HY118- ιακριτά Μαθηµατικά
|
|
- Άρκτοφόνος Παπαϊωάννου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HY118- ιακριτά Μαθηµατικά Πέµπτη, 12/05/2016 Αντώνης Α. Αργυρός 5/13/
2 Θεωρία πιθανοτήτων 5/13/
3 Τι είδαµε την προηγούµενη φορά Μίατυχαία µεταβλητή Vείναι κάθε µεταβλητή η τιµή της οποίας είναι άγνωστη, και η τιµή της οποίας εξαρτάται από τις συγκεκριµένες συνθήκες που επικρατούν κατά την εκτέλεση ενός πειράµατος. Το πεδίο της V, dom[v] {v 1,,v n }, είναι το σύνολο όλων των δυνατών τιµών που η V µπορεί να πάρει. Ο δειγµατικός χώροςωτου πειράµατος είναι το πεδίο της τυχαίας µεταβλητής, Ω = dom[v] (όπως είπαµε, το σύνολο όλων των δυνατών ενδεχοµένων τιµών της). Ένα ενδεχόµενο Γ είναι ένα υποσύνολο του δειγµατικού χώρου Ω Απλά / σύνθετα ενδεχόµενα Ασυµβίβαστα ενδεχόµενα 5/13/
4 Πιθανότητα: Αξιωµατικός ορισµός Έστω p µία συνάρτηση p:ω [0,1] τέτοια ώστε s Ω p(s) = 1, και 0 p(s) 1, s Ω Τότε, η πιθανότητα κάθε ενδεχοµένου Γ Ω είναι: p( ) : p( s) Γ s Γ 5/13/
5 Παράδειγµα Έστω 1000 άτοµα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Έστω επίσης ότι γνωρίζουµε ότι από τις 515 γυναίκες, οι 90 είναι φίλαθλοι και ότι από τους 485 άνδρες οι 302 είναι φίλαθλοι Πείραµα: τυχαία επιλογή ενός ατόµου. 5/13/
6 Παράδειγµα γφ: όλες οι γυναίκες φίλαθλοι γµ: όλες οι γυναίκες που δεν είναι φίλαθλοι αφ: όλοι οι άντρες φίλαθλοι αµ: όλοι οι άντρες που δεν είναι φίλαθλοι ειγµατικός χώρος Ω =γφ γµ αφ αµ Τα γφ, γµ, αφ, αµ είναι ασυµβίβαστα, σύνθετα ενδεχόµενα η ένωση των οποίων δίνει το δειγµατικό χώρο 5/13/
7 Παράδειγµα Έστω 1000 άτοµα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. 5/13/
8 Παράδειγµα Ποια είναι η πιθανότητα να επιλέξουµε άτοµο που είναι φίλαθλος ήείναι γυναίκα; (Ω={γφ, γµ, αφ, αµ}) 1 ος τρόπος 2 ος τρόπος 3 ος τρόπος 5/13/
9 Παράδειγµα Ποια είναι η πιθανότητα να επιλέξουµε άντρα που δεν είναι φίλαθλος ή γυναίκα που είναι φίλαθλος; 1 ος τρόπος 2 ος τρόπος 5/13/
10 Ανεξάρτητα ενδεχόµενα ύο ενδεχόµενα E, Fονοµάζονταιανεξάρτηταεάν και µόνο αν p(e F) = p(e) p(f). ιαισθητικά, δύο ενδεχόµενα είναι ανεξάρτητα αν και µόνο αν το να συµβεί το ένα δεν κάνει περισσότερο ή λιγότερο πιθανό το να συµβεί το άλλο. 5/13/
11 Παράδειγµα Το προηγούµενοπαράδειγµά µας:έστω ότι 1000 άτοµα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Φ Γ = φίλαθλη γυναίκα => p(φ Γ) = 0,09 p(φ) p(γ) = 0,201 Αρα τα Φ και Γ δεν είναι ανεξάρτητα 5/13/
12 Ανεξάρτητα/ασυµβίβαστα ενδεχόµενα Ερώτηση:Έστω δύο ασυµβίβαστα ενδεχόµενα Α και Β µε p(a)>0 και p(β)>0. Eίναι ανεξάρτητα; 5/13/
13 Ανεξάρτητα/ασυµβίβαστα ενδεχόµενα Ερώτηση:Έστω δύο ασυµβίβαστα ενδεχόµενα Α και Β µε p(a)>0 και p(β)>0. Eίναι ανεξάρτητα; Όχι! Εφόσον p(α)>0 και p(b)>0 και Α Β =, τότε p(α Β) = 0 p(α)p(b). Άρα ενώ τα Α και Β είναι ασυµβίβαστα, δεν είναι ανεξάρτητα. 5/13/
