Τι είδαμε την προηγούμενη φορά

Σχετικά έγγραφα
HY118-Διακριτά Μαθηματικά

Τι είδαμε την προηγούμενη φορά

HY118- ιακριτά Μαθηµατικά

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

HY118- ιακριτά Μαθηµατικά

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

10/10/2016. Στατιστική Ι. 2 η Διάλεξη

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

15! 15! 12! (15 3)!3! 12!3! 12!2 3

Δεσμευμένη (ή υπο-συνθήκη) Πιθανότητα (Conditional Probability)

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Θεωρία Πιθανοτήτων & Στατιστική

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

HY118-Διακριτά Μαθηματικά

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

Στοχαστικές Στρατηγικές

B A B A A 1 A 2 A N = A i, i=1. i=1

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Υπολογιστικά & Διακριτά Μαθηματικά

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Μαθηματικά στην Πολιτική Επιστήμη:

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Θεωρία Πιθανοτήτων και Στατιστική

Λύσεις 2ης Ομάδας Ασκήσεων

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

Λύσεις 1ης Ομάδας Ασκήσεων

α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:

Θεωρία Πιθανοτήτων & Στατιστική

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

C(10,3) (10 3)!3! 7!3! 7!2 3

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

3/10/2016. Στατιστική Ι. 1 η Διάλεξη

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

Μέρος ΙΙ. Τυχαίες Μεταβλητές

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

Στατιστική Ι-Πιθανότητες ΙΙΙ

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται

Έντυπο Yποβολής Αξιολόγησης ΓΕ

1.1 Πείραμα Τύχης - δειγματικός χώρος

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

7. ιακϱιτή Πιϑανότητα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Transcript:

HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mal: argyros@csd.uoc.gr 07-May-18 1 1 07-May-18 2 2 Τι είδαμε την προηγούμενη φορά Μίατυχαία μεταβλητήvείναι κάθε μεταβλητή η τιμή της οποίας είναι άγνωστη, και η τιμή της οποίας εξαρτάται από τις συγκεκριμένες συνθήκες που επικρατούν κατά την εκτέλεση ενός πειράματος. Το πεδίο τηςv, dom[v] {v 1,,v n }, είναι το σύνολο όλων των δυνατών τιμών που η V μπορεί να πάρει. Ο δειγματικός χώροςωτου πειράματος είναι το πεδίο της τυχαίας μεταβλητής, Ω= dom[v](όπως είπαμε, το σύνολο όλων των δυνατών ενδεχομένων τιμών της). Ένα ενδεχόμενο Γ είναι ένα υποσύνολο του δειγματικού χώρου Ω Απλά / σύνθετα ενδεχόμενα Ασυμβίβαστα ενδεχόμενα Πιθανότητα: Αξιωματικός ορισμός Έστω p μία συνάρτηση p:ω [0,1] τέτοια ώστε sω p(s) = 1, και 0 p(s) 1, sω Τότε, η πιθανότητα κάθε ενδεχομένου ΓΩείναι: p( ): p( s) s 07-May-18 3 3 07-May-18 4 4 1

Έστω 1000 άτομα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Έστω επίσης ότι γνωρίζουμε ότι από τις 515 γυναίκες, οι 90 είναι φίλαθλοι και ότι από τους 485 άνδρες οι 302 είναι φίλαθλοι Πείραμα: τυχαία επιλογή ενός ατόμου. γφ: όλες οι γυναίκες φίλαθλοι γμ:όλες οι γυναίκες που δεν είναι φίλαθλοι αφ:όλοι οι άντρες φίλαθλοι αμ: όλοι οι άντρες που δεν είναι φίλαθλοι Δειγματικός χώρος Ω =γφγμαφαμ Τα γφ, γμ, αφ, αμ είναι ασυμβίβαστα, σύνθετα ενδεχόμενα η ένωση των οποίων δίνει το δειγματικό χώρο 07-May-18 5 5 07-May-18 6 6 Έστω 1000 άτομα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Ποια είναι η πιθανότητα να επιλέξουμε άτομο που είναι φίλαθλος ή είναι γυναίκα;(ω={γφ, γμ, αφ, αμ}) 1 ος τρόπος 2 ος τρόπος 3 ος τρόπος 07-May-18 7 7 07-May-18 8 8 2

