Chapter 5 - The Fourier Transform

Σχετικά έγγραφα
Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Sequential Bayesian Search Appendices

Fourier Series. Fourier Series

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Appendix A. Stability of the logistic semi-discrete model.

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

POISSON PROCESSES. Ανάλυση και Μοντελοποίηση Δικτύων - Ιωάννης Σταυρακάκης / Αντώνης Παναγάκης (ΕΚΠΑ) 1 COUNTING (ARRIVAL) PROCESS

POISSON PROCESSES. N t (ω) {N t (ω);t>0} defined d on some sample space Ω is called a. that: t 1 t 2 t 3 t 4

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi


POISSON PROCESSES. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης ικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 1

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Matrices and Determinants

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

Pairs of Random Variables

LAPLACE TRANSFORM TABLE

h(t) δ(t+3) ( ) h(t)*δ(t)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Reflection & Transmission

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Ψηφιακή Επεξεργασία Σήματος. Γιάννης Κοψίνης Γραφείο: Ι (γιώτα) 3, (Δευτέρα 14:00-15:00)

webpage :

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Lecture 12 Modulation and Sampling

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

UNIT 13: TRIGONOMETRIC SERIES

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

HMY 220: Σήματα και Συστήματα Ι

Outline. Detection Theory. Background. Background (Cont.)

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

16 Electromagnetic induction

ECE 222b Applied Electromagnetics Notes Set 3b

Ψηφιακή Επεξεργασία Εικόνας

Inverse trigonometric functions & General Solution of Trigonometric Equations

EGR 544 Communication Theory

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

IIT JEE (2013) (Trigonomtery 1) Solutions

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Homework 8 Model Solution Section

6.003: Signals and Systems

Probability and Random Processes (Part II)

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

On Quasi - f -Power Increasing Sequences

Parts Manual. Trio Mobile Surgery Platform. Model 1033

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

From the course textbook, Power Electronics Circuits, Devices, and Applications, Fourth Edition, by M.S. Rashid, do the following problems

ω = radians per sec, t = 3 sec

CRASH COURSE IN PRECALCULUS

HMY 220: Σήματα και Συστήματα Ι

6.003: Signals and Systems. Modulation

Κλασσική Θεωρία Ελέγχου

ECE 222b Applied Electromagnetics Notes Set 3a

= 0.927rad, t = 1.16ms

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

General theorems of Optical Imaging systems

Finite Field Problems: Solutions

Solve the difference equation

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Computing Gradient. Hung-yi Lee 李宏毅

1. Τριγωνοµετρικές ταυτότητες.

Trigonometric Formula Sheet

derivation of the Laplacian from rectangular to spherical coordinates

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

Section 8.3 Trigonometric Equations

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Math 6 SL Probability Distributions Practice Test Mark Scheme

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Ψηφιακή Επεξεργασία Φωνής

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ

Srednicki Chapter 55

Novel rotor position detection method of line back EMF for BLDCM

Fourier Transform. Fourier Transform

Bessel function for complex variable

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Original Lambda Lube-Free Roller Chain

Digital Signal Octave Codes (0B)

Math221: HW# 1 solutions

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

και τα οφέλη για τον τομέα ανάπτυξης γης και οικοδομών

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

I haven t fully accepted the idea of growing older

Transcript:

M. J. Robrs - /7/ Chapr 5 - Th ourir Trasorm Soluios (I his soluio maual, h symbol,, is usd or priodic covoluio bcaus h prrrd symbol which appars i h x is o i h o slcio o h word procssor usd o cra his maual.). Th rasiio rom h CTS o h CTT is illusrad by h sigal, or x()= rc comb w T T ()= x T rc w =. Th complx CTS or his sigal is giv by X[ k]= Aw kw sic T T. Plo h modiid CTS, [ ]= ( ), T X k Awsic w k or w = ad = 5.,. ad. vrsus k or h rag < k <. 5-

M. J. Robrs - /7/ T X[k] - k T X[k] - k - = 5. T X[k] - k T X[k] - k - =. T X[k] - k T X[k] - k - =. 5-

M. J. Robrs - /7/. Suppos a ucio, m( x), has uis o kg 3 ad is a ucio o spaial posiio, x, i m mrs. Wri h mahmaical xprssio or is CTT, M( y). Wha ar h uis o M ad y? M = yx y m x dx Th uis o M ar kg m ad h uis o y ar m. 3. Usig h igral diiio o h ourir rasorm, id h CTT o hs ucios. (a) x()= ri() = () = ( + ) X ri d cos si d X( )= ( cos ) d = cos d cos d X si cos d = si X( )= + si cos = ( ) ( ) cos X( )= si d d si d = ( ) cos x Th, usig si( x) si( y)= [ cos( x y) cos( x + y) ] si ( x )= ( ) si X( )= = sic ( ) 5-3

M. J. Robrs - /7/ (b) x()= δ+ δ X= + d si δ δ = =. I igur E hr is o xampl ach o a lowpass, highpass, badpass ad badsop sigal. Idiy hm. x() (a) x() (b) x() (c) x() (d) (a) (b) (c) (d) badsop badpass lowpass highpass igur E Sigals wih dir rqucy co 5. Sarig wih h diiio o h CTT id h radia-rqucy orm o h gralizd CTT o a cosa. Th vriy ha a chag o variabl, ω, yilds h corrc rsul i cyclic-rqucy orm. Chck your aswr agais h ourir rasorm abl i Appdix E. L g()= A. Th = = G A ω σ ω d lim A cos ω si ω d + σ σ G lim A σ ( ω)= { cos( ω) d si( ω) d σ + v 3 { v 3 v odd 5-

M. J. Robrs - /7/ = σ G ω lim A cos ω d σ + = σ G ω lim A cos ω d σ + az az Usig cos( bz) dz= ( acos( bz)+ bsi( bz) ), a + b σ or ω, lim A =. σ σ ω + + σ G( ω)= lim A si cos σ ω ω ω σ ω + σ + ( ) σ G( ω)= lim A σ + σ + ω σ Th ara udr A σ + ω is Ara = σ A d σ + ω ω. Usig dx bx = a a + b x ab a ω Ara = Aσ a A =. σ σ Thror h CTT pair is A Aδ ω. or h orm h pair is Lig = ω i h scod pair, A Aδ. A Aδ ω A = δ ( ω ). QED. 5-5

M. J. Robrs - /7/ 6. Sarig wih h diiio o h CTT, id h gralizd CTT o a si o h orm, Asi( ω ) ad chck your aswr agais h rsuls giv abov. Chck your aswr agais h ourir rasorm abl i Appdix E. ()= L g Asi. Th ω = ( ) = ( ) + G Asi ω σ ω ω d lim A si ω cos ω si ω d σ σ G A lim σ ( ω)= { si( ω ) cos( ω) d si( ω ) si( ω) d σ + v 3 3 { v 3 3 odd v odd odd = σ G ω A lim si ω si ω d σ + σ + σ G( ω)=a lim cos( ( ω ω) ) cos( ( ω + ω) ) d az az Usig cos( bz) dz= acos bz bsi bz a + b [ ] ( + ) σ si cos σ ω ω ω (( ω ω ) ) σ (( ω ω ) ) + ( ) G( ω)=a lim+ σ σ si cos σ + ( ω + ω) ω (( ω + ω ) ) σ ( ω + ω ) ( ) σ σ G( ω)=alim lim + + σ σ + ( ω ω) σ σ + ( ω + ω) By h sam rasoig as i Exrcis 5, wh ω ω, G( ω)= lim σ + ad, whω ω G( ω)= lim σ + σ σ + ω ω = σ =. σ + ω + ω 5-6

