Markov chains model reduction

Σχετικά έγγραφα
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

DEFINITION OF LAPLACE-STIELTJES TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE SEMI-MARKOV RANDOM PROCESS

Probability and Random Processes (Part II)

MOTORCAR INSURANCE I

D Alembert s Solution to the Wave Equation

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Bayesian modeling of inseparable space-time variation in disease risk

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Dark matter from Dark Energy-Baryonic Matter Couplings

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Lecture 21: Properties and robustness of LSE

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Fundamentals of Probability: A First Course. Anirban DasGupta

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Local Approximation with Kernels

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 3: Solutions

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Large β 0 corrections to the energy levels and wave function at N 3 LO

Summary of the model specified

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Stationary Univariate Time Series Models 1

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Example Sheet 3 Solutions

The circle theorem and related theorems for Gauss-type quadrature rules

Hartree-Fock Theory. Solving electronic structure problem on computers

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Single-value extension property for anti-diagonal operator matrices and their square

Approximation of dynamic boundary condition: The Allen Cahn equation

Lecture 7: Overdispersion in Poisson regression

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Forced Pendulum Numerical approach

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Theory and Simulation of Interacting Particle Systems

UV fixed-point structure of the 3d Thirring model

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης


Solutions to Exercise Sheet 5

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Wavelet based matrix compression for boundary integral equations on complex geometries

Ηλεκτρονικοί Υπολογιστές IV

Phase-Field Force Convergence

A thermodynamic characterization of some regularity structures near the subcriticality threshold

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016

Exercises to Statistics of Material Fatigue No. 5

High order interpolation function for surface contact problem

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson


Higher spin gauge theories and their CFT duals

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Α Ρ Ι Θ Μ Ο Σ : 6.913

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Applying Markov Decision Processes to Role-playing Game

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Buried Markov Model Pairwise

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Quantum Systems: Dynamics and Control 1

LTI Systems (1A) Young Won Lim 3/21/15

Lecture 12: Pseudo likelihood approach

Math 200 Problem Set VI. x 2 1 c 2 2 u

From the finite to the transfinite: Λµ-terms and streams

Biostatistics for Health Sciences Review Sheet

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto.

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Introduction to the ML Estimation of ARMA processes

Universalité pour des polymères aléatoires. Paris, 17 Novembre 2015

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Démographie spatiale/spatial Demography

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Homework 8 Model Solution Section

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Μελέτη του Προτύπου 2D- Potts σε Υπολογιστικό Περιβάλλον MATLAB. Παρουσίαση της Διπλωματικής Εργασίας του Γιάννη Ασσιώτη

Three coupled amplitudes for the πη, K K and πη channels without data

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Transcript:

Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 / 21

Model Reduction N η N (t) random walk C. Landim Markov chains model reduction March 17, 216 2 / 21

Model Reduction Identification of the slow variables Derive their asymptotic behavior C. Landim Markov chains model reduction March 17, 216 3 / 21

Model Reduction d = 2 Mixing time N 2 Hitting time N 2 log N d 3 Mixing time N 2 Hitting time N d C. Landim Markov chains model reduction March 17, 216 3 / 21

Model Reduction Σ N A A 3 A 1 A 2 C. Landim Markov chains model reduction March 17, 216 4 / 21

Model Reduction Σ N A A 3 A 1 A 2 Ψ N : Σ N {, 1, 2, 3} Ψ N (x) = X N (t) = Ψ N (η N (t)) 3 k 1{x A k } k= C. Landim Markov chains model reduction March 17, 216 4 / 21

Model Reduction X N (t) not Markov Hidden Markov Chain 3 2 1 N d N d N d t C. Landim Markov chains model reduction March 17, 216 5 / 21

Model Reduction X N (t) not Markov Hidden Markov Chain 3 2 1 N d N d N d t No convergence X N (t) in Skorohod topology C. Landim Markov chains model reduction March 17, 216 5 / 21

Trace process Σ N E E 3 E 1 E 2 N = Σ N \ [E E 1 E 2 E 3 ] C. Landim Markov chains model reduction March 17, 216 6 / 21

Trace of a Markov chain η(t) E-valued Markov chain F E η F (t) trace of η(t) on F F = {a, b} E b T 3 b T 3 a T 1 T 2 T 1 + T 2 a t t C. Landim Markov chains model reduction March 17, 216 7 / 21

Trace of a Markov chain η(t) E-valued Markov chain F E η F (t) trace of η(t) on F F = {a, b} E b T 3 b T 3 a T 1 T 2 T 1 + T 2 a t t η F (t) Markov chain r F (x, y) = λ(x) P x [H F \{x} = H y ] C. Landim Markov chains model reduction March 17, 216 7 / 21