Ποια είναι η πιθανότητα να επιλέξουμε άντρα που δεν είναι φίλαθλος ή γυναίκα που είναι φίλαθλος; 1 ος τρόπος Ανεξάρτητα ενδεχόμενα Δύο ενδεχόμενα E,Fονομάζονται ανεξάρτηταεάν και μόνο αν p(ef) = p(e) p(f). Διαισθητικά, δύο ενδεχόμενα είναι ανεξάρτητα αν και μόνο αν το να συμβεί το ένα δεν κάνει περισσότερο ή λιγότερο πιθανό το να συμβεί το άλλο. 2 ος τρόπος 07-May-18 9 9 07-May-18 10 10 Το προηγούμενοπαράδειγμά μας:έστω ότι 1000 άτομα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Σχέση ανεξάρτητων και ασυμβίβαστων ενδεχομένων Ερώτηση:Έστω δύο ασυμβίβαστα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Eίναι ανεξάρτητα; Φ Γ = φίλαθλη γυναίκα => p(φ Γ) = 0,09 p(φ) p(γ) = 0,201 Αρα τα Φ και Γ δεν είναι ανεξάρτητα 07-May-18 11 11 07-May-18 12 12 3

Σχέση ανεξάρτητων και ασυμβίβαστων ενδεχομένων Ερώτηση:Έστω δύο ασυμβίβαστα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Eίναι ανεξάρτητα; Όχι! Εφόσον p(α)>0 και p(b)>0 και ΑΒ =, τότε p(αβ) = 0 p(α)p(b). Άρα ενώ τα Α και Β είναι ασυμβίβαστα, δεν είναι ανεξάρτητα. Σχέση ανεξάρτητων και ασυμβίβαστων ενδεχομένων Ερώτηση: Έστω δύο ανεξάρτητα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Είναι κατ ανάγκη ασυμβίβαστα; 07-May-18 13 13 07-May-18 14 14 Ανεξάρτητα/ασυμβίβαστα ενδεχόμενα Ερώτηση:Έστω δύο ανεξάρτητα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Είναι κατ ανάγκη ασυμβίβαστα; Όχι! p(α)>0 και p(b)>0 Επίσης, εφόσον είναι ανεξάρτητα, p(αβ)=p(α)p(b) επομένως p(αβ) 0, Άρα ΑΒ Άρα ενώ τα Α και Β είναι ανεξάρτητα, δεν είναι ασυμβίβαστα. Δεσμευμένη πιθανότητα Έστω E, Fενδεχόμενα. Τότε, η δεσμευμένη πιθανότητα του E δεδομένου του F, συμβολίζεται μεp(e F), και ορίζεται ως p(e F) : p(ef)/p(f). Αυτή είναι η πιθανότητα να συμβεί το E, αν μας δοθεί η πληροφορία ότι το ενδεχόμενο F θα συμβεί (είναι γεγονός). 07-May-18 15 15 07-May-18 16 16 4