M. J. Robrs - /7/ Th aras udr hs ucios ar Ara σω d =A σlim + σ + ω ω σω d ad Ara =A σlim + σ + ω + ω Makig h chag o variabl, ω ω = λ dω = d λ, i h irs igral, Ara σλ d =A σlim + σ + λ =A Similarly, Ara = σλ d A σlim + σ + λ = A. Ths aras ar idpd o h valu o σ. Thror [ ] G( ω)= A δ( ω + ω)δ( ωω ). QED. 7. id h CTS ad CTT o ach o hs priodic sigals ad compar h rsuls. Ar idig h rasorms, ormula a gral mhod o covrig bw h wo orms or priodic sigals. ()= (a) x Acos A Th CTS is simply wo impulss, X[ k]= ( δ[ k]+ δ [ k + ] ). A Th CTT is X( )= ( δ( )+ δ( + ) )= X[] δ( )+ X[ ] δ ( + ). ()= () (b) x comb Th CTS is oud rom X = [ ] ( ) X k δ k k = 5-7

M. J. Robrs - /7/ T ( k ) ( k ) X[ k]= comb() d= () d= T δ. T Th CTT is = = ( )= [ ] ( ) X comb δ k X k δ k k= k=. L a sigal b did by ()= + x cos 5cos 5. id h CTT s o x ad x + ad idiy h rsula phas shi o ach siusoid i ach cas. Plo h phas o h CTT ad draw a sraigh li hrough h phas pois which rsul i ach cas. Wha is h gral rlaioship bw h slop o ha li ad h im dlay? x = cos cos + 5 5 3 x = cos + 5cos5 { { phas phas shi shi 5 5 x ( )+ ( + ) [ ] + + + 5 δ δ δ δ 3 5 5 5 x ( ) + ( + ) + + 5 + 5 6 δ δ δ δ 5 + + 6 x+ cos cos = + + + 5 5 5-

M. J. Robrs - /7/ 3 x+ = cos + + 5cos5+ { 5 { phas phas shi shi 5 5 x+ ( )+ ( + ) [ ] + + + 5 δ δ δ δ 3 + + 5 5 5 x+ ( ) + ( + ) + + 5 + 5 5 5 δ δ δ δ 5 + + 3 X( ) Slop = - -7-6 -5 - -3 - - 3 5 6 7 Slop = Th slop o h li is ims h dlay. 9. Usig h rqucy-shiig propry, id ad plo vrsus im h ivrs CTT o + X( )= rc + rc. ()= + = x sic sic sic cos x() - - 5-9

M. J. Robrs - /7/. id h CTT o x()= sic(). Th mak h rasormaio,, i x() ad id h CTT o h rasormd sigal. sic rc () sic rc rc( ) rc rc( ) - rc( ) -. Usig h muliplicaio-covoluio dualiy o h CTT, id a xprssio or y which dos o us h covoluio opraor,, ad plo y(). ()= () (a) y rc cos y()= sic δ + δ + y()= sic sic + + δ δ y()= + + = + + δ δ δ δ y()= cos y() () - - 5-

M. J. Robrs - /7/ ()= () (b) y rc cos y()= sic [ δ( )+ δ( + ) ] y()= δ sic()+ δ + sic = y() - - (c) y()= sic() sic y()= { rc rc }= { rc }= sic y() - -.5 ()= () (d) y sic sic y()= { rc ri }= { rc ri }== { ri }= sic y() - ()= () () y u si ()= y δ( + )δ + [ ] = δ + + δ + 5-

M. J. Robrs - /7/ ()= y δ( + ) δ( ) ( + )( + ) ( )( ) δ δ = + ( ) ( + ) ()= y [ ] δ( + )δ( )+ δ( + )+ δ + ( ) ()= y [ ] δ( + )δ( ) ( + )+ δ δ + ( ) + ( ) Th, usig w g ()= y + si cos Acos( x)+ Bsi( x)= A + B cos xa ()= y + ( ) cos +. 5 B A. y() - -.. Usig h CTT o h rcagl ucio ad h diriaio propry o h CTT id h ourir rasorm o x()= δ δ( + ). Chck your aswr agais h CTT oud usig h abl ad h im-shiig propry. L y()= rc. Th x d ()= ( d y () ). rc Usig h diriaio propry o h CTT, sic( ) 5-

M. J. Robrs - /7/ d d rc sic( ) sic [ ]= d d rc si( ) = si ( ) Usig h dirc approach, + δ δ( + ) si =. Chck. 3. id h CTS ad CTT o hs priodic ucios ad compar aswrs. (a) x()= rc() comb T k X[ k]= rc() comb d rc comb T = () T k X[ k]= d = [ cos( k) si( k) ] d si k X[ k]= cos( k) d= k k si k sic = = k X ( )= sic ( ) k comb ( )= sic ( ) δ k = k k X( )= sic X k k δ = [ ] δ k= ()= (b) x ri comb T k= k ( k ) k X[ k]= ri comb d= ri d T T d 5-3

M. J. Robrs - /7/ = [ ]= X k ri cos k si k d ri cos k d X[ k]= ( ) cos( k) d = cos( k) d cos( k) d k si( k) si( k) X[ k]= cos k d cos d k ( ) = k ( k ) λ λ λ si k k 5 5 k X[ k]= si si d k ( k ) λ λ 5 λ λ si k 5 k X[ k]= ksi k cos k ( k ) [ λ ] 5 5 5 si k 5 X[ k]= ksi k cos k + k ( k ) 5 5 5 cos k 5 5 X[ k]= k X( )= X( )= sic comb = sic 5 k= X( )= 5 k = k si 5 5 δ( k)= k 5 k sic δ( k) 5 k = k= δ( k) k cos 5 δ( k) k 5-

M. J. Robrs - /7/ X( )= k cos 5 5 δ ( k). Chcks wih CTS. k k =. Usig Parsval s horm, id h sigal rgy o hs sigals. (a) x()= sic 5 = () = = = x E x d X d rc 5 d rc 5 d ()= (b) x sic 3 Ex = d = E = () d = ( x ) d = x X ri d = d ri 3 3 9 3 E x = 3 3 d = d = + d ri 9 3 9 3 9 3 9 3 3 E = x + = + 9 3 7 9 3 9 7 3 7 = 9 3 5. Wha is h oal ara udr h ucio, g()= sic 3 g d G () = ()? G = rc 6 3 3 G()= 3 = g() d 6. Usig h igraio propry, id h CTT o hs ucios ad compar wih h CTT oud usig ohr propris. 5-5