14 Ανεξάρτητα/ασυµβίβαστα ενδεχόµενα Ερώτηση: Έστω δύο ανεξάρτητα ενδεχόµενα Α και Β µε p(a)>0 και p(β)>0. Είναι κατ ανάγκη ασυµβίβαστα; 5/13/
15 Ανεξάρτητα/ασυµβίβαστα ενδεχόµενα Ερώτηση:Έστω δύο ανεξάρτητα ενδεχόµενα Α και Β µε p(a)>0 και p(β)>0. Είναι κατ ανάγκη ασυµβίβαστα; Όχι! p(α)>0 και p(b)>0 Επίσης, εφόσον είναι ανεξάρτητα, p(α Β)=p(Α)p(B) εποµένως p(α Β) 0, Άρα Α Β Άρα ενώ τα Α και Β είναι ανεξάρτητα, δεν είναι ασυµβίβαστα. 5/13/
16 εσµευµένη πιθανότητα Έστω E, Fενδεχόµενα. Τότε, ηδεσµευµένη πιθανότητατου E δεδοµένου του F, συµβολίζεται µε p(e F), και ορίζεται ως p(e F) : p(e F)/p(F). Αυτή είναι η πιθανότητα να συµβεί το E, αν µας δοθεί η πληροφορία ότι το ενδεχόµενο F θα συµβεί (είναι γεγονός). 5/13/
17 εσµευµένη πιθανότητα, παράδειγµα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράµµα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράµµα να είναι φωνήεν; z k x s p φωνήεν y u o n w a e i j b d h v c f g q r t l m Ω = τα γράµµατα του Αγγλικού αλφαβήτου 5/13/
18 εσµευµένη πιθανότητα, παράδειγµα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράµµα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράµµα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραµµάτων) = 6/26 z x s p k φωνήεν y u o n w a i j e b h v d g c q f r t l m Ω = τα γράµµατα του Αγγλικού αλφαβήτου 5/13/
19 εσµευµένη πιθανότητα, παράδειγµα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράµµα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράµµα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραµµάτων) = 6/26 Τώρα, υποθέστε ότι σας λέω ότι το επιλεγµένο γράµµα ανήκει στα 9 πρώτα γράµµατα του αλφαβήτου.τώρα, ποιά είναι η πιθανότητα το γράµµα να είναι φωνήεν, δοσµένης της επιπρόσθετης πληροφορίας; z x s p k φωνήεν y u o n w a i j e b h v d 1 α 9 γράµµατα g c q f r t l m Ω = τα γράµµατα του Αγγλικού αλφαβήτου 5/13/
20 εσµευµένη πιθανότητα, παράδειγµα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράµµα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράµµα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραµµάτων) = 6/26 Τώρα, υποθέστε ότι σας λέω ότι το επιλεγµένο γράµµα ανήκει στα 9 πρώτα γράµµατα του αλφαβήτου.τώρα, ποιά είναι η πιθανότητα το γράµµα να είναι φωνήεν, δοσµένης της επιπρόσθετης πληροφορίας; p(φ 9 πρώτα γράµµατα) = (#φωνηέντων ΚΑΙ ανήκουν στα 9 1 α γράµµατα) / 9 = 3/9. Άρα p(φ 9 1 α γράµµατα) = 3/9 5/13/ z x s p k φωνήεν y u o n w a i j e b h v d 1 α 9 γράµµατα g c q f r t l m Ω = τα γράµµατα του Αγγλικού αλφαβήτου
