ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

Σχετικά έγγραφα
ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ CMOS. Εαρινό Εξάμηνο ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Electronic Analysis of CMOS Logic Gates

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

Θεωρία Τρανζίστορ MOS

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab

Capacitors - Capacitance, Charge and Potential Difference

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

Monolithic Crystal Filters (M.C.F.)

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Aspects of High-Frequency Modelling with EKV3

IXBH42N170 IXBT42N170

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

CMOS Technology for Computer Architects

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

RSDW08 & RDDW08 series

NPN Silicon RF Transistor BFQ 74

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

IXBK64N250 IXBX64N250

ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624

ΑΣΚΗΣΗ 3 η Ο ΑΝΤΙΣΤΡΟΦΕΑΣ CMOS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Second Order RLC Filters

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

Φυσική σχεδίαση ολοκληρωμένων κυκλωμάτων

Areas and Lengths in Polar Coordinates

(Ο Ηλεκτρονικός Διακόπτης)

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα

Thin Film Chip Resistors

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017


2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Digital motor protection relays

Thermistor (NTC /PTC)

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

2 Composition. Invertible Mappings

LTC RO R 2 RE 3 DE 1 RO 2 3 DE 4 DI 2000 FEET OF TWISTED-PAIR WIRE 7 RECEIVER INPUT DI. 4.7nF RO

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

PI5A121C SPST Wide Bandwidth Analog Switch

4.6 Autoregressive Moving Average Model ARMA(1,1)

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ

Homework 3 Solutions

Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Series AM2DZ 2 Watt DC-DC Converter

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 1 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Μικροηλεκτρονική - VLSI

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

Λογικά Κυκλώματα CMOS. Διάλεξη 5

Summary of Specifications

D Alembert s Solution to the Wave Equation

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

CONTENTS. vlsi technology and design (ECE, VLSI, VLSI SYSTEM DESIGN AND VLSI & EMBEDDED SYSTEMS) THE FUTURE OF MICROELECTRONICS... 1.

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Suitable for DC-DC Converters, Voltage Regulators, Decoupling Applications for Computer Motherboards, etc. Performance Characteristics

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

TMA4115 Matematikk 3

Lecture Stage Frequency Response (1/10/02) Page 210-1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Probability and Random Processes (Part II)

Other Test Constructions: Likelihood Ratio & Bayes Tests

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. Σταθερές Μνήμες Αρχιτεκτονικές Μνήμης RAM

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

SPBW06 & DPBW06 series

Instruction Execution Times

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Ψηφιακή Σχεδίαση με CAD II

Multilayer Ceramic Chip Capacitors

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Statistical Inference I Locally most powerful tests

Aluminum Electrolytic Capacitors (Large Can Type)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

MAX823/MAX824/MAX825 V CC PART TEMP. RANGE PIN-PACKAGE MAX824_EUK. -40 C to +85 C

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

HY121 Ηλεκτρικϊ Κυκλώματα

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Περίοδος Σεπτεμβρίου 2011

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

Transcript:

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 4: CMOS Αντιστροφέας (Inverter) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) [Προσαρμογή από Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al. ]

CMOS Inverter: A First Look V DD V in V out C L ΗΜΥ307 Δ4 CMOS Inverter.2 Θεοχαρίδης, ΗΜΥ, 2018

CMOS Inverter: Steady State Response V DD V DD V OL = 0 V OH = V DD V M = f(r n, R p ) R p V out = 1 V out = 0 R n V in = 0 V in = V DD ΗΜΥ307 Δ4 CMOS Inverter.3 Θεοχαρίδης, ΗΜΥ, 2018

CMOS Properties l Full rail-to-rail swing Þ high noise margins Logic levels not dependent upon the relative device sizes Þ transistors can be minimum size Þ ratioless l Always a path to V dd or GND in steady state Þ low output impedance (output resistance in kw range) Þ large fan-out (albeit with degraded performance) l Extremely high input resistance (gate of MOS transistor is near perfect insulator) Þ nearly zero steady-state input current l No direct path steady-state between power and ground Þ no static power dissipation l Propagation delay function of load capacitance and resistance of transistors ΗΜΥ307 Δ4 CMOS Inverter.4 Θεοχαρίδης, ΗΜΥ, 2018