M. J. Robrs - /7/ (a) ()= g, <, < <, lswhr g() -3 - - 3 g'() -3 - - - 3 g 3 3 g = rc+ rc 3 3 g = rc+ rc sic sic () sic 3 3 sic ( )= 3 3 () g 3sic 3 sic si 3 si( 3 )= sic( ) Alra Mhod: g()= rc rc sic () 3 3 3 sic Chck. (b) g()= rc 3 3 3 3 3 g = δ + δ 6si 3 () g = si( 3 ) si = ( 3 ) 6 = sic ( 3 ) 3 Alra Mhod: () g sic( 3 ) Chck. 5-6

M. J. Robrs - /7/ 7. Skch h magiuds ad phass o h CTT s o hs sigals i h orm. (a) x()= δ( ) X= X( ) - Phas o X( ) - - (b) x()= u() u X = + δ x()= u() u X= ( ), (impulss cacl) + x()= u() u X= = sic X( ) -5 5 Phas o X( ) -5 5-5-7

M. J. Robrs - /7/ + (c) x()= rc X sic 5 = ( ) X( ) - Phas o X( ) - - (d) x()= 5sic( ) X =. 5rc X( ) 3 - Phas o X( ) - - [ ] () x()= 6si( ) X= 3 δ( + )δ 5-

M. J. Robrs - /7/ X( ) 3 - Phas o X( ) - - () u() + 3 x()= u( 3) X= = 3 + 3 + 3 3 X( ) - Phas o X( ) - (g) 3 3 3 3 x()= = X= = 3 3 5-9

M. J. Robrs - /7/ X( ) 5-3 3 Phas o X( ) -3 3 -. Skch h magiuds ad phass o h CTT s o hs sigals i h ω orm. (a) x()= comb X comb k ( )= ω ω = δ ω k = X(ω) - Phas o X(ω) ω - ω - ()= (b) x sg X( ω)= ω 5-

M. J. Robrs - /7/ X(ω) 6 - Phas o X(ω) ω - ω - (c) x()= ri X( ω)= sic ω ω X(ω) - ω Phas o X(ω) - ω - (d) ()= x + sic 3 3 3 X( ω)= ri ω ω 5-

M. J. Robrs - /7/ X(ω).3 - ω Phas o X(ω) - ω - () ()= x cos X( )= + ω δ ω δ ω + ω ()= x ()= x cos X( )= [ ( )+ ( + )] ω ω δω δω cos X( ω)= δω ( ) + δω ( + ) + X(ω) ω -7 7 Phas o X(ω) ω -7 7 3 3 () x()= u()= u( 3) X( ω)= 3 ω + 3-5-

M. J. Robrs - /7/ X(ω) - ω Phas o X(ω).57 - ω -.57 (g) x()= 7 X( )= 7 5 5 ω 5 + ω 7 = 5 + ω X(ω) 3 - ω Phas o X(ω) - ω - 9. Skch h ivrs CTT s o hs ucios. (a) x()= 6sic X=5rc x() - -6 5-3

M. J. Robrs - /7/ (b) ()= x rc sic X( )= 3 3.5 x() - (c) a a a +,, x() x 3 x()= 6 X= 9 + x() -.5.5 () (d) a u, a > a +,, x() x x()= u() X= + x() -.6667.66667 () cos δ( )+ δ + [ ] 5-

M. J. Robrs - /7/ δ( 3)+ δ + 3 x()= cos( 6) X= 3 6 x().5 - -.5 () x()= X δ 5 δ 5 5 = = x() - (g) sg () x()= 3sg() X= 3 x() 3 - -3. Skch h ivrs CTT s o hs ucios. ω (a), ω ω, x() x x()= X( 6 ω 6 ω ω )= = ω = 5-5

M. J. Robrs - /7/ x(). - ω (b) ri() sic, ω ω (), x x 7 x()= ri X sic = ω ω 7 x() - [ ] (c) si( ω ) δ( ω + ω )δ ωω [ ] x()= si( ) X( ω)= δ( ω + )δ ω x() -.. - ω (d) comb() comb, ω ω (), x x ω comb x()= comb X ( )= ω 5 x(). - 5-6

M. J. Robrs - /7/ () sg () ω, δ( ω) 5 x()= sg()+ 5 X ω 5 ω = + δ( ω) x() - - () () a u, a > a + ω 3 6 x()= 6 u() X( ω)= 3 + ω x() 6 -..5 (g) sic () ri ω, ω 6ω, x() x 6 6 5 x()= sic X( ω)= ri( ω) 6 x().5 -. id h CTT s o hs sigals i ihr h or ω orm, whichvr is mor covi. 5-7

M. J. Robrs - /7/ ()= + (a) x 3cos si 3 5 X= + + 5 + + 5 5 δ δ δ δ 3 X( )= δ 5 3+ + + 5 δ.. X= 5 97 5 + 5 97 + 5 δ δ X = ( )+ +. 97. 97 ω 5 δ ω 5 δ ω (b) x()= comb comb = = X comb comb comb = ( )= X comb comb si X ω ω ω ( ω)= comb si x() 6 (a) X(ω) -6 (b) x() - Phas o X(ω) - - X( ) ω ω - - - Phas o X( ) - - (c) x()= sic sic sic + 5-

M. J. Robrs - /7/ X( )= rc rc rc X( )= rc rc + rc rc cos = ()= + ω ω ω X( ω)= rc rc cos [ ( ) ] () + (d) x u Usig a u (), a > a + ω X( ω)= + = + ω + + ω Alra Soluio: X( ω)= X( )= ()= + ω + ω + + + ω + ω ω ( + + ) + + + [ ( ) ] ()= + x u cos u a Usig cos ω u a+ ω ω + a ω ( ) () + X( ω)= ω + ω + + 5-9

M. J. Robrs - /7/ (c) x() X( ) - - x() (d) - Phas o X( ) - - X( ) ()= () x - 3-6 -3 3 Phas o X( ) -3 3 - Usig a a a ( a)> + ω, R, 6 + ω 6 6 + ω 6 () x() = + 56ω X(ω) -5 5 -.5.5 ω Phas o X(ω) ω -.5.5 -. Skch h magiuds ad phass o hs ucios. Skch h ivrs CTT s o h ucios also. 3 5 (a) x()= ( ) u() X( ω)= 3 + ω 5 + ω 5-3

M. J. Robrs - /7/ x() 6 X(ω) - - Phas o X(ω) - - ω ω (b) x()= 6rc cos X= sic + sic + x() X( ) 5 6 - -6 - Phas o X( ) - + (c) x ()= 6. sic ( ) si X= ri ri x().5 -.5.5 -.5 X( ). -5 5 Phas o X( ) -5 5 - (d) δ( + 5)+ δ( + 95) x()= [ cos( )+ cos( 9) ] X= + δ( 95)+ δ( 5) or δ( + 5)+ δ( + 95) x()= cos( ) cos( ) X= + δ( 95)+ δ( 5) 5-3