Trace process Σ N E E 3 E 1 E 2 N = Σ N \ [E E 1 E 2 E 3 ] r F (x, y) = λ(x) P x [H F \{x} = H y ] long jumps C. Landim Markov chains model reduction March 17, 216 8 / 21

Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. C. Landim Markov chains model reduction March 17, 216 9 / 21

Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. X N (θ N t) X (t) [ max E x 1{η(θ N s) E} ds ] x E C. Landim Markov chains model reduction March 17, 216 9 / 21

Problem η E (t) trace of η(t) on E = E E 1 E 2 E 3 3 Ψ N : E {, 1, 2, 3} Ψ N (x) = k 1{x E k } k= X N (t) = Ψ N (η E (t)) Hidden M. C. X N (θ N t) X (t) [ max E x 1{η(θ N s) E} ds ] x E η(θ N t) X (t) soft topology C. Landim Markov chains model reduction March 17, 216 9 / 21

Martingale approach Beltrán, L. (21-15) X N (t) = Ψ N (η E (tθ N )) X (t) C. Landim Markov chains model reduction March 17, 216 1 / 21

Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) C. Landim Markov chains model reduction March 17, 216 1 / 21

Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) X (t) solves martingale problem: F (X t ) F (X ) Exists L (LF )(X s ) ds martingale F : {,..., 3} R C. Landim Markov chains model reduction March 17, 216 1 / 21

Martingale approach X N (t) = Ψ N (η E (tθ N )) X (t) Tightness X N (t) X (t) solves martingale problem: F (X t ) F (X ) F (X t ) F (X ) Exists L (LF )(X s ) ds martingale F : {,..., 3} R 3 r(x s, k) [F (k) F (X s )] ds k= C. Landim Markov chains model reduction March 17, 216 1 / 21

Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale C. Landim Markov chains model reduction March 17, 216 11 / 21

Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale H : E R H(η E (θ N t)) H(η E ()) θn [L E H](η) = ξ E R E (η, ξ) {H(ξ) H(η)} [L E H] (η E (s)) ds C. Landim Markov chains model reduction March 17, 216 11 / 21

Martingale approach Ψ N (η E (θ N t)) X (t) F (X t ) F (X ) 3 r(x s, k) [F (k) F (X s )] ds k= martingale H : E R H(η E (θ N t)) H(η E ()) θn [L E H](η) = ξ E R E (η, ξ) {H(ξ) H(η)} [L E H] (η E (s)) ds H = F Ψ N F (X N (t)) F (X N ()) θ N [L E (F Ψ)](η E (θ N s)) ds C. Landim Markov chains model reduction March 17, 216 11 / 21

Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds C. Landim Markov chains model reduction March 17, 216 12 / 21

Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds [L E (F Ψ)](η) = ξ E R E (η, ξ) {(F Ψ)(ξ) (F Ψ)(η)} = = 3 [F (k) F (X N )] R E (η, ξ) ξ E k k= 3 [F (k) F (X N )] R E (η, E k ) k= C. Landim Markov chains model reduction March 17, 216 12 / 21

Closing the equation θ N [L E (F Ψ)](η E (θ N s)) ds 3 k= r(x s, k) [F (k) F (X s )] ds [L E (F Ψ)](η) = ξ E R E (η, ξ) {(F Ψ)(ξ) (F Ψ)(η)} = = 3 [F (k) F (X N )] R E (η, ξ) ξ E k k= 3 [F (k) F (X N )] R E (η, E k ) k= θ N R E (η E (θ N s), E k ) ds r(x N s, k) ds C. Landim Markov chains model reduction March 17, 216 12 / 21

Local ergodicity θ N R E (η E (θ N s), E k ) 1{X N s k}ds r(x N s, k) 1{X N s k} ds Σ N E E 3 E 1 E 2 C. Landim Markov chains model reduction March 17, 216 13 / 21

Local ergodicity θ N R E (η E (θ N s), E k ) 1{X N s k}ds r(x N s, k) 1{X N s k} ds G : E R Ĝ = E πn [G(η) E,..., E 3 ] π N ss 1 Ĝ(η) = π N (η)g(η) η E j π N (E j ) η E j Ĝ(η) = Ĝ(Ψ N(η)) { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds (C1) C. Landim Markov chains model reduction March 17, 216 14 / 21

