ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο"

Transcript

1 ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής Αντίρριο 2015

2 ΠΕΡΙΕΧΟΜΕΝΑ Αρχές Μέτρησης Κρυπτογραφικής Δύναμης Επιθέσεις σε ένα κρυπτοσύστημα Τα μέτρα του Shannon Μοντέλα αξιολόγησης ασφάλειας Κρυπταλγόριθμοι Ροής και Τμήματος Κατηγορίες Κρυπτογραφικών Πράξεων Ασκήσεις

3 ΠΕΡΙΣΣΕΙΑ ΓΛΩΣΣΑΣ Ο απόλυτος ρυθμός (Absolute rate) μιας γλώσσας ονομάζεται η ποσότητα όπου n είναι το πλήθος των γραμμάτων του αλφαβήτου. Το ελληνικό αλφάβητο αποτελείται από 24 γράμματα. Ο ελάχιστος αριθμός των bits που απαιτούνται για να αναπαραστήσουμε τα 24 γράμματα είναι Ο αριθμός μηνυμάτων μήκους m γραμμάτων είναι 2 Am Ο αριθμός των έγκυρων μηνυμάτων μήκους m γραμμάτων είναι 2 Rm Ως Περίσσεια (Redundancy) μιας γλώσσας εννοούμε το ποσοστό των συνδυασμών των γραμμάτων της γλώσσας αυτής που δεν οδηγούν σε μηνύματα τα οποία ανήκουν στη γλώσσα αυτή. Σε bits είναι ίση με D=A-R.

4 UNICITY DISTANCE Unicity Distance ονομάζεται η ποσότητα του κρυπτοκειμένου που απαιτείται για την ανάκτηση του απλού κειμένου. Θα πρέπει να θυμόμαστε ότι όσο μικρότερη είναι η περίσσεια της γλώσσας τόσο περισσότερο κρυπτοκείμενο απαιτείται για να εντοπιστεί το κλειδί

5 ΜΟΝΤΕΛΑ ΑΞΙΟΛΟΓΗΣΗΣ ΑΣΦΑΛΕΙΑΣ Ασφάλεια άνευ όρων (Unconditionally secure): Ένα σύστημα είναι άνευ όρων ασφαλές όταν το κρυπτοκείμενο δεν δίνει καμιά πληροφορία στον αντίπαλο σχετικά με το απλό κείμενο. Υπολογιστική ασφάλεια (Computationally secure): Ένα κρυπτοσύστημα είναι υπολογιστικά ασφαλές όταν προκειμένου να το παραβιάσει ο αντίπαλος απαιτείται υπολογιστική ισχύ πέραν των δυνατοτήτων του. Χρησιμοποιεί την εξαντλητική αναζήτηση (Exhaustive search) όπου ο αντίπαλος δοκιμάζει ένα προς ένα τα κλειδιά έως ότου ανακαλύψει το σωστό. Ο αναμενόμενος χρόνος ανακάλυψης του σωστού κλειδιού είναι ανάλογος του μισού του συνολικού αριθμού του κλειδιού. Ασφάλεια θεωρητικής πολυπλοκότητας (Complexity theoretic): Θεωρείται ότι ο αντίπαλος μπορεί να πραγματοποιήσει επίθεση στο κρυπτοσύστημα η οποία απαιτεί πολυωνυμική υπολογιστική ισχύ. Δηλαδή, οι παράμετροι ασφάλειας του κρυπτοσυστήματος μπορούν να εκφραστούν πολυωνυμικά ως προς το χρόνο και το χώρο. Αποδείξιμη ασφάλεια (Provable security): Ένα κρυπτοσύστημα είναι αποδείξιμα ασφαλές όταν μπορούμε να αποδείξουμε ότι η ασφάλεια του είναι ισοδύναμη κάποιου γνωστού και καλά μελετημένου προβλήματος που θεωρείται «δύσκολο».