M. J. Robrs - /7/ x() - -.. X( ) - Phas o X( ) - - () or ()= x ()= x cos + cos( 9) cos + cos cos + cos( ) δ( + 5)+ δ( + ) X( )= + δ( + 95)+ δ( 95) + δ( )+ δ( 5) δ( + 5)+ δ( + ) X( )= + δ( + 95)+ δ( 95) + ( )+ ( δ δ 5) x() -.. - X( ) - Phas o X( ) - - 3. Skch hs sigals vrsus im. Skch h magiuds ad phas o hir CTT s i ihr h or ω orm, whichvr is mor covi. (a) x rc comb rc comb ()= () X( )= sic comb ( ) X( )= sic comb( ) si k k k X= sic si k ( ) δ ( ) k = 5-3

M. J. Robrs - /7/ No-zro oly or odd valus o k. A hos odd valus, always valuas o +. Thror ( k) k si, k X( )= sic k δ ( ) k = k x() -3 3 - (b) x rc comb ()= + () X( )= sic comb δ X( ) - Phas o X( ) - - k k X= + sic k sic k ( δ )= δ δ( ) k= Sam as aswr i par (a). k= k x() X( ) -3 3 - - Phas o X( ) - - ()= () (c) x u si X( ω)= X ω δω + = δω ( + )δω + ω [ ] δω + 5-33

M. J. Robrs - /7/ Raioalizig h domiaor, X( ω)= X( ω)= 6 6 + + ( ) + δω ( + ) δω + ( ) 6 [ δω ( + )δω ] x()= si cos + ( ) + ( ) 6 6 6 + ( ) [ δω ( + )+ δω ] ()= x si 3cos + 6 x(). X(ω) - -. - Phas o X(ω) - - ω ω [ ] ()= () (d) x rc comb X= sic comb k k X= sic ( k)= sic δ k δ ( ) k = k = k k k x sic k k ()= sic cos k = + k = k = 5-3

M. J. Robrs - /7/ x() X( ) - Phas o X( ) - - - [ ] ()= () () () x rc ri comb X= sic sic comb All h comb impulss hav zro wigh xcp h o a zro. X= δ x()= x() X( ) - - Phas o X( ) - - ()= () () x sic. comb X( )= rc comb= δ( + )+ δ+ δ... x cos. ()= + [ ] 5-35

M. J. Robrs - /7/ x() X( ) - - - Phas o X( ) - - ()= () (g) x sic 99. comb X( )= rc comb 99. 99. x 99. ()= =. 55 99. δ = x() X( ) - - Phas o X( ) - - ()= (h) x X= = x()= = x() X( ) - - Phas o X( ) - -. Skch h magiuds ad phass o hs ucios. Skch h ivrs CTT s o h ucios also. 5-36

M. J. Robrs - /7/ (a) X( )= sic δ( )+ δ + [ ] ()= ( + )= x rc rc cos X( ) - Phas o X( ) - - x() -.. - = (b) X sic comb x()= rc comb()= rc δ = X( ) x() - Phas o X( ). - - - 5. Skch hs sigals vrsus im. Skch h magiuds ad phass o h CTT s o hs sigals i ihr h or ω orm, whichvr is mor covi. I som cass h im skch may b covily do irs. I ohr cass i may b mor covi o do h im skch ar h CTT has b oud, by idig h ivrs CTT. ()= (a) x si ( ) ( ) X + = [ δ( + )δ( ) ]= 5-37

M. J. Robrs - /7/ x() X( ).5 - - - Phas o X( ) - - (b) x cos comb cos δ ()= = X= [ δ( )+ δ( + ) ] comb + X( )= comb + comb 3 3 = comb = comb X( )= comb x(). -.. X( ). - Phas o X( ) - - [ ] ()= + (c) x cos cos X= + [ ( )+ ( + )] δ δ δ δ ( )+ δ + δ [ δ( )+ δ( + ) ] X( )= + δ( ) δ( )+ δ + + ( + ) ( )+ + δ δ δ [ ] [ ] [ ] 5-3

M. J. Robrs - /7/ δ( )+ δ( + ) X( )= + δ( )+ δ( + )+ δ( )+ δ + [ ] x() - -.. X( ).5-5 5 Phas o X( ) -5 5 - [ ] ()= + (d) x rc 5comb 5 cos 5 X= + sic comb δ δ ( 5 )+ δ 5 + 5 [ ] k X= + sic k ( ) k δ δ 5 δ ( 5 )+ δ ( + 5 ) = [ ] [ δ( 5)+ δ( + 5) ] X( )= k + sic k k ( δ 5 5 )+ δ + 5 5 k = [ ]. x() -. -.. X( ) -5 5 Phas o X( ) -5 5 - () x()= rc comb 7 () = = ( ) X 7sic 7 comb 7sic 7 δ k X= 7 sic 7 k k = ( ) k = 5-39

M. J. Robrs - /7/ x() X( ) 7 - Phas o X( ) -6 6 - - 6. Skch h magiuds ad phass o hs ucios. Skch h ivrs CTT s o h ucios also. (a) X( )= sic comb( ) ()= ()= ( ) x rc comb rc δ ()= ( ) x rc = = X( ) x() -6 6 Phas o X( ) -6 6 - - 5-

M. J. Robrs - /7/ + (b) X( )= sic + sic comb ()= ( + ) ()= ( ) x rc comb rc cos δ ()= ( ) x rc cos = ( ( )) = X( ) x() - Phas o X( ) - - - = (c) X sic sic x()= rc() rc rc rc = () Th rsul o h graphical covoluio ca b xprssd i h orm, x()= ri ri 3 3 X( ).5 x() - Phas o X( ) - - - 7. Skch hs sigals vrsus im ad h magiuds ad phass o hir CTT s. d (a) x()= [ sic() ]= d d d X= rc = si cos si 5-

M. J. Robrs - /7/ (a) x() X( ) - - - Phas o X( ) - - d (b) x()= rc d 6 si( 6 X= ) sic( 6 )= = si ( 6 ) 6 Alra Soluio: d d rc 3 3 6 = [ ( + ) ( ) δ δ ] [ δ( + 3)δ( 3) ] si 6 6 6 x() X( ) -3-3 -.5.5 Phas o X( ) -.5.5 - (c) d x()= [ ri comb() ]= rc+ rc comb d () k X= sic comb= ksic k δ ( ) k = 5-

M. J. Robrs - /7/ x() X( ) - - - Phas o X( ) - -. Skch hs sigals vrsus im ad h magiuds ad phass o hir CTT s. (a) x()= si( λ) dλ X( )= [ δ( + )δ( ) ]+ ( si ) δ = [ ] = δ( + ) δ X( )= = δ ( + )+ δ [ ] δ( + )δ x(). X( ). - -. - Phas o X( ) - -, < (b) x()= rc( λ) dλ = +, <, > sic( ) sic X( )= + rc [ ( ())] δ= = + δ x() X( ) - - - Phas o X( ) - 5-3

