TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *

Σχετικά έγγραφα
Trigonometric Formula Sheet

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

PARTIAL NOTES for 6.1 Trigonometric Identities

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 6 BLM Answers

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

Radians/Arc+Length+++! Converting++Between++Radians++and++Degrees+

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MathCity.org Merging man and maths

TRIGONOMETRIC FUNCTIONS

Homework#13 Trigonometry Honors Study Guide for Final Test#3

CAMI Wiskunde: Graad 10

is like multiplying by the conversion factor of. Dividing by 2π gives you the

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

CRASH COURSE IN PRECALCULUS

Principles of Mathematics 12 Answer Key, Contents 185

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Section 8.2 Graphs of Polar Equations

Section 8.3 Trigonometric Equations

9. Παράρτημα μαθηματικών εννοιών & εργαστηριακών οργάνων

Rectangular Polar Parametric

Review Exercises for Chapter 7

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 7.6 Double and Half Angle Formulas

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης

MATH 150 Pre-Calculus

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

11.4 Graphing in Polar Coordinates Polar Symmetries

CORDIC Background (2A)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

298 Appendix A Selected Answers

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =


Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

Το ελαστικο κωνικο εκκρεμε ς

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ

1999 by CRC Press LLC

Trigonometry 1.TRIGONOMETRIC RATIOS

Chapter 7 Analytic Trigonometry

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Trigonometry Functions (5B) Young Won Lim 7/24/14

Section 9.2 Polar Equations and Graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM

CHEMISTRY 1. A. Paper-2 HINTS & SOLUTIONS C 3. D 4. C + + Sol: Mg N Mg N Mg ( OH) NH Cu ( NH ) 5. AD Sol: α hydrogen absent

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Κεφάλαιο 3 ο : Αναπαράσταση θέσης

% APPM$1235$Final$Exam$$Fall$2016$

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

Sampling Basics (1B) Young Won Lim 9/21/13

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

F-TF Sum and Difference angle

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

Fourier Analysis of Waves

Core Mathematics C34

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Differential equations

Ανεξαρτησία κάθετων μεταξύ των κινήσεων

Solution to Review Problems for Midterm III

Formulario di Trigonometria

ΠΡΟΦΥΛΑΞΕΙΣ ΣΤΟΝ ΧΕΙΡΙΣΜΟ

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Derivations of Useful Trigonometric Identities

Rectangular Polar Parametric

y = u i t 1 2 gt2 y = m y = 0.2 m

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Transcript:

TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions: 1degree/ 1radian s s FORMULA: θ = radians;wheres=arclength,r=radius r θ r IMPLICATIONOFFORMULA:Ifs=rthen θ =1radian EXAMPLE1:Whatistheradianmeasureofacentralanglesubtendedbyanarcof32cminacircleofradius8cm.? THINK!!Whatistheradianmeasureofanangleof180?Of90?Of60?Of45?Of30? ConvertingRadians Degrees Deg Rad:multiplyby π 180 o Rad Deg:multiplyby 180o π EXAMPLE2a:Findthedegreemeasureof1.5radiansinexactformandindecimalformto4places. EXAMPLE2b:Findtheradianmeasureof 120o inexactformandindecimalformto4places.

AnglesinStandardPosition:vertexisatorigin,initialsideispositionedalongthex/axis( 0 o ) LABEL: α ispositive(counterclockwise) β isnegative(clockwise) 0 o EXAMPLE3:Sketchthefollowinganglesinstandardposition: π (A) 6 (B) 495 o Coterminalangleshavethesameinitial&terminalsides. Therefore,themeasuresofcoterminalanglesdifferbyintegermultiplesof or. EXAMPLE4:Whichofthefollowingpairsofanglesarecoterminal?Createalabeledsketchofeachangleonthesame axis. (A) α = 90, β = 90 (B) α = 750, β = 30 π 25π (C) α =, β = 3π 7π (D) α =, β = 6 6 4 4

FORMULAtofindarclength: s rθ = wheres=arclength,r=radius,θ =centralanglein+radians EXAMPLE5:Inacircleofradius6ft,findthearclengthsubtendedbyacentralangleof: (A) 1.7 θ = radians (B) 40 θ = o CIRCLE:AREAOFASECTOR part whole : A πr 2 = θ 2π NowsolvethisequationforA: EXAMPLE6:Inacircleofradius7in,findtheareaofthesectorwithcentralangle: (A)0.1332radians (B)110 o

2.3+ +Trigonometric+Functions:+Unit+Circle+Approach+ Algebra2Review:Thegraphof a 2 + b 2 = 1 isacirclewithcenterat(0,0)andradius=1 ThisisthedefinitionofaUNITCIRCLE P(a,b) WITHINAUNITCIRCLE:a=cosx,andb=sinxorP(a,b)=P(cosx,sinx) EXPLAINWHY: (1,0) Whatisthedomain&rangeforsine(y=sinx)&cosine(y=cosx)? DOMAIN: RANGE: Definitions: isanangleindegrees. isanangleinradians. representsarandompointontheterminalsideofangleθ oranglex. isthedistancefromtheorigintopointp. Referencetriangle: Referenceangle: Definethe6trigfunctions: Fillin+or valuesforthefunctionsinrelationtothe4quadrants sinθ = cscθ = = sin sin cosθ = secθ = = cos cos tanθ = cotθ = = tan tan sin sin tanθ = cotθ = = cos cos tan tan

EXAMPLE1:Findtheexactvaluesofeachofthe6trigfunctionsfortheanglexwithterminalsidecontainingP(/6,8). Besuretosketchthetriangleonthecoordinateplane. EXAMPLE2:Findtheexactvaluesofeachofthe6trigfunctionsfortheangleθ withterminalsidecontainingp(/4,/3). Besuretosketchthetriangleonthecoordinateplane. EXAMPLE3:Findtheexactvalueofeachoftheother5trigfunctionsfortheanglex(withoutfindingx)giventhatthe terminalsideofxliesinquadrantiand sin x = 5 13 EXAMPLE4:Findtheexactvalueofeachoftheother5trigfunctionsfortheangleθ (withoutfindingθ )giventhatthe terminalsideofθ liesinquadrantiiand tanθ = 3 4 EXAMPLE5:Useacalculatorandevaluateto4decimalplaces(thisiswherethecalculatormodematters) (A) cos 303.73 = (B) sec( 2.805) = (C) tan 83 29 ( ) = (D) sin12 = (E) csc100 52 43" = (F) cot 9 =

TRIGONOMETRY:+2.5+Exact+Values+and+Properties+of+Trigonometric+Functions+ Quadrantalangle: Example1:Evaluateeachfunctionatthegivenquadrantalangle.Sketcheachangle. (A)sin3π/2 (B)sec(/π) (C)tan90 (D)cot(/270 ) DevelopingtheUnitCircle:EvaluatingTrigFunctionsofMultiplesofπ/4 Drawthereferencetrianglewithareferenceangleof45 ineachquadrant. Recordthesineandcosinevaluesatthegivenangle. QuadrantII(135 ) QuadrantI(45 ) QuadrantIII(225 ) QuadrantIV(315 ) Example2:Evaluateeachfunctionatthegivenangle.Giveexactanswersonly. (A)cos(5π/4) (B)tan(3π/4) (C)csc(45 ) (D)sec(/π/4) DevelopingtheUnitCircle:EvaluatingTrigFunctionsofMultiplesofπ/6 Drawtworeferencetriangleswithreferenceanglesof30 and60 ineachquadrant. Recordthesineandcosinevaluesatthegivenangle. QuadrantII(120 &150 ) QuadrantI(30 &60 ) QuadrantIII(210 &240 ) QuadrantIV(300 &330 ) Example3:Evaluateeachfunctionatthegivenangle.Giveexactanswersonly. (A)cot(5π/6) (B)csc(330 ) (C)sin(2π/3) (D)tan(4π/3)

FindingSpecialAngles Usingthegivenratioforeachtrigfunction,determinetheleastpositiveθindegreeandradianmeasure. Supposesinθ= 3.Drawareferencetriangleinthefirstquadrantwithsideoppositereferenceangle 3 and 2 hypotenuse2.observethatthisisaspecial30 /60 /90 triangle: Example4:Findtheleastpositiveangleforsecθ= 2. PeriodicFunctions: Note:Boththesineandcosinefunctionhaveaperiodof2π.Tangentandcotangentfunctionshaveaperiodof. LetQ(a,b)bethepointontheunitcirclethatliesontheterminalsideofananglehaving Radianmeasurex.Then,sincethereare2πradiansintheonecompleterotation,thepoint Q(a,b)liesontheterminalsideofx+2π. b=sinx=sin(x+2π) a=cosx=cos(x+2π) Example5:Ifsinx=0.7714,whatisthevalueofeachofthefollowing? (A)sin(x+2π) (B)sin(x 2π) (C)sin(x+14π) (D)sin(x 26π) FundamentalIdentities: ReciprocalIdentities TangentIdentities Odd/EvenIdentities PythagoreanIdentities! csc! = tan! = sin(!) = sin! sin!! + cos!! = 1! sec! = cot! = cos(!) = cos!! cot! = tan(!) = tan! Example6:Simplifyeachexpressiontoonetrigonometricfunctionusingthefundamentalidentities. (A)!!!"#!!!"#!! (B)tan(!) cos!(!)(c)!(!)!"!!