21 Εξήγηση της δεσµευµένης πιθανότητας Η πιθανότητα να συµβεί το E είναι p(e) (prior probability) Εάν µας δοθεί η πληροφορία ότι ένα ενδεχόµενο Fσυνέβει, τότε η προσοχή µας εστιάζεται στην περιοχή F. Εποµένως, η πιθανότητα να συµβεί το E δεδοµένου ότι το F συµβαίνει προσδιορίζεται από εκείνα τα στοιχεία του Ω για τα οποία το Ε και το F συµβαίνουν ταυτόχρονα. Εποµένως, η εκ των υστέρων (posterior) πιθανότητα για το E, είναι p(e F)=p(E F)/p(F). Ενδεχόµενο E Ενδεχόµενο E F Ενδεχόµενο F Ω 5/13/
22 εσµευµένη πιθανότητα 5/13/
23 Προσοχή! p( A B) = p( B A) p( B A) = p( A) Εποµένως, αν p(a) p(b), τότε p(a B) p(b A) Π.χ., έστω το πείραµα της ρίψης ενός ζαριού. Έστω Α = έφερα 5 και Β = έφερα περιττό αριθµό. Ποια είναι η p(a B); Ποια είναι η p(b A); p(a B)=1/3 ενώ p(b Α)=1 p( A B) p( B) 5/13/
24 εσµευµένη πιθανότητα Έστω ότι ρίχνουµε ένα ζάρι τρεις φορές. Έστω τα ενδεχόµενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσµα} Ποια είναι η p(a B); p(a B)=p(A B)/p(B) p(b)=p(6,3)/6 3 = 6!/(3!*6 3 ) p(a B)=3 P(5,2)/6 3 = 3*5!/(3!*6 3 ) Άρα p(a B) = 3*5!/6! = 3/6= 1/2 5/13/
25 εσµευµένη πιθανότητα Έστω ότι ρίχνουµε ένα ζάρι τρεις φορές. Έστω τα ενδεχόµενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσµα} Ποια είναι η p(β Α); 5/13/
26 εσµευµένη πιθανότητα Έστω ότι ρίχνουµε ένα ζάρι τρεις φορές. Έστω τα ενδεχόµενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσµα} Ποια είναι η p(β Α); p(β Α)=p(Β Α)/p(Α) p(α)=1-p(α) = /6 3 Άρα 5/13/
27 εσµευµένη πιθανότητα για ανεξάρτητα ενδεχόµενα Εάν τα Eκαι Fείναι ανεξάρτητα ενδεχόµενα, τότε ισχύει ότι p(e F) = p(e). p(e F) = p(e F)/p(F) = p(e)p(f)/p(f) = p(e)...άρα, όταν δύο ενδεχόµενα είναι ανεξάρτητα µεταξύ τους, η γνώση ότι συνέβη το ένα δεν επηρεάζει την εκτίµηση της πιθανότητας να συµβεί το άλλο! 5/13/
28 Ανεξάρτητα ενδεχόµενα Έστω ότι ρίχνουµε δύο νοµίσµατα στη σειρά. Α= {το 1 ο νόµισµα τυχαίνει κορώνα (Κ)} Β= {το 2 ο νόµισµα τυχαίνει διαφορετικό αποτέλεσµααπό το 1 ο νόµισµα} Είναι τα Α, Β ανεξάρτητα; Ναι, γιατί p(a B) = ½ = p(a) Επίσης, p(b A) = ½ = p(b) 5/13/
29 Νόµος της ολικής πιθανότητας Για οποιαδήποτε δύο γεγονότα Ε και F ισχύει ότι Ε = Ε Ω = Ε (F F) = (Ε F) (E F) Τα (Ε F) και (E F) είναι ασυµβίβαστα Εποµένως p(ε) = p(ε F) + p(e F) και άρα p(ε) = p(e F)p(F) + p(e F)p(F) 5/13/
30 Νόµος της ολικής πιθανότητας Γενικότερα, έστω σύνολο nενδεχοµένων F i που αποτελούν διαµέρισητου δειγµατικού χώρου Ω. Έστω επίσης, ένα ενδεχόµενο Ε. Τότε: n = p( E) p( E F ) p( F ) i= 1 i i 5/13/
31 Νόµος του Bayes Γνωρίζουµε ότι για ενδεχόµενα Ε, F: Επίσης: p( F E) p( F E) = p( E) p( E F) p( E F) = p( E F) = p( E F) p( F) p( F) p( E F) p( F) p( F E) = p( E) 5/13/