M. J. Robrs - /7/ (c) x()= 3 sic( λ ) d λ L u = λ. Th x or : ()= x ()= x 3 or : ()= x ()= 3 u 3 sic du = si u du u si u si u 3 si u si u du du = du + du u u u u 3 si( λ) si( u) 3 d + du = + Si Si u = 3 ( ) λ λ 3 3 = Si = Si= 3 si u si u 3 si u si u du + du = du + du u u u u 3 x()= + Si 3 Thror, or ay, x()= + Si. 3 3 3 X( )= rc + [ 3sic ] δ= rc + δ( ) = x() X( ) - - - Phas o X( ) - - 9. rom h diiio, id h DTT o x[ ]= rc [ ]. 5-

M. J. Robrs - /7/ ad compar wih h ourir rasorm abl i Appdix E. rom h abl, X x rc = = = = [ ] = [ ] = m m X= ( ) = = m = m = 9 9 9 si 9 X= = drcl, si = 9 9 ( + ) rc [ ] N N + w drcl, N w w rc [ ] 9drcl, 9 rc [ ] 9drcl, 9 Chck 3. rom h diiio, driv a gral xprssio or h ad orms o h DTT o ucios o h orm, x Asi Asi. [ ]= = ()= = (I should rmid you o h CTT o x Asi Asi ω.) Compar wih h ourir rasorm abl i Appdix E. X x Asi A = = = [ ] = ( ) = = Th, usig [ ( + ) ] = A X= x = comb( x) = 5-5

M. J. Robrs - /7/ w g A X= [ comb( )comb ( ) A comb comb ]= ( )+ X= A comb( + )comb( ) [ ] [ ] Th orm ca b oud by h rasormaio,. X A ( )= comb + comb [ ] X( )= A comb( + )comb 3. A DT sigal is did by x[ ]= sic. Skch h magiud ad phas o h DTT o x[ ]. rom h abl o rasorm pairs, sic wrc w comb w sic rc( ) comb sic [ comb ] rc sic k rc k = ( ) 5-6

M. J. Robrs - /7/ 3. A DT sigal is did by x[] -3 3 x[ ]= si. 6 X( ) - Phas o X( ) - - Skch h magiud ad phas o h DTT o x[ ] [ ] 3 ad x +. rom h abl, si( ) comb( + )comb [ ] Similarly, si comb + comb 6 3 si comb + comb 6 6 si 3 6 δ + k δ k 6 6 k = si 3 6 k k δ + k δ k 6 + 6 3 k = = 3 = si 3 δ + k δ k + 6 k = 3 si comb + + comb 6 si + + k k δ + k δ k + + 6 k = 5-7

M. J. Robrs - /7/ si + + ( k) k δ + k δ k + ( + ) 6 k = si + δ + k δ k 6 k = + si comb + comb 6 This is h sam as h rasorm o h ushid ucio bcaus a shi o is a shi ovr xacly o priod. x[] X( ).5 - - - Phas o X( ) - - x[] X( ).5 - - - Phas o X( ) - - 33. Th DTT o a DT sigal is did by Skch x[ ]. X( )= rc rc comb + +. rom h abl, w sic wrc comb w sic rc comb 5-

M. J. Robrs - /7/ 5-9 sic comb rc + sic comb rc sic comb + + + rc rc sic cos comb + + rc rc Thror x sic cos [ ]= -6 6 x[] - 3. Skch h magiud ad phas o h DTT o x rc cos [ ]= [ ] 6. Th skch x [ ]. rom h abl, rc drcl, N w w w N N [ ] + +

M. J. Robrs - /7/ ad rc N ( ) si Nw + [ ] w si cos( ) comb+ comb + [ ] Th ucio, si 9 si Th si 9 X= comb comb si + + 6 6 ( ) is priodic wih priod, o. To prov ha, l k b ay igr. si 9 + k si 9 9k si 9 cos 9k si 9k cos 9 = si + k si + k si cos k si k cos = + + + ( ) si 9 + k si 9 si 9 si + k si si = =, k odd ( ) si 9 + k si 9 si + k si =, k v X= Sic si 9 si Thror, or ay k, X= si 9 k k si + + δ δ k = 6 6 si9 k + si k 9 6 6 δ k + δ + k k = 6 6 sik + si k 6 6 si9 k 6 si9 k + 6 is priodic wih priod, o, so ar ad. sik 6 sik + 6 si9 k 6 sik 6 3 si = si 6 = = ad si9 k + 6 sik + 6 3 si = = = si 6 5-5

M. J. Robrs - /7/ ad hror X= comb comb comb comb + = + + 6 6 6 6. Th, usig ad, hror, cos( ) comb+ comb + [ ] + + cos comb comb 6 6 6 x[ ]=cos 6 x[] X( ) - - - Phas o X( ) - - 35. Skch h ivrs DTT o = [ ] X rc comb comb. rom h abl, sic wrc( w) comb ad combn comb w [ ] N Thror usig muliplicaio-covoluio dualiy, x[ ]= sic comb [ ]. 5-5

M. J. Robrs - /7/.5 x[] -6 6 -. 36. Usig h dircig propry o h DTT ad h rasorm pair, ri + cos( ), id h DTT o ( δ[ + ]+ δ[ ]δ[ ]δ( ) ). Compar i wih ourir rasorm oud usig h abl i Appdix E. Th irs backward dirc o ri is ( δ[ + ]+ δ[ ]δ[ ]δ( ) ). Applyig h dircig propry, ri ri cos ( + ) ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) cos ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + ( + ) + + ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + + ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + Ohr rou o h DTT: ( δ[ + ]+ δ[ ]δ[ ]δ[ ] ) + Chck. 37. Usig Parsval s horm, id h sigal rgy o 5-5

M. J. Robrs - /7/ x[ ]= sic si. E x X d x = [ ] = = rom h abl, ad sic wrc w comb w si( ) comb( + )comb [ ] Usig h muliplicaio-covoluio dualiy o h DTT, sic si rc( ) comb comb + comb Priodic covoluio is h sam as apriodic covoluio wih o priod. sic si 5rc( ) comb + δ δ sic si 5rc( ) comb + comb sic si 5 ( ) comb + ( ) comb rc rc Ex = + d 5rc comb rc comb Sic w ar igraig oly ovr a rag o o, oly o impuls i ach comb is sigiica. E = 5 ( x ) + d rc δ rc δ 5-53

M. J. Robrs - /7/ Ex = 5 rc + d rc Th squar o h sum quals h sum o h squars bcaus hr is o cross produc; h wo rcagls do o ovrlap. E = x + d d + 5 rc rc + + Ex = 5 d + d = + 5 = 5 3. Skch h magiud ad phas o h CTT o ad o h CTS o ()= () x rc x()= rc() comb. or compariso purposs, skch X ( ) vrsus ad T k o axs. (T is h priod o x () ad T =.) X sic = k X[ k]= sx( sk)= sic X [ ] vrsus k o h sam s 5-5