Consequence θ N R E (η E (θ N s), E k ) 1{X N s θ N R E (η E (θ N s), E k ) 1{X N s k}ds = j}ds r(xs N, k) 1{Xs N k} ds r(j, k) 1{X N s = j} ds C. Landim Markov chains model reduction March 17, 216 15 / 21

Consequence θ N R E (η E (θ N s), E k ) 1{X N s θ N R E (η E (θ N s), E k ) 1{X N s k}ds = j}ds r(x N s, k) 1{X N s r(j, k) 1{X N s θ N π N (η)r E (η, E k ) =: θ N r N (j, k) π N (E j ) η E j 1 θ N π N (η)r E (η, E k ) r(j, k) π N (E j ) η E j k} ds = j} ds (C2) θ N [L E (F Ψ)](η E (θ N s)) ds (LF )(X s ) ds C. Landim Markov chains model reduction March 17, 216 15 / 21

Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds (C1) C. Landim Markov chains model reduction March 17, 216 16 / 21

Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) C. Landim Markov chains model reduction March 17, 216 16 / 21

Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) X N (t) = Ψ N (η E (tθ N )) X t C. Landim Markov chains model reduction March 17, 216 16 / 21

Summary Ĝ(η) = E πn [G(η) E,..., E 3 ] { } G(η E (θ N s)) Ĝ(ηE (θ N s)) ds θ N π N (η)r E (η, E k ) = θ N r N (j, k) r(j, k) π N (E j ) η E j (C1) (C2) X N (t) = Ψ N (η E (tθ N )) X t [ max E x 1{η(θ N s) E} ds ] x E (C3) Ψ N (η(tθ N )) X t soft topology C. Landim Markov chains model reduction March 17, 216 16 / 21

Applications Random walks Random walks random traps Random walks in potential field Spin models Kawasaki dynamics in d = 2 Blume-Capel dynamics Mean field Potts models Interacting particle systems Condensing zero-range processes ABC model Inclusion-exclusion dynamics Random polymers In interaction with substrates repulsive wall Reversible and non-reversible dynamics Logarithmic barriers C. Landim Markov chains model reduction March 17, 216 17 / 21

Tools Processes which visit points: General: Potential theory (C1) (C3) formulated in terms of capacities Ergodic properties Spectral gap C. Landim Markov chains model reduction March 17, 216 18 / 21

Condensing zero-range processes Model: T L = {1,..., L} periodic boundary conditions State space N T L configurations η = {η x : x T L } C. Landim Markov chains model reduction March 17, 216 19 / 21

Condensing zero-range processes Model: T L = {1,..., L} periodic boundary conditions State space N T L configurations η = {η x : x T L } Dynamics: g : N R + g() = g(k) > < p 1 x x + 1 at rate pg(η x ) x x 1 at rate (1 p)g(η x ) g(k) = k independent random walks g(k) = 1{k 1} queues and servers C. Landim Markov chains model reduction March 17, 216 19 / 21

Condensation Evans (25), Armendariz, Beltran, Chleboun, Ferrari, Godrèche, Grosskinsky, Loulakis, Schuetz, Sisko, Spohn ( k ) α g(1) = 1 g(k) = k 2 α > k 1 N number of particles E L,N = {η N T L : x T L η x = N} {η(t) : t } irreducible Phase transition µ L,N α > 2 T removes the site with largest number of particles {N L : L 1} N L /L ρ > ρ µ L,N T 1 ν ρ L(ρ ρ ) α > 1 L fixed 1 l N N lim N µ L,N {max 1 x L η x N l N } = 1 C. Landim Markov chains model reduction March 17, 216 2 / 21

Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 C. Landim Markov chains model reduction March 17, 216 21 / 21

Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 E L,N E 4 N E 3 N N E 1 N E 2 N C. Landim Markov chains model reduction March 17, 216 21 / 21

Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 η E N (t) trace of {η(t) : t } on E N = L x=1 Ex N Ψ N : E N {1,..., L} Ψ N (η) = x iff η E x N X N (t) = Ψ N (η E N (N 1+α t)) X (t) C. Landim Markov chains model reduction March 17, 216 21 / 21

Model Reduction, Coarse graining Fix 1 l N N EN x = {η : η x N l N } 1 x L L E N = EN x E L,N = E N N x=1 η E N (t) trace of {η(t) : t } on E N = L x=1 Ex N Ψ N : E N {1,..., L} Ψ N (η) = x iff η E x N X N (t) = Ψ N (η E N (N 1+α t)) X (t) θ N = N 1+α Reversible: r(x, y) = C(α) L cap(x, y) Non-reversible p = 1 C. Landim Markov chains model reduction March 17, 216 21 / 21