32 Νόµος του Bayes Thomas Bayes p( F E) = p( E F) p( F) p( E) Η βάση των Bayesian µεθόδωνγια πιθανοκρατική εξαγωγή συµπερασµάτων.πολύ ισχυρή και διαδεδοµένη µέθοδος στην τεχνητή νοηµοσύνη: Γιαεξόρυξη δεδοµένων (data mining), αυτοµατοποιηµένη διάγνωση (automated diagnosis), αναγνώριση προτύπων (pattern recognition), στατιστική µοντελοποίηση (statistical modeling)... Προκύπτει άµεσα από τον ορισµό της δεσµευµένης πιθανότητας 5/13/
33 Νόµος του Bayes Thomas Bayes Εποµένως, λαµβάνοντας υπόψη και το νόµο ολικής πιθανότητας, για ενδεχόµενο Ε και για σύνολο ενδεχοµένων F i που αποτελούν διαµέρισητου δειγµατικού χώρου Ω, ο νόµος του Bayes µπορεί να γραφεί ως: p( F E) i = p( E F ) p( F ) n i= 1 i p( E F ) p( F ) i i i 5/13/
34 Παράδειγµα ύο τσάντες τ 1 και τ 2, περιέχουν άσπρες και µαύρες µπάλες Στην τ 1 έχουµε 75 άσπρες µπάλες και 25 µαύρες. Στην τ 2 τσάντα έχουµε 75 µαύρες µπάλες και 25 άσπρες Επιλέγουµε τυχαία µία από τις δύο τσάντες. Από αυτή την τσάντα, επιλέγουµε τυχαία 5 µπάλες Το αποτέλεσµα είναι 5 άσπρες µπάλες. Ποιά είναι η πιθανότητα να έχουµε επιλέξει την τσάντα τ 1 ; γενικότερα, πως µπορώ από την έκβαση ενός πειράµατος να προσδιορίσω την πιθανότητα των ενδεχοµένων ενός άλλου πειράµατος; 5/13/
35 Παράδειγµα Λύση:Έστω το πείραµα επιλογής της τσάντας.ο δειγµατικός χώρος του πειράµατος είναι οω={τ 1,τ 2 }. Ξέρουµε ότι p(τ 1 )=p(τ 2 )=1/2 αφού επιλέγουµε τυχαία την τσάντα. Έστω B το ενδεχόµενο 5άσπρες µπάλες επιλέχθηκαν. Τι πρέπει να υπολογίσουµε; Tην p(τ 1 B)η οποία, από τον κανόνα του Bayes είναι: p( B τ1) p( τ1) p( τ1 Β ) = p( B) 5/13/
36 Παράδειγµα p( B τ1) p( τ1) p( B τ1) p( τ1) p( τ1 Β ) = = p( B) p( B τ ) p( τ ) + p( B τ ) p( τ ) p B τ p( B τ ) C(75,5) / C(100,5) 0, ( 1) = = = = 0, 458 p( τ1) 1/ 2 1/ 2 p( B τ ) C(25,5) / C(100,5) 0, ( τ 2) = = = = 0, 0014 p( τ 2) 1/ 2 1/ 2 p B 0,458 Άρα, pτ ( (!!!) 1 Β ) = = 0,997 0, , /13/
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 07-May-18 1 1 Θεωρία πιθανοτήτων 07-May-18 2 2 Τι είδαμε την προηγούμενη φορά Μία τυχαία μεταβλητή Vείναι κάθε
Διαβάστε περισσότεραΤι είδαμε την προηγούμενη φορά
HY8-Διακριτά Μαθηματικά Πέμπτη, 04/05/207 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mal: argyros@csd.uoc.gr 04-May-7 04-May-7 2 2 Τι είδαμε την προηγούμενη φορά Μίατυχαία μεταβλητήvείναι κάθε μεταβλητή η
Διαβάστε περισσότεραΤι είδαμε την προηγούμενη φορά
HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mal: argyros@csd.uoc.gr 07-May-18 1 1 07-May-18 2 2 Τι είδαμε την προηγούμενη φορά Μίατυχαία μεταβλητήvείναι κάθε
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 10/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/11/2016 1 1 Θεωρία πιθανοτήτων 5/11/2016 2 2 Γιατί πιθανότητες; Στον προτασιακό και κατηγορηµατικό λογισµό µιλήσαµε
Διαβάστε περισσότεραΓιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.
HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό
Διαβάστε περισσότεραΕισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την
Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε
Διαβάστε περισσότεραΠιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 εσµευµένη Πιθανότητα Πολλαπλασιαστικός Νόµος Ανεξάρτητα Γεγονότα Θεώρηµα Ολικής Πιθανότητας Κανόνας Bayes
Διαβάστε περισσότεραΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ
ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Γνωριµία και ερµηνεία των πιθανοτήτων Χρήση σε πρακτικά προβλήµατα και σε θέµατα στατιστικής συµπερασµατολογίας. Προσθετικός και πολλαπλασιαστικός κανόνας των πιθανοτήτων Έννοια της
Διαβάστε περισσότερα7. ιακϱιτή Πιϑανότητα
7. ιακϱιτή Πιϑανότητα Rosen, Κεϕ. 7 Γιάννης Εµίϱης Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέµϐϱιος 2017 Εισαγωγή στη ιακϱιτή πιϑανότητα Θεωϱία πιϑανοτήτων εσµευµένη πιϑανότητα Ανεξάϱτητα Γεγονότα
Διαβάστε περισσότεραΠιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται
Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται το τυχαίο I do not believe that God rolls dice Μακροσκοπική
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:
Διαβάστε περισσότεραΟι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά
Εισαγωγή Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά μοντέλα, είτε σε στοχαστικά ή αλλοιώς πιθανοτικά μοντέλα. προσδιοριστικά μοντέλα : επιτρέπουν προσδιορισμό
Διαβάστε περισσότεραΤμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος
Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα
Διαβάστε περισσότερα3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων :
3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ. Σχετική συχνότητα ενδεχοµένου Α : Είναι το πηλίκο f κ A = ν ενδεχόµενου Α σε ν το πλήθος εκτελέσεις του πειράµατος όπου κ το πλήθος των πραγµατοποιήσεων του. Ιδιότητες
Διαβάστε περισσότεραΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ
κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε
Διαβάστε περισσότεραΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:
Διαβάστε περισσότεραΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ
Τµ. Επιστήµης των Υλικών εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο
Διαβάστε περισσότεραΜάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.
Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες
Διαβάστε περισσότερα3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ
. Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε
Διαβάστε περισσότερα5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ
1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων
Διαβάστε περισσότεραΠερίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα
Διαβάστε περισσότεραΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική
Διαβάστε περισσότερα1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Διαβάστε περισσότεραΜαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες
Διαβάστε περισσότερα10/10/2016. Στατιστική Ι. 2 η Διάλεξη
Στατιστική Ι 2 η Διάλεξη 1 2 Δεσμευμένη πιθανότητα του Α δοθέντος του Β (1) Αν Α και Β δύο ενδεχόμενα του δειγματικού χώρου Ω ενός πειράματος τύχης και P(Β)>0, τότε η δεσμευμένη πιθανότητα του Α δοθέντος
Διαβάστε περισσότεραΜαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)
Διαβάστε περισσότεραΣτατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΤ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.
Διαβάστε περισσότεραΣχολικός Σύµβουλος ΠΕ03
Α Σ Κ Η Σ Ε Ι Σ Π Ι Θ Α Ν Ο Τ Η Τ Ω Ν ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ0 e-mail@p-theodoropoulos.gr Πρόλογος Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηµατικών µε πολλά
Διαβάστε περισσότεραΣτέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.
Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
. Να βρείτε το δειγµατικό χώρο της ρίψης ενός ζαριού.. Επιλέγουµε ένα µαθητή Λυκείου και σηµειώνουµε το φύλο και την τάξη του. Να βρείτε το δειγµατικό χώρο Ω του πειράµατος. 3. Τραβάµε ένα φύλλο από µία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου
Διαβάστε περισσότερα5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ
1 5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ ΘΕΩΡΙΑ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος
Διαβάστε περισσότερα3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα
Διαβάστε περισσότεραΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος
Διαβάστε περισσότεραΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει
Διαβάστε περισσότερα(365)(364)(363)...(365 n + 1) (365) k
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι
Διαβάστε περισσότεραΘεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Διαβάστε περισσότεραΒιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου
Διαβάστε περισσότεραΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη
Διαβάστε περισσότεραΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 2 Νοεµβρίου 2009 1.3. Ας ϑεωρήσουµε ένα σύνολο 11 ατόµων {α 0, α 1,..., α 10 } των οποίων καταγράφουµε τα γενέθλια. Να υπολογισθεί
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε
Διαβάστε περισσότερα3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.
3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από
Διαβάστε περισσότεραΠιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων
Διαβάστε περισσότερα5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:
Διαβάστε περισσότεραΣτατιστική Ι-Πιθανότητες ΙΙΙ
Στατιστική Ι-Πιθανότητες ΙΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 7 Νοεμβρίου 2012 Περιγραφή 1 Θεωρία Πιθανοτήτων ΙΙΙ Πιθανοτήτες κατά Bayes Περιγραφή
Διαβάστε περισσότεραΠιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Ορισµός Πιθανότητας Στοιχεία Συνδυαστικής Κλασικός Ορισµός της Πιθανότητας Εστω Ω ο δειγµατοχώρος ενός πειράµατος
Διαβάστε περισσότεραÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε
Διαβάστε περισσότεραΠιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης
Διαβάστε περισσότεραΜαθηματικά στην Πολιτική Επιστήμη:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.4 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙV). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ
ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 0 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σχολικό βιβλίο σελ. 8 Α. Θεωρία, σχολικό βιβλίο σελ. 4 Α. Θεωρία, σχολικό βιβλίο σελ. 87 Α4.