M. J. Robrs - /7/ X ( ) T X [ k] - - k Phas o X ( ) Phas o T X [ k] - - k - - 39. Skch h magiud ad phas o h CTT o ()= x cos ad o h DTT o x[ ]= x( T s ) whr T s = 6. or compariso purposs skch X sam s o axs. X = δ( )+ δ + [ ] ad T T s X ( x[ ]= cos( Ts)= cos X= comb comb + + X ( )= k k k + + δ δ = X ( T )= s k k k 6 + 6 + δ δ = X ( T s )= 3 δ( 6k)+ δ + 6k k = [ ] TsX ( Ts)= δ( 6k)+ δ + 6k k = [ ] s ) vrsus o h 5-55

M. J. Robrs - /7/ X ( ) T s X (T s )...... -6 6-6 6 Phas o X ( ) Phas o T s X (T s ) -6 6... -6 6... - -. Skch h magiud ad phas o h DTT o ad o h DTS o sic 6 x[ ]= sic 6 x [ ]= comb [ ]. 3 or compariso purposs skch X o axs. vrsus ad N X [ k] vrsus k o h sam s rom h abl, sic wrc w comb w sic 6 rc( 6) comb 5-56

M. J. Robrs - /7/ hror ( ) X = rc 6 comb = rc 6 q. q = Th udamal rqucy o h priodic sigal is h rciprocal o is priod, = =. N 3 Usig h rsuls o h aalysis o priodic xsios o apriodic DT sigals, X X [ k]= X( k) N k k k k [ ]= X = 6 q 3 3 3 6 q rc = rc q= X q= - Phas o X - - N X [k] - k Phas o X [k] -3 3 k - 5-57

M. J. Robrs - /7/. A sysm is xcid by a sigal, x()= rc ad is rspos is ( + ) y()= ( ) u( + ) ( ) u + y()= ( ) u ( ) ( ) u Wha is is impuls rspos? Y ω [ + ( )] ω δ ω ω ω ω + δ( ω) + ω = + + ω ω Y( ω)= ( si ω ω + ω )= ω + ω. ω H( ω)= si( ω) ω + ω = ω sic 5 si( ω) ω + ω 5 = ω si( ω) ω + ω ω 5 5 H( ω )= ω ω + ω ω = + 5 h u ()= (). Skch h magiuds ad phass o h CTT s o h ollowig ucios. ()= (a) g 5δ 5 5δ + 3 (b) g()= comb comb + 3 comb comb comb comb 6 5-5

M. J. Robrs - /7/ + 3 comb comb comb + 3 comb comb si comb= + 3 Also, g()= comb comb = (a) G( ) (b) G( ) - - Phas o G( ) Phas o G( ) - - - - ()= + ( ) (c) g u u u+ u δ δ + + + (d) g sg sg u u + ( ) ( + )+ δ ()= () ( ) sg () sg = 5-59

M. J. Robrs - /7/ (c) G( ) (d) G( ) - - Phas o G( ) Phas o G( ) - - - - + () g()= rc + rc + rc + rc sic sic + + rc + rc sic cos () g()= rc rc sic () G( ) () G( ) - - Phas o G( ) Phas o G( ) - - - - 5-6

M. J. Robrs - /7/ (g) g()= 5 ri ri 5 5ri ri 5sic 5 sic 5 3 (h) g()= rc rc 3 rc rc sic sic (g) G( ) 5 (h) G( ) -.. -.5.5 Phas o G( ) Phas o G( ) -.. - -.5.5-3. Skch h magiuds ad phass o h CTT s o h ollowig ucios. (a) rc rc sic ω rc sic 5-6

M. J. Robrs - /7/ sic rc() - sic ( ) - - (b) rc δ () rc δ() sic = sic ω rc δ() sic sic - sic rc() δ() - - δ (c) rc rc δ sic = sic ω rc δ sic ω 5-6

M. J. Robrs - /7/ sic - rc() δ(-) - sic - - + - 6 (d) rc δ rc δ sic = sic ω rc δ = sic sic - sic rc() δ() - - () rc comb() rc comb() sic comb( )= sic k rc comb() sic δ( k) k = k = δ( k) k k rc comb() sic δ ω k = sic k δω k= k= 5-63

M. J. Robrs - /7/ sic comb( ) - rc() comb() sic comb( )... - - -... - () rc comb rc comb sic comb = sic k δ = k = k rc comb sic k k ( ) ( k )= sic ( k) 3 δ δ k= k= k rc comb() sic δωk k = Sam as par (). sic comb( ) - rc() comb(-) sic comb( )... - - -... - (g) rc comb rc comb sic comb = sic δ k = k k rc comb sic ( k)= sic k δ δ ( ) k= k= 5-6

M. J. Robrs - /7/ k k rc comb sic k sic k δ ω = δω k= k= sic comb( )... - rc() comb() - -... - sic - comb( ) (h) rc() comb rc() comb sic comb sic δ () = k = rc comb sic δ k sic k δ k δ k= rc() comb δ ω k= k = ( )= = δ( ω) δ( ) rc() comb()...... δ( ) - -. Plo hs sigals ovr wo priods crd a =. (a) x()= cos( )+ si( )+ 3cos( )3si ()= + (b) x 5cos 7si 5-65

M. J. Robrs - /7/ x() (a) - x() (b) - Compar h rsuls o pars (a) ad (b). 5-66

M. J. Robrs - /7/ 5. A priodic sigal has a priod o our scods. (b) Hz Wha is h x-lows posiiv rqucy a which is CTT could b Wha is h lows posiiv rqucy a which is CTT could b o- (a) zro? ozro? Hz 6. Skch h magiud ad phas o h CTT o ach o h ollowig sigals (ω orm): (a) x ()=. rc X= sic( ) ω X( ω)= sic sic( ω ) ω sic( ) x() + 5 (b) x()= 3rc. - ω X = + sic 3 5-67

M. J. Robrs - /7/ ω X( ω)= 3sic 5 ω + 5 3sic( 5ω ) 5ω 3 ω 3 x() 3sic( 5ω ) 5ω ω 7 (c) x()= comb 5 5 X= 7comb( 5) 5ω X( ω)= 7comb = 7 k= 5ω δ k = 5 k δω 5 k= X(ω) 5...... x() 7...... 5 5 5 5 5 5 X(ω)...... 5 5 5 5 ω ω 7 7 + 3 (d) x()= comb = comb 5 5 5 5 = = X 7comb 5 7comb 5 + 6 5ω ω ω ω k X( ω)= comb δ k δω = 5 = 7 7 5 5 k = k = k 5 5-6

M. J. Robrs - /7/ 5ω ω ω ω k X( ω)= comb δ k δω + 3 = 5 + 3 = 7 7 5 5 k = k = 6k + 5 X(ω) 5...... x() 7...... 3 3 7 5 5 5 5... X(ω) 6 5 5......... ω ω 7. Skch h ivrs CTT s o h ollowig ucios: (a) X( )= rc x()= 6sic( ) X( ) - X( ) 6sic() 6-5 3 3 5 (b) X( )= rc X( ) x()= 6sic+ 6 - X( ) 6sic[( + )] 6 6-5 3 6 3 5 5-69