Review: Short Channel I-V Plot (NMOS) 2.5 X 10-4 V GS = 2.5V 2 I D (A) 1.5 1 0.5 V GS = 2.0V V GS = 1.5V V GS = 1.0V Linear dependence 0 0 0.5 1 1.5 2 2.5 V DS (V) NMOS transistor, 0.25um, L d = 0.25um, W/L = 1.5, V DD = 2.5V, V T = 0.4V ΗΜΥ307 Δ4 CMOS Inverter.5 Θεοχαρίδης, ΗΜΥ, 2018

Review: Short Channel I-V Plot (PMOS) All polarities of all voltages and currents are reversed -2 V DS (V) -1 0 0 V GS = -1.0V -0.2 V GS = -1.5V V GS = -2.0V -0.4-0.6-0.8 I D (A) V GS = -2.5V -1 X 10-4 PMOS transistor, 0.25um, L d = 0.25um, W/L = 1.5, V DD = 2.5V, V T = -0.4V ΗΜΥ307 Δ4 CMOS Inverter.6 Θεοχαρίδης, ΗΜΥ, 2018

Transforming PMOS I-V Lines Want common coordinate set V in, V out, and I Dn I DSp = -I DSn V GSn = V in ; V GSp = V in - V DD V DSn = V out ; V DSp = V out - V DD I Dn Vout V in = 0 V in = 1.5 V in = 0 V in = 1.5 V GSp = -1 V GSp = -2.5 Mirror around x-axis V in = V DD + V GSp I Dn = -I Dp Horiz. shift over V DD V out = V DD + V DSp ΗΜΥ307 Δ4 CMOS Inverter.7 Θεοχαρίδης, ΗΜΥ, 2018

CMOS Inverter Load Lines PMOS V in = 0V 2.5 2 X 10-4 NMOS V in = 2.5V V in = 0.5V 1.5 V in = 2.0V I Dn (A) V in = 1.0V 1 V in = 2V 0.5 V in = 1.5V V in = 2.0V 0 V V in = 1.5V in = 1V V in = 2.5V 0 0.5 1 1.5 2 2.5 V out (V) V in = 1.5V V in = 0.5V V in = 1.0V V in = 0.5V V in = 0V 0.25um, W/L n = 1.5, W/L p = 4.5, V DD = 2.5V, V Tn = 0.4V, V Tp = -0.4V ΗΜΥ307 Δ4 CMOS Inverter.8 Θεοχαρίδης, ΗΜΥ, 2018

CMOS Inverter VTC 2.5 2 NMOS off PMOS res NMOS sat PMOS res V out (V) 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) NMOS sat PMOS sat NMOS res PMOS sat NMOS res PMOS off ΗΜΥ307 Δ4 CMOS Inverter.10 Θεοχαρίδης, ΗΜΥ, 2018

CMOS Inverter: Switch Model of Dynamic Behavior V DD V DD R p V out V out C L R n C L V in = 0 V in = V DD Gate response time is determined by the time to charge C L through R p (discharge C L through R n ) ΗΜΥ307 Δ4 CMOS Inverter.12 Θεοχαρίδης, ΗΜΥ, 2018

Relative Transistor Sizing l When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to maximize the noise margins and obtain symmetrical characteristics ΗΜΥ307 Δ4 CMOS Inverter.13 Θεοχαρίδης, ΗΜΥ, 2018

Switching Threshold l V M where V in = V out (both PMOS and NMOS in saturation since V DS = V GS ) V M» rv DD /(1 + r) where r = k p V DSATp /k n V DSATn l Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors l Want V M = V DD /2 (to have comparable high and low noise margins), so want r» 1 (W/L) p k n V DSATn (V M -V Tn -V DSATn /2) (W/L) n k p V DSATp (V DD -V M +V Tp +V DSATp /2) = ΗΜΥ307 Δ4 CMOS Inverter.14 Θεοχαρίδης, ΗΜΥ, 2018

