επαληθεύονται, και επομένως αποτελούν τη μοναδική λύση (μονοσήμαντα). Άρα οι δύο ουρές συμπεριφέρονται σαν δύο ανεξάρτητες ουρές Μ/Μ/1 σε ισορροπία με ρυθμούς εισόδου λ και ρυθμούς εξυπηρέτησης μ 1, μ 2 Έπεται πως ο ρυθμός εξόδου της Q1 (και εισόδου στην Q2) είναι Poisson με ρυθμό λ

ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ ΕΝ ΣΕΙΡΑ (2/2) Επαλήθευση Υπόθεσης Γινομένου P n = P n 1, n 2 = P n 1 P n 2 = 1 ρ 1 ρ 1 n 1 1 ρ 2 ρ 2 n 2 = Kρ 1 n 1 ρ 2 n 2 Επαλήθευση για Αντιπροσωπευτικές Καταστάσεις: n = 2,2 λ + μ 1 + μ 2 P 2,2 =? λp 1,2 + μ 1 P 3,1 + μ 2 P 2,3 λ + μ 1 + μ 2 K(λ μ 1 ) 2 (λ μ 2 ) 2 =? λk(λ μ 1 ) (λ μ 2 ) 2 +μ 1 K(λ μ 1 ) 3 (λ μ 2 ) + μ 2 K(λ μ 1 ) 2 (λ μ 2 ) 3 n = (0,2) λ + μ 2 P 0,2 =? μ 1 P 1,1 + μ 2 P 0,3 λ + μ 2 K(λ μ 2 ) 2 =? μ 1 K(λ μ 1 ) (λ μ 2 ) + μ 2 K(λ μ 2 ) 3

ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (1/3) Παραδοχές για Κατάσταση Δικτύου χωρίς Μνήμη (arkov) Έξοδος Ουράς Μ/Μ/1 Θεώρημα Burke Οι αναχωρήσεις πελατών από σύστημα Μ/Μ/1 αποτελούν διαδικασία Poisson Άθροιση Διάσπαση διαδικασιών Poisson Άθροιση (aggregation) ανεξαρτήτων ροών Poisson λ 1, λ 2 : Poisson με μέσο ρυθμό λ = λ 1 + λ 2 Τυχαία Διάσπαση (random split, routing) ροής Poisson μέσου ρυθμού λ με πιθανότητες p, q = 1 p : Παράγει διαδικασίες Poisson με ρυθμούς pλ, (1 p)λ

Παραδοχές ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (2/3) Θεώρημα Jackson Ανοικτό δίκτυο δικτυακών κόμβων εξυπηρέτησης κορμού (ουρών αναμονής) Q i, i = 1,2,, με εκθετικούς ρυθμούς εξυπηρέτησης μ i Αφίξεις πελατών (πακέτων) από εξωτερικές πηγές (sources) άμεσα συνδεμένες στον δικτυακό κόμβο κορμού Q s προς εξωτερικούς προορισμούς (destinations) άμεσα συνδεμένους στον δικτυακό κόμβο κορμού Q d : Ανεξάρτητες ροές Poisson μέσου ρυθμού γ sd όπου s, d {1,2,, } Συνολική εξωγενής ροή Poisson σε Q s : γ s = d=1,d s γ sd, s, d {1,2,, } Εσωτερική δρομολόγηση (routing) με τυχαίο τρόπο και πιθανότητα δρομολόγησης πελάτη από τον κόμβο κορμού (ουρά) Q i στον κόμβο Q j : r ij Τότε τον κόμβο εξυπηρέτησης Q j διαπερνούν ροές με συνολικό μέσο ρυθμό λ j = γ j + r ij λ i i=1,i j, j = 1,2,, Οι χρόνοι εξυπηρετήσεις πελατών όπως διαπερνούν το δίκτυο δεν διατηρούν την τιμή τους (έλλειψη μνήμης) αλλά αποκτούν χρόνο εξυπηρέτησης ανάλογα με την κατανομή του κάθε εξυπηρετητή (Kleinrock s Independence Assumption, επαληθευμένη με προσομοιώσεις σε δίκτυα με όχι απλοϊκή τοπολογία)

ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ (3/3) Θεώρημα Jackson Αποτέλεσμα Κατάσταση του δικτύου: Διάνυσμα n = (n 1, n 2,, n ) αριθμού πελατών n i στις ουρές (κόμβους κορμού) Q i Η Εργοδική Πιθανότητα των καταστάσεων n (αν υπάρχει) έχει μορφή γινομένου (product form) ανεξαρτήτων ουρών Μ/Μ/1 P n = P n 1, n 2,, n = P n 1 P n 2 P n P n i = 1 ρ i ρ i n i με ρ i = λ i μ i όπου λ i ο συνολικός μέσος ρυθμός (Poisson) των πελατών που διαπερνούν τον κόμβο κορμού (ουρά) Q i με ρυθμό εκθετικής εξυπηρέτησης μ i Ουρά (κόμβος κορμού) συμφόρησης: Η Q i με το μέγιστο ρ i Μέσος αριθμός πελατών (πακέτων) στο δίκτυο: E n = i=1 E n ι = i=1 ρ i 1 ρ i Μέση καθυστέρηση τυχαίου πακέτου από άκρο σε άκρο: E T = E(n) γ (τύπος Little) όπου γ ο συνολικός μέσος ρυθμός πελατών (Poisson) που εισέρχονται στο δίκτυο από εξωτερικές πηγές (network throughput) γ = s=1 d=1,d s γ sd Μέση καθυστέρηση τυχαίου πακέτου από κόμβο s σε κόμβο d: E T sd = δ sd i όπου δ sd i το κλάσμα της ροής γ sd που διαπερνά τον κόμβο Q i i 1 1 μ i 1 ρ i

ΕΦΑΡΜΟΓΗ: ΔΙΚΤΥΟ ΜΕΤΑΓΩΓΗΣ ΠΑΚΕΤΩΝ (1/2) (Internet Intranet) Θεωρήστε ένα δίκτυο μεταγωγής πακέτων. Όλες οι γραμμές (FDX) θεωρούνται χωρητικότητας C i = C = 10 Gbits/sec. Το μέσο μήκος του πακέτου είναι E L = 1000 bits (θεωρείστε εκθετική κατανομή). Μεταξύ κόμβων θεωρείστε προσφερόμενους ρυθμούς πακέτων Poisson, με ίσους ρυθμούς r packets/sec (από άκρο σε άκρο). Πακέτα από το Α στο C και αντίστροφα δρομολογούνται εξίσου στους δύο ισότιμους δρόμους: (A-B-C) και (A-D-C). Τα πακέτα μεταξύ κόμβων κατευθείαν συνδεδεμένων (A- B), (A-D), (B-D), (B-C), (D-C) δρομολογούνται κατευθείαν. (Α) Βρείτε το ρυθμό r ώστε η γραμμή συμφόρησης (με τη μέγιστη χρησιμοποίηση) να είναι 50% Α B D C (Β) Με το r του (Α) βρείτε τη μέση καθυστέρηση ενός τυχαίου πακέτου στο δίκτυο (από άκρο σε άκρο) ΟΔΗΓΙΑ: Οι FDX γραμμές του δικτύου κορμού αναλύονται σε δύο ουρές με ροές πακέτων συνολικού μέσου ρυθμού λ i (προκύπτει από την δρομολόγηση πακέτων) και μέσου ρυθμού εκθετικής εξυπηρέτησης μ i = C i E(L). To ανοικτό δίκτυο ουρών (επόμενη διαφάνεια) αναλύεται σαν δίκτυο ανεξαρτήτων ουρών Μ/Μ/1 με το Θεώρημα του Jackson Κόμβος Δικτύου Κορμού (Δρομολογητής Κορμού, Backbone Router, Packet Switch) Κόμβος Εισόδου (H/Y, Access Node, Customer Network - LAN)

ΕΦΑΡΜΟΓΗ: ΔΙΚΤΥΟ ΜΕΤΑΓΩΓΗΣ ΠΑΚΕΤΩΝ (2/2)