M. J. Robrs - /7/ [ ] (c) X 5 = δ( + 5)+ δ( 5) X= [ δ( + 5) + δ( 5) ]= δ( + 5)+ δ 5 x()= cos( ) X( ) [ ] 5 5 X( ) (d) X= δ+ 5δ( 5)+ 5δ + 5 - x()= + cos( ) 5 5 X( ) 5 5 3 5 5 5 -cos() 3 5 5 5 5 5 5 X( ) +cos() 5 5 5 5-5 5. id h ivrs CTT o his ral, rqucy-domai ucio (igur E) ad skch i. (L A =, = 95kHz ad = 5kHz.) + X= Arc + rc + [ ] ()= + x A sic sic 5-7

M. J. Robrs - /7/ ()= [ + ]= ( ) + x A sic A sic cos ()= ( ) x, sic, cos 5 - X( ) Α - igur E A ral rqucy-domai ucio x x() -5 - -3 - - 3 5 - x - - 9. id h CTT (ihr orm) o his sigal (igur E9) ad skch is magiud ad phas vrsus rqucy o spara graphs. (L A= B= ad l = ad =.) Hi: Exprss his sigal as h sum o wo ucios ad us h liariy propry. x()= Arc ( AB) rc = ( ) X Asic A B sic = X sic sic x() A - - B igur E9 A CT ucio 5-7

M. J. Robrs - /7/ X( ) 3 - Phas o X( ) - - 5. I may commuicaio sysms a dvic calld a mixr is usd. I is simpls orm a mixr is simply a aalog muliplir. Tha is, is rspos sigal, y(), is h produc o is wo xciaio sigals. I h wo xciaio sigals ar ()= ad x ()= cos x sic 5 plo h magiud o h CTT o y(), Y( ), ad compar i o h magiud o h CTT o x (). I simpl rms wha dos a mixr do? ()= () ()= y x x 5sic cos 5 Y= X X= rc δ( )+ δ + [ ] 5 Y( )= rc + rc + X ( ) Y( ) 5 - - -99 99 5-7

M. J. Robrs - /7/ 5. Skch a graph o h covoluio o h wo ucios i ach cas: rc() * rc() (a) rc() rc() rc(- )* rc(+ ) (b) rc rc+ () (c) ri ri ri() ri(-) - ri(-τ) ri(τ-) - - + τ or < -, h o-zro porios o h wo ucios do o ovrlap ad h covoluio is zro. or > 3, h o-zro porios o h wo ucios do o ovrlap ad h covoluio is zro. or - < < : Th o-zro porios ovrlap or < τ < + ad, i ha rag o τ, 5-73

M. J. Robrs - /7/ ri( τ)= + τ ad ri( τ )= τ Thror, or - < <, or < < : + + [ ] ri() ri( )= ( + ) d = ( + τττ ) τ τ dτ 3 τ τ + + + ri() ri= ( + ) = = 3 3 6 + 3 3 3 ri(-τ) ri(τ-) -- + τ ri() ri= ri( τ) ri( τ) dτ Th o-zro porios ovrlap or < τ < + ad, i ha rag o τ, hr ar hr cass o cosidr, < τ <, < τ < ad < τ < +. Thror ri() ri= ri( τ) ri( τ) dτ + ri( τ) ri( τ) dτ + ri( τ) ri( τ) dτ Cas : < τ < ri( τ)= + τ ad ri( τ )= τ + Cas : < τ < Cas 3: < τ < + ri( τ)= + τ ad ri( τ )= τ ri( τ)= + τ ad ri( τ )= τ Thror ri() ri= ( + τττ ) d + ( + τττ ) d + ( + τ) ( τ) dτ + 5-7

M. J. Robrs - /7/ [ ] + [ + ] + [ + ] ri() ri= τ + τ dτ ( ) τ τ dτ τ ( + ) τ + τ dτ 3 3 τ τ τ τ ri() ri= + + ( + ) + ( + ) τ τ + 3 3 + 3 τ τ 3 + ri ri 3 3 () = ( ) + + ( + ) ( + ) + 3 3 3 3 ( + ) ( + ) + ( + ) ( + ) ( + ) + ( + )+ + + 3 ri ri () ( )=( ) + + 3 ri () 3 + + + + 3 3 ri= + + + 6 ( + ) 6 or h rmaiig rgios o, h covoluio simply rpas wih v symmry abou h poi, =. Th aalyical soluios ca b oud by h ollowig succssiv chags o variabl: +,, 3 + 3 Ths hr succssiv chags o variabl ca b codsd io o, + Th, or < <, 3 3 ( ) ( ) ri() ri= + + + = + + 6 + + 6 ad, or < < 3, ri () + ri= 6 3 = ( + )+ 6 + [ ] 3 5-75

M. J. Robrs - /7/ ri() * ri( -). -5 5 3δ() cos() () () (d) 3δ cos 3 () comb() rc() Th cosa,. () 5comb() ri() Th cosa,. 5. I lcroics, o o h irs circuis sudid is h rciir. Thr ar wo orms, h hal-wav rciir ad h ull-wav rciir. Th hal-wav rciir cus o hal o a xciaio siusoid ad lavs h ohr hal iac. Th ull-wav rciir rvrss h polariy o hal o h xciaio siusoid ad lavs h ohr hal iac. L h xciaio siusoid b a ypical houshold volag, Vrms a 6 Hz, ad l boh yps o rciirs alr h gaiv hal o h siusoid whil lavig h posiiv hal uchagd. id ad plo h magiuds o h CTT s o h rsposs o boh yps o rciirs (ihr orm). Hal-Wav Cas: [ ] ()= x cos rc 6comb 6 X= 6 [ δ( 6)+ δ( + 6) ] sic comb 6 X= [ δ( 6)+ δ( + 6) ] sic comb 6 X= k [ ( )+ ( + )] sic k δ 6 δ 6 δ k = 6 5-76

M. J. Robrs - /7/ X( )= 3 X( )= 3 k = k = k sic k [ δ ( 6 )+ δ ( + 6 ) ] δ 6 k sic k k δ ( 6 6 )+ δ + 6 6 [ ] ull-wav Cas: [ ] ()= x cos rc 6comb 6 X= 6 [ δ( 6)+ δ( + 6) ] sic comb δ 6 6 X= [ δ( 6)+ δ( + 6) ] sic comb δ 6 k X= 6 δ( 6) δ( + 6)+ sic k k δ ( 6 6 )+ δ + 6 6 k = [ ] X( ) X( ) 3 6 6 53. id h DTT o ach o hs sigals: (a) x[ ]= u [ 3 ] X( )= x[ ] = u [ ] = 3 3 = X( )= m = = m + m ( + ) = 3 3 m = = m + 5-77

M. J. Robrs - /7/ m X( )= = = 3 m = 3 3 3 3 Alra Soluio: x[ ]= u u [ ]= 3 [ ] δ 3 [ ] Usig α u[ ] ad δ[ ] α x u δ 3 3 [ ]= [ ] [ ]= 3 3 x[ ]= 3 = 3 3 = 3 Scod Alra Soluio: x[ ]= u 3 3 X( )= 3 3 [ ] = 3 (b) x[ ]= si u [ ] si = si = cos x[ ]= cos u α cos α cos( ) u[ ] αcos + [ ] α, α < 5-7