Διαβάστε περισσότερα1.1 Πείραμα Τύχης - δειγματικός χώρος
1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραP (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 2 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Μία κότα ϑέλει να διασχίσει το
Διαβάστε περισσότεραεσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα 3. Επιλέγουµε έναν που δεν είναι άνεργος. Ποια είναι η πιθανότητα να είναι πτυχιούχος; = 0.
Τµήµα Επιστήµης των Υλικών Μάθηµα: Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες ιδάσκων: Κ. Πετρόπουλος εσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα Παράδειγµα. Το 0% του ενεργού πληθυσµού (εργαζόµενοι
Διαβάστε περισσότεραΦροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015
Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 7 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Διαβάστε περισσότεραΒιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016
Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου
Διαβάστε περισσότερα3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.
1 3.1 ΕΙΓΜΤΙΚΟΣ ΧΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων του πειράµατος
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διαβάστε περισσότερα2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-
Διαβάστε περισσότεραΒασικά στοιχεία της θεωρίας πιθανοτήτων
Η έννοια του Πειράµατος Τύχης. 9 3 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ήδειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοω ή s του δειγµατικού χώρου
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0
ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα
Διαβάστε περισσότεραΣυνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016
HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Σύνθετο Πείραµα Πείραµα:Οποιαδήποτε διαδικασίαπου µπορεί να οδηγήσει σε ένα
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΠιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους
Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν
Διαβάστε περισσότερα1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ
1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διαβάστε περισσότεραΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας
ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά
Διαβάστε περισσότεραΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου
Διαβάστε περισσότεραΠ Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να
Διαβάστε περισσότερα3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε
ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.
Διαβάστε περισσότεραΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε
Διαβάστε περισσότεραα) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:
ΘΕΜΑ 2 (479) α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii) B Γ iii) (A B) Γ iv) A (Μονάδες 12) β) Στο παρακάτω
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Διαβάστε περισσότεραVio ar a t a d o l a R 3 1 3 2 2 1 2 3 1 = {( x1, x2, x3) / x1 1, x2 2, x3 3} B A B A; B C 2 1 H = {(, 2) / 1 + 2 1 12} H = {(, 2) / 1 + 2 1 > 12} Euler H = {(, 2) / 1 + 2 1 12} H = {(
Διαβάστε περισσότεραΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών
ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών Οι σχετικές συχνότητες πραγματοποίησης των ενδεχομένων ενός πειράματος σταθεροποιούνται γύρω από κάποιους αριθμούς
Διαβάστε περισσότεραΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως
Διαβάστε περισσότεραB A B A A 1 A 2 A N = A i, i=1. i=1
Κεφάλαιο 2 Χώρος πιθανότητας και ενδεχόμενα 2.1 Προκαταρκτικά Εστω ότι κάποιος μας προτείνει να του δώσουμε δυόμισι ευρώ για να παίξουμε το εξής παιχνίδι: Θα στρίβουμε ένα νόμισμα μέχρι την πρώτη φορά
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι: Ρ (Α Β ) = Ρ (Α) Ρ (Α Β ). Μονάδες 7 Α. Πότε δύο ενδεχόµενα
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Tόμος 5ος 22-0088_l_c_math_bm_146-192_28b.indd 1 18/09/2017 10:10 ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Επ. Σύμβουλος Παιδαγωγικού
Διαβάστε περισσότεραΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα
Διαβάστε περισσότεραΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών
Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας
Διαβάστε περισσότεραΘέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn
Διαβάστε περισσότεραC(10,3) (10 3)!3! 7!3! 7!2 3
Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 8/5/2018 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. Υπολογίστε την πιθανότητα: (α) Κανείς
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)
Διαβάστε περισσότεραΩ ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΠΑΡΑΣΚΕΥΗ, 24 ΜΑΡΤΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Να αποδείξετε
Διαβάστε περισσότεραΠεριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή
Διαβάστε περισσότερα