Δεσμευμένη πιθανότητα, παράδειγμα Δεσμευμένη πιθανότητα, παράδειγμα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; z k y u x s o p n φωνήεν w r a b c t d e f g h l j v q m Ω = τα γράμματα του Αγγλικού αλφαβήτου Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραμμάτων) = 6/26 z k y u x s o p n φωνήεν w r b c a t d e f g h l j v q m Ω = τα γράμματα του Αγγλικού αλφαβήτου 07-May-18 17 17 07-May-18 18 18 Δεσμευμένη πιθανότητα, παράδειγμα Δεσμευμένη πιθανότητα, παράδειγμα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραμμάτων) = 6/26 Τώρα, υποθέστε ότι σας λέω ότι το επιλεγμένο γράμμα ανήκει στα 9 πρώτα γράμματα του αλφαβήτου.τώρα, ποιά είναι η πιθανότητα το γράμμα να είναι φωνήεν, δοσμένης της επιπρόσθετης πληροφορίας; z k y u x s o p n φωνήεν 1 α 9 γράμματα w a b c r t e d f g h l j v q m Ω = τα γράμματα του Αγγλικού αλφαβήτου 07-May-18 19 19 Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; p(φ) = (#φωνηέντων) /(#γραμμάτων) = 6/26 Τώρα, υποθέστε ότι σας λέω ότι το επιλεγμένο γράμμα ανήκει στα 9 πρώτα γράμματα του αλφαβήτου. Τώρα, ποιά είναι η πιθανότητα το γράμμα να είναι φωνήεν, δοσμένης της επιπρόσθετης πληροφορίας; p(φ 9 πρώτα γράμματα) = (#φωνηέντων ΚΑΙ ανήκουν στα 91 α γράμματα) / 9 = 3/9. Άρα p(φ 9 πρώτα γράμματα) = 3/9 z k y u x s o p n φωνήεν 1 α 9 γράμματα w r b c a t d e f g h l j v q m Ω = τα γράμματα του Αγγλικού αλφαβήτου 07-May-18 20 20 5

Εξήγηση της δεσμευμένης πιθανότητας Δεσμευμένη πιθανότητα Η πιθανότητα να συμβεί το E είναι p(e) (pror probablty) Εάν μας δοθεί η πληροφορία ότι ένα ενδεχόμενο Fσυνέβη, τότε η προσοχή μας εστιάζεται στην περιοχή F. Επομένως, η πιθανότητα να συμβεί το E δεδομένου ότι το F συμβαίνει προσδιορίζεται από εκείνα τα στοιχεία του Ω για τα οποία το Ε και το F συμβαίνουν ταυτόχρονα. Επομένως, η εκ των υστέρων (posteror) πιθανότητα για το E, είναι p(e F)=p(E F)/p(F). Ενδεχόμενο E Ενδεχόμενο E F Ενδεχόμενο F Ω 07-May-18 21 21 07-May-18 22 22 Προσοχή! Δεσμευμένη πιθανότητα p( AB) p( A B) p( B) p( BA) p( B A) p( A) Επομένως, αν p(a) p(b), τότε p(a B) p(b A) Π.χ., έστω το πείραμα της ρίψης ενός ζαριού. Έστω Α = έφερα 5 και Β = έφερα περιττό αριθμό. Ποια είναι η p(a B); Ποια είναι η p(b A); p(a B)=1/3 ενώ p(b Α)=1 07-May-18 23 23 Έστω ότι ρίχνουμε ένα ζάρι τρεις φορές. Έστω τα ενδεχόμενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσμα} Ποια είναι η p(a B); p(a B)=p(A B)/p(B) p(b)=p(6,3)/6 3 = 6!/(3!*6 3 ) p(a B)=3 P(5,2)/6 3 = 3*5!/(3!*6 3 ) Άρα p(a B) = 3*5!/6! = 3/6= 1/2 07-May-18 24 24 6