M. J. Robrs - /7/ 5-79 X cos cos = + = + 6 6 6 Alra Soluio: x u u [ ]= [ ]= [ ] x u [ ]= [ ] [ ] u [ ] u X = X =

M. J. Robrs - /7/ 5- X = + + + 3 6 X cos = + + 3 6 X cos = + 3 6 X si cos = + = + 6 6 6 6 (c) x sic sic [ ]= Usig sic comb w w w rc X comb comb = rc rc X comb = rc x sic [ ]=

M. J. Robrs - /7/ (d) x[ ]= sic Usig sic wrc w comb w X= comb comb rc rc X= comb comb rc rc X= comb rc rc X= ri comb ri comb = 5. Skch h magiuds ad phass o h DTT s o h ollowig ucios: (a) rc [ ] ( + ) Usig rc [ ] N N + w drcl, N w w, rc [ ] 5drcl, 5 X( ) 5 - Phas o X( ) - - 5-

M. J. Robrs - /7/ [ ] ( [ ]) (b) rc 5δ Usig δ[ ] ad x[ ] y[ ] X Y rc [ ] ( 5δ[ ] ) 5drcl (, 5) 5 5drcl, 5 = X( ) 5 - Phas o X( ) - - δ[ ] (c) rc [ ] 3 + 3 Usig x[ ] X 6 rc [ ] 3δ [ + 3] 5drcl (, 5) X( ) 5 - Phas o X( ) - (d) rc [ ] ( 5δ[ ] )= rc [ ] ( 5δ[ ] ) - 5-

M. J. Robrs - /7/ rc [ ] ( 5δ[ ] ) 5drcl, 5 X( ) 5 - Phas o X( ) - - () rc [ ] comb [ ] Usig comb N [ ] comb N, [ ] [ ] rc comb 5drcl, 5 comb [ ] [ ] rc comb 5drcl (, 5) δ m m = 5 rc comb drcl, 5 m [ ] [ ] δ m = 5 m rc [ ] comb[ ] drcl, 5 m δ m = 5-3

M. J. Robrs - /7/ X( ).65 - Phas o X( ) - - () rc [ ] comb 3 [ ] Usig h rsul o () ad x[ ] X, 5 6 m rc comb 3 drcl, 5 m [ ] [ ] δ m = X( ).65 - Phas o X( ) - - [ ] [ ]= [ ] [ ]= [ ] ( ) (g) rc comb rc δ m rc δ m m= m= rc [ ] comb[ ]= rc [ ] δ m rc comb m = [ ]= [ ] [ ] [ ] Thror 5-

M. J. Robrs - /7/ [ ] [ ] rc comb 5 drcl, 5 comb [ ] [ ] rc comb 5 drcl (, 5 ) δ m m = 5 rc comb drcl, 5 m [ ] [ ] δ m = 5 m rc [ ] comb[ ] drcl, 5 m δ m = X( ).5 - Phas o X( ) - - (h) rc [ ] comb [ ] 5 [ ] [ ] rc comb5 5drcl, 5 comb 5 [ ] [ ] rc comb5 5drcl (, 5) δ 5 m m = 5 rc comb5 drcl, 5 m [ ] [ ] δ 5 5 m = m rc [ ] comb5[ ] drcl, 5 5 m δ 5 m = Th, usig drcl, m comb m m + + + = [ ] 5-5

M. J. Robrs - /7/ rc [ ] comb5[ ] comb5[ m] m δ 5 m = [ ] [ ] rc comb comb 5 [ ] [ ]=. ad, sic comb, ha implis ha rc comb5 X( ) - Phas o X( ) - - 55. Skch h ivrs DTT s o hs ucios. (a) X comb comb = Usig comb( ) ad x[ ] X combcomb + combcomb ( + ) si combcomb si combcomb 5-6

M. J. Robrs - /7/ cos ( + ) + si ( + ) si combcomb cos ( + ) si + si ( + ) si combcomb 3 3 = si si combcomb x[] - (b) X= comb + comb Usig comb( ) ad x[ ] X comb + comb si comb + comb si comb + comb x[] - - 5-7

M. J. Robrs - /7/ (c) X= sic sic comb + + Usig T sic comb w cos drcl, T ( )= + w w w w rom Appdix A (bcaus T w is a igr), X= cos drcl, cos drcl, + + + + + 9 9 9 9 cos d cos d + cos ( ) [ ] 5 5 + d + d cos [ ] cos( ( + 5) )+ si( ( + 5) ) d cos + [ cos( ( 5) )+ si( ( 5) )] d Ths igrals ar zro ulss =±5. Thror ( δ[ + 5]+ δ[ 5] ) cos ( ). ( + ) Th usig rc [ ] N N + w drcl, N w w, Combiig ivrs rasorms, rc [ ] 9drcl, 9 ( δ[ + 5]+ δ[ 5] )+ rc [ ] cos( )+ 9drcl (, 9). 5-

M. J. Robrs - /7/ Th, usig x[ ] X ( δ 5 δ 5 9 [ + ]+ [ ])+ [ ] + 9 rc cos drcl, ad ( [ + ]+ [ ])+ [ ] + + + δ 5 δ 5 rc cos 9drcl, 9. Th, ially δ 5 δ 5 9 ( [ + ]+ [ ])+ rc [ ] cos + drcl, 9 + ( δ[ + 5]+ δ[ 5] )+ rc [ ] + cos + 9drcl, + + 9 Th impulss o h l sid cacl ad w g cos 9drcl, rc 9 [ ] + cos 5 + cos + 9drcl, + + 9. x[] - -. (d) X= + + comb δ δ 3 δ 5 6 6 3 5 X= + + comb comb + δ δ δ 6 6 5-9

M. J. Robrs - /7/ 3 5 + + comb δ δ δ 6 6 X= 3 5 + + + comb δ δ δ 6 6 3 5 comb + comb + comb 6 6 X= + comb comb comb + 3 + 5 6 6 Th, usig comb( ) ad x[ ] X 3 5 + + 3 + + + 3 w g 3 5 comb + comb + comb 6 6 3 5 + comb + comb + comb 6 6 or 3 5 3 5 + + comb + comb + comb 6 6 5 3 3 + + + + comb + comb + comb 3 6 6 or 3 5 comb comb comb 3 5 + + 6 6 cos + cos + cos 3 3 + comb + comb + comb 6 6 x[] 3-6 6-3 56. Usig h rlaioship bw h CTT o a sigal ad h CTS o a priodic xsio o ha sigal, id h CTS o 5-9

M. J. Robrs - /7/ x()= rc comb w T T ad compar i wih h abl ry. X= wsic( w) w w X k X k wsic wk sic T [ ]= = = T k 57. Usig h rlaioship bw h DTT o a sigal ad h DTS o a priodic xsio o ha sigal, id h DTS o ad compar i wih h abl ry. rc N [ ] [ ] comb w N rom h x, Thror, ( + ) X= N + drcl, N X p w [ k]= X( kp). N N w + k X p[ k]= drcl, N w +. N N p w 5-9