Switch Threshold Example l In our generic 0.25 micron CMOS process, using the process parameters from Lecture 3, a V DD = 2.5V, and a minimum size NMOS device ((W/L) n of 1.5) V T0 (V) g(v 0.5 ) V DSAT (V) k (A/V 2 ) l(v -1 ) NMOS 0.43 0.4 0.63 115 x 10-6 0.06 PMOS -0.4-0.4-1 -30 x 10-6 -0.1 (W/L) p 115 x 10-6 0.63 (1.25 0.43 0.63/2) = x x = 3.5 (W/L) n -30 x 10-6 -1.0 (1.25 0.4 1.0/2) (W/L) p = 3.5 x 1.5 = 5.25 for a V M of 1.25V ΗΜΥ307 Δ4 CMOS Inverter.16 Θεοχαρίδης, ΗΜΥ, 2018

Simulated Inverter V M V M (V) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.1 1 ~3.4 10 (W/L) p /(W/L) n Note: x-axis is semilog q V M is relatively insensitive to variations in device ratio l setting the ratio to 3, 2.5 and 2 gives V M s of 1.22V, 1.18V, and 1.13V q Increasing the width of the PMOS moves V M towards V DD q Increasing the width of the NMOS moves V M toward GND ΗΜΥ307 Δ4 CMOS Inverter.17 Θεοχαρίδης, ΗΜΥ, 2018

Noise Margins Determining V IH and V IL 3 By definition, V IH and V IL are where dv out /dv in = -1 (= gain) V OH = V DD 2 NM H = V DD - V IH NM L = V IL - GND V out 1 V M Approximating: V IH = V M - V M /g V IL = V M + (V DD - V M )/g V OL = GND0 VIL V in A piece-wise linear approximation of VTC VIH So high gain in the transition region is very desirable ΗΜΥ307 Δ4 CMOS Inverter.18 Θεοχαρίδης, ΗΜΥ, 2018

CMOS Inverter VTC from Simulation V out (V) 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) 0.25um, (W/L) p /(W/L) n = 3.4 (W/L) n = 1.5 (min size) V DD = 2.5V V M» 1.25V, g = -27.5 V IL = 1.2V, V IH = 1.3V NM L = NM H = 1.2 (actual values are V IL = 1.03V, V IH = 1.45V NM L = 1.03V & NM H = 1.05V) Output resistance low-output = 2.4kW high-output = 3.3kW ΗΜΥ307 Δ4 CMOS Inverter.19 Θεοχαρίδης, ΗΜΥ, 2018

Gain Determinates gain 0-2 -4-6 -8-10 -12-14 -16-18 V in 0 0.5 1 1.5 2 Gain is a strong function of the slopes of the currents in the saturation region, for V in = V M (1+r) g» ---------------------------------- (V M -V Tn -V DSATn /2)(l n - l p ) Determined by technology parameters, especially channel length modulation (l). Only designer influence through supply voltage and V M (transistor sizing). ΗΜΥ307 Δ4 CMOS Inverter.20 Θεοχαρίδης, ΗΜΥ, 2018

Impact of Process Variation on VTC Curve 2.5 2 Good PMOS Bad NMOS V out (V) 1.5 1 0.5 Bad PMOS Good NMOS Nominal 0 0 0.5 1 1.5 2 2.5 V in (V) Process variations (mostly) cause a shift in the switching threshold ΗΜΥ307 Δ4 CMOS Inverter.21 Θεοχαρίδης, ΗΜΥ, 2018

Scaling the Supply Voltage V out (V) 2.5 2 1.5 1 V out (V) 0.2 0.15 0.1 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) Device threshold voltages are kept (virtually) constant 0.05 Gain=-1 0 0 0.05 0.1 0.15 0.2 V in (V) Device threshold voltages are kept (virtually) constant ΗΜΥ307 Δ4 CMOS Inverter.22 Θεοχαρίδης, ΗΜΥ, 2018

Next Time: CMOS Inverter Layout Out In metal1-poly via metal1 polysilicon metal2 V DD pdiff metal1-diff via GND PMOS (4/.24 = 16/1) NMOS (2/.24 = 8/1) ndiff metal2-metal1 via ΗΜΥ307 Δ4 CMOS Inverter.23 Θεοχαρίδης, ΗΜΥ, 2018

3D View ΗΜΥ307 Δ4 CMOS Inverter.24 Θεοχαρίδης, ΗΜΥ, 2018