Δεσμευμένη πιθανότητα Έστω ότι ρίχνουμε ένα ζάρι τρεις φορές. Έστω τα ενδεχόμενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσμα} Ποια είναι η p(β Α); Δεσμευμένη πιθανότητα Έστω ότι ρίχνουμε ένα ζάρι τρεις φορές. Έστω τα ενδεχόμενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσμα} Ποια είναι η p(β Α); p(β Α)=p(Β Α)/p(Α) p(α)=1-p(α) = 1-5 3 /6 3 Άρα 07-May-18 25 25 07-May-18 26 26 Δεσμευμένη πιθανότητα για ανεξάρτητα ενδεχόμενα Εάν ταeκαι Fείναι ανεξάρτητα ενδεχόμενα, τότε ισχύει ότι p(e F) = p(e). p(e F) = p(ef)/p(f) = p(e)p(f)/p(f) = p(e)...άρα, όταν δύο ενδεχόμενα είναι ανεξάρτητα μεταξύ τους, η γνώση ότι συνέβη το ένα δεν επηρεάζει την εκτίμηση της πιθανότητας να συμβεί το άλλο! Ανεξάρτητα ενδεχόμενα Έστω ότι ρίχνουμε δύο νομίσματα στη σειρά. Α= {το 1 ο νόμισμα τυχαίνει κορώνα (Κ)} Β= {το 2 ο νόμισμα τυχαίνει διαφορετικό αποτέλεσμααπό το 1 ο νόμισμα} Είναι τα Α, Β ανεξάρτητα; Ναι, γιατί p(a B) = ½= p(a) Επίσης, p(b A) = ½ = p(b) 07-May-18 27 27 07-May-18 28 28 7

Νόμος της ολικής πιθανότητας Για οποιαδήποτε δύο γεγονότα Εκαι F ισχύει ότι Ε = Ε Ω = Ε (FF) = (Ε F) (E F) Τα (Ε F) και (E F) είναι ασυμβίβαστα Επομένως p(ε)= p(ε F)+p(E F) και άρα p(ε) = p(e F)p(F) + p(e F)p(F) Νόμος της ολικής πιθανότητας Γενικότερα, έστω σύνολο nενδεχομένων F που αποτελούν διαμέρισητου δειγματικού χώρου Ω. Έστω επίσης, ένα ενδεχόμενο Ε. Τότε: n 1 p( E) p( E F) p( F) 07-May-18 29 29 07-May-18 30 30 Νόμος του Bayes Γνωρίζουμε ότι για ενδεχόμενα Ε, F: p( FE) p( F E) p( E) Επίσης: p( EF) p( E F) p( EF) p( E F) p( F) p( F) p( E F) p( F) p( F E) p( E) Νόμος του Bayes p( F E) p( E F) p( F) p( E) Thomas Bayes 1702-1761 Η βάση τωνbayesan μεθόδωνγια πιθανοκρατική εξαγωγή συμπερασμάτων.πολύ ισχυρή και διαδεδομένη μέθοδος στην τεχνητή νοημοσύνη: Γιαεξόρυξη δεδομένων (data mnng), αυτοματοποιημένη διάγνωση (automated dagnoss), αναγνώριση προτύπων (pattern recognton), στατιστική μοντελοποίηση (statstcal modelng)... Προκύπτει άμεσα από τον ορισμό της δεσμευμένης πιθανότητας 07-May-18 31 31 07-May-18 32 32 8

Νόμος του Bayes Επομένως, λαμβάνοντας υπόψη και το νόμο ολικής πιθανότητας, για ενδεχόμενο Ε και για σύνολο ενδεχομένων F που αποτελούν διαμέρισητου δειγματικού χώρου Ω, ο νόμος του Bayes μπορεί να γραφεί ως: p( F E) p( E F) p( F) n 1 p( E F) p( F) 07-May-18 33 33 Thomas Bayes 1702-1761 Δύο τσάντες τ 1 και τ 2, περιέχουν άσπρες και μαύρες μπάλες Στην τ 1 έχουμε 75 άσπρες μπάλες και 25 μαύρες. Στην τ 2 τσάντα έχουμε 75 μαύρες μπάλες και 25 άσπρες Επιλέγουμε τυχαία μία από τις δύο τσάντες. Από αυτή την τσάντα, επιλέγουμε τυχαία 5 μπάλες Το αποτέλεσμα είναι 5 άσπρες μπάλες. Ποιά είναι η πιθανότητα να έχουμε επιλέξει την τσάντα τ 1 ; γενικότερα, πως μπορώ από την έκβαση ενός πειράματος να προσδιορίσω την πιθανότητα των ενδεχομένων ενός άλλου πειράματος; 07-May-18 34 34 Λύση:Έστω το πείραμα επιλογής της τσάντας.ο δειγματικός χώρος του πειράματος είναι οω={τ 1,τ 2 }. Ξέρουμε ότιp(τ 1 )=p(τ 2 )=1/2 αφού επιλέγουμε τυχαία την τσάντα. ΈστωB το ενδεχόμενο 5άσπρες μπάλες επιλέχθηκαν. Τι πρέπει να υπολογίσουμε; Tην p(τ 1 B)η οποία, από τον κανόνα του Bayes είναι: p( B 1) p( 1) p( 1 ) p( B) 07-May-18 35 35 p( B 1) p( 1) p( B 1) p( 1) p( 1 ) p( B) p( B ) p( ) p( B ) p( ) p B 1 1 2 2 p( B ) C(75,5)/ C(100,5) 0,229 1 ( 1) 0,458 p( 1) 1/2 1/2 p B p( B ) C(25,5)/ C(100,5) 0,0007 2 ( 2) 0,0014 p( 2) 1/2 1/2 0,458 Άρα, p ( (!!!) 1 ) 0,997 0,4580,0014 07-May-18 36 36 9

Άλλο παράδειγμα Υποθέστε ότι ένα αλκοτέστ βγαίνει θετικό στο 95% των περιπτώσεων μέθης στο 3% των περιπτώσεων μη μέθης. Ας υποθέσουμε επίσης ότι γνωρίζουμε ότι το 0.5% των ανθρώπων οδηγούν μεθυσμένοι. Ποια είναι η πιθανότητα κάποιος να οδηγούσε μεθυσμένος δεδομένου ότι έκανε το τεστ και αυτό βγήκε θετικό; Κανόνας του Bayes Έστω«Μ» σημαίνει «οδηγώ μεθυσμένος» και«n» σημαίνει «οδηγώ νηφάλιος». Έστω«Θ» σημαίνει «θετικό αλκοτέστ» και«a» σημαίνει «αρνητικό αλκοτέστ». Θέλουμε να υπολογίσουμε την πιθανότητα p(m Θ) p( M) p( M) p( M ) p( ) p( M) p( M) p( M) p( M) p( N) p( N) 07-May-18 37 37 07-May-18 38 38 Άλλο παράδειγμα p(μ)= 0.005, εφόσον0.5% των ανθρώπων οδηγούν μεθυσμένοι. p(n)=1 P(Μ) = 0.995. p(θ Μ) = 0.95 : η πιθανότητα ότι το τεστ θα είναι θετικό δεδομένου ότι αυτός που το κάνει είναι μεθυσμένος p(θ Ν)=0.03, η πιθανότητα ότι το τεστ θα είναι θετικό δεδομένου ότι αυτός που το κάνει είναι νηφάλιος. 07-May-18 39 39 Επομένως Κανόνας του Bayes p( M ) p( M) p( M) p( ) p( M) p( M) p( M) p( M) p( N) p( N) 0.95* 0.005 0.137 0.95* 0.0050.03* 0.995 (!!!) 07-May-18 40 40 10

Έστω ότι σε ένα διαγώνισμα, θέλω να φτιάξω ένα θέμα με πολλαπλές επιλογές (έστω m). Θέλω να ξέρω πόσο πιστά η βαθμολόγηση ενός τέτοιου ερωτήματος αντανακλά τις πραγματικές σας γνώσεις Θεωρώ το ενδεχόμενο Γ = {ο φοιτητής γνωρίζει την σωστή απάντηση}. Έστω ότι p(γ) = p. Θεωρώ ότι αν ο φοιτητής δεν γνωρίζει τη σωστή απάντηση, δίνει κάποια τυχαία απάντηση. Έστω το γεγονός Σ = {ο φοιτητής απαντά σωστά} Επομένως, με ενδιαφέρει να διερευνήσω την πιθανότητα p(γ Σ). Προσέξτε ότι: 07-May-18 41 41 07-May-18 42 42 11