6 ΕΠΙΘΕΣΕΙΣ ΣΕ ΕΝΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑ (1/6) Επίθεση στο κρυπτοκείμενο (Ciphertextonly attack): Ο αντίπαλος έχει πρόσβαση μόνο σε ορισμένα τμήματα του κρυπτοκειμένου και ο σκοπός του είναι να αποκρυπτογραφήσει το κρυπτοκείμενο αυτό, ή να ανακαλύψει το αντίστοιχο κλειδί

7 ΕΠΙΘΕΣΕΙΣ ΣΕ ΕΝΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑ (2/6) Επίθεση με γνωστό απλό κείμενο (Known-plaintext attack): Ο αντίπαλος γνωρίζει αντιστοιχίες κρυπτοκειμένου με απλό κείμενο και ο σκοπός του είναι η ανακάλυψη του αντίστοιχου κλειδιού

8 ΕΠΙΘΕΣΕΙΣ ΣΕ ΕΝΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑ (3/6) Επίθεση με επιλεγμένο απλό κείμενο (Chosen-plaintext attack): Ο αντίπαλος έχει τη δυνατότητα πρόσβασης στο κρυπτοσύστημα όπου δεν γνωρίζει το κλειδί και μπορεί να ζητά την κρυπτογράφηση μηνυμάτων. Με αυτό τον τρόπο μπορεί να ανακαλύψει την αντιστοιχία του απλού κειμένου με το άγνωστο κρυπτοκείμενο

9 ΕΠΙΘΕΣΕΙΣ ΣΕ ΕΝΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑ (4/6) Επίθεση προσαρμόσιμου επιλεγμένου απλού κειμένου (Adaptive chosen-plaintext attack): Ο αντίπαλος πραγματοποιεί επίθεση με επιλεγμένο απλό κείμενο. Επιπλέον εφαρμόζει μεθοδολογία σύμφωνα με την οποία η επόμενη επιλογή του απλού κειμένου εξαρτάται από τις προηγούμενες, προκειμένου να ανακαλύψει γρηγορότερα το κλειδί από μια εξαντλητική αναζήτηση (Exhaustive search)

10 ΕΠΙΘΕΣΕΙΣ ΣΕ ΕΝΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑ (5/6) Επίθεση με επιλεγμένο κρυπτοκείμενο (Chosen-ciphertext attack): Ο αντίπαλος έχει πρόσβαση στον αλγόριθμο αποκρυπτογράφησης. Ο σκοπός του είναι να ανακαλύψει το κλειδί αποκρυπτογράφησης ώστε στο μέλλον να αποκρυπτογραφεί τα νέα κρυπτοκείμενα όταν δεν θα έχει πρόσβαση στον αλγόριθμο αποκρυπτογράφησης

11 ΕΠΙΘΕΣΕΙΣ ΣΕ ΕΝΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑ (6/6) Επίθεση προσαρμόσιμου επιλεγμένου κρυπτοκειμένου (Adaptive chosen-ciphertext attack): Η επίθεση αυτή είναι αντίστοιχη του προσαρμόσιμου επιλεγμένου απλού κειμένου με την διαφορά ότι ο αντίπαλος έχει πρόσβαση στον αλγόριθμο αποκρυπτογράφησης

12 ΕΞΑΝΤΛΗΤΙΚΗ ΑΝΑΖΗΤΗΣΗ

13 ΣΥΓΧΥΧΗ και ΔΙΑΧΥΣΗ Σύγχυση (Confusion) είναι η ικανότητα του αλγορίθμου κρυπτογράφησης όπου ο αντίπαλος δεν είναι σε θέση να προβλέψει ποιες μεταβολές θα συμβούν στο κρυπτοκείμενο, δεδομένης μιας μεταβολής στο απλό κείμενο Δηλαδή ένας αλγόριθμος έχει υψηλή σύγχυση όταν οι σχέσεις μεταξύ του απλού κειμένου και του κρυπτοκειμένου είναι αρκετά πολύπλοκες, ώστε να χρειάζεται ο αντίπαλος να ξοδέψει σημαντικό χρόνο προκειμένου να τις προσδιορίσει Διάχυση (Diffusion) είναι η ικανότητα του αλγορίθμου κρυπτογράφησης όπου ένα τμήμα του απλού κειμένου έχει την ευκαιρία να επηρεάζει όσο το δυνατόν περισσότερα τμήματα του κρυπτοκειμένου Ένας αλγόριθμος έχει υψηλή διάχυση όταν ένα στοιχειώδεις τμήμα του απλού κειμένου έχει την δυνατότητα να επηρεάσει όλα τα τμήματα του κρυπτοκειμένου, ανεξάρτητα της τοποθεσίας του τμήματος αυτού στο απλό κείμενο

14 ΟΡΟΛΟΓΙΑ Έστω F είναι το σύνολο των συμβόλων που απαρτίζουν το απλό κείμενο P, δηλαδή P=[p 1 p 2...] όπου p i F για i=1, 2,...Όμοια έστω G το σύνολο των συμβόλων που απαρτίζουν το κτυπτοκείμενο C, όπου C=[c 1 c 2...], με c i G για i=1, 2,... Τότε το σύνολο όλων των δυνατών απλών κειμένων ονομάζεται χώρος των απλών κειμένων και συμβολίζεται με F* ενώ το σύνολο όλων των δυνατών κρυπτοκειμένων ονομάζεται χώρος των κρυπτοκειμένων και συμβολίζεται με G*. Κατά αντιστοιχία ορίζουμε σαν F n το σύνολο των απλών κειμένων μήκους n, και σαν G m το σύνολο των κρυπτοκειμένων μήκους m.

15 ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΡΟΗΣ Απλό Κείμενο Κλειδί Γεννήτρια κλειδοροής k 1 k 2 k 3... Κρυπτοκείμενο p 1 p 2 p 3... c 1 c 2 c 3... Κλειδί Γεννήτρια κλειδοροής k 1 k 2 k 3... p 1 p 2 p 3... Απλό Κείμενο Οι κρυπταλγόριθμοι ροής (stream ciphers) ενεργούν σε ένα σύμβολο (bit) απλού κειμένου Βασικό συστατικό του κρυπταλγορίθμου ροής είναι η γεννήτρια της κλειδοροής Η κλειδοροή (keystream) είναι μια περιοδική ακολουθία κλειδιών Η γεννήτρια κλειδοροής θα πρέπει να παράγει την ίδια ακολουθία σε δύο διαφορετικές τοποθεσίες την ίδια χρονική στιγμή

16 ΒΑΣΙΣΜΕΝΟΙ ΣΕ LFSRs (Ι) Γεννήτρια Geffe Το κλειδί της γεννήτριας αποτελείται από τα τρία επιμέρους κλειδιά των LFSRs LFSR-1 LFSR-2 Πολυπλέκτης 2 σε 1 Κλειδοροή k(t) LFSR-3

17 ΒΑΣΙΣΜΕΝΟΙ ΣΕ LFSRs (ΙΙ) Γεννήτρια εναλλασσόμενου βήματος C(t) LFSR-1 Κλειδοροή k(t) LFSR-c LFSR-2

18 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΜΕΙΟΝΕΚΤΗΜΑΤΑ Πλεονέκτημα: Μεγάλη ταχύτητα κρυπτογράφησης. Το κάθε σύμβολο του απλού κειμένου δεν εξαρτάται από τα υπόλοιπα και μπορεί όταν κρυπτογραφηθεί και να σταλεί την στιγμή που θα εισαχθεί στο κρυπτοσύστημα Μειονέκτημα: Ο συγχρονισμός των δύο γεννητριών κλειδοροής. Ένας αντίπαλος μπορεί να αποσυγχρονίσει το κρυπτοσύστημα παρεμβάλλοντας επιπλέον σύμβολα στο κρυπτοκείμενο, οπότε η αποκρυπτογράφηση θα οδηγεί σε απλό κείμενο διαφορετικό από το αρχικό

19 O RC4 ΑΛΓΟΡΙΘΜΟΣ ΡΟΗΣ Αποτελείται από δύο πίνακες, τον S[0,1,.., 255] και τον T[0,1,.., 255] Κάθε στοιχείο των πινάκων είναι 1 byte Γίνεται η αρχικοποίηση S[i]=i για 0<=i<=255 και T[i]=K[i mod k] για 0<=i<=255 με K[j] το j-οστο byte του κλειδιού και k το μέγεθος του κλειδιού Αντιμετάθεση των στοιχείων του πίνακα S με τον πίνακα του κλειδιού Τ j 0: αρχική τιμή j j+s[i]+t[i] mod 256 και S[i] S[j] για 0<=i<=255

20 O RC4 ΑΛΓΟΡΙΘΜΟΣ ΡΟΗΣ H κλειδοροή παράγεται από την παρακάτω διαδικασία ς φορ θεση αντιµετ έ n t S k j S i S t j S i S ά i S j j i i j i = ] [ ]mod 256 [ ] [ ] [ ] [ : ]mod 256 [ 1mod ,

21 ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΤΜΗΜΑΤΟΣ Απλό Κείμενο Κρυπτοκείμενο m m Κλειδί n Aλγόριθμος Τμήματος Κλειδί n Aλγόριθμος Τμήματος m m Κρυπτοκείμενο Απλό Κείμενο Οι κρυπταλγόριθμοι τμήματος (block ciphers) ενεργούν σε μια ομάδα συμβόλων απλού κειμένου και παράγουν μια ομάδα συμβόλων κρυπτοκειμένου. Το απλό κείμενο έχει συνήθως αρκετά μεγάλο μήκος, χωρίζεται σε τμήματα όπου το κάθε τμήμα είναι η ομάδα που θα διοχετευθεί στον αλγόριθμο κρυπτογράφησης Το μήκος του τμήματος είναι σταθερό και συγκεκριμένο (m). Οπότε υπάρχει το ενδεχόμενο το τελευταίο τμήμα του απλού κειμένου να συμπληρωθεί από μηδενικά ώστε να έχει το απαιτούμενο μήκος

22 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΜΕΙΟΝΕΚΤΗΜΑΤΑ Πλεονέκτημα: Έχουν υψηλή διάχυση λόγω του ομαδικού χειρισμού των συμβόλων του απλού κειμένου κατά την κρυπτογράφηση Ο αντίπαλος δεν μπορεί να παρεμβάλει επιπλέον σύμβολα στο κρυπτοκείμενο Μειονέκτημα: Πολύπλοκη η υλοποίησή τους.

23 ΜΕΓΙΣΤΗ ΔΙΑΧΥΣΗ και ΣΥΓΧΥΣΗ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΥ ΤΜΗΜΑΤΟΣ Έστω το κρυπτοσύστημα F (n) G (n) με F=G={0, 1} με κλειδοχώρο Κ και Ε, D που ορίζονται από κρυπταλγόριθμο τμήματος μήκους n-bit. Έστω P=[p 1 p 2...p n ] το τμήμα του απλού κειμένου και C=[c 1 c 2...c n ] το αντίστοιχο τμήμα του κρυπτοκειμένου. Για να υπάρχει μέγιστη διάχυση θα πρέπει να υπάρχει σχέση μεταξύ του κάθε συμβόλου του απλού κειμένου με όλα τα σύμβολα του κρυπτοκειμένου για οποιαδήποτε κλειδί. Για να υπάρχει μέγιστη σύγχυση θα πρέπει η πιθανότητα αντιστροφής ενός συμβόλου του κρυπτοκειμένου c i να είναι 0,5 εφόσον υπάρξει αντιστροφή του συμβόλου p j για όλα τα i, j.

24 ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΡΟΗΣ με ΧΡΗΣΗ ΚΡΥΠΤΑΛΓΟΡΙΘΜΩΝ ΤΜΗΜΑΤΟΣ (1/2) Κλειδί Aλγόριθμος Τμήματος c 1 c 2 c 3... Επιλογή συμβόλου c i Απλό Κείμενο Κρυπτοκείμενο Εκμεταλλευόμαστε την υψηλή διάχυση και σύγχυση των κρυπταλγορίθμων τμήματος Κρυπτογράφηση ενός αρχικού απλού κειμένου, π.χ το [ ]. Ανατροφοδότηση του κρυπτοκειμένου σαν απλό κείμενο Επιλογή του π.χ. πρώτου συμβόλου του κρυπτοκειμένου

25 ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΡΟΗΣ με ΧΡΗΣΗ ΚΡΥΠΤΑΛΓΟΡΙΘΜΩΝ ΤΜΗΜΑΤΟΣ (2/2) Καταχωρητής Ολίσθησης n Καταχωρητής Ολίσθησης n Κλειδί Aλγόριθμος Τμήματος Κλειδί Aλγόριθμος Τμήματος c 1 c 2 c 3... c 1 c 2 c 3... Επιλογή συμβόλου c i Επιλογή συμβόλου c i Απλό Κείμενο Κρυπτοκείμενο Απλό Κείμενο Αυτοσυγχρονιζόμενος (Self-synchronizing) αλγόριθμος ροής Στην περίπτωση που υπάρξει κάποιο σφάλμα ή αυθαίρετη εισαγωγή κρυπτοκειμένου κατά την μετάδοση, η διαδικασία αποκρυπτογράφησης θα επανέλθει στη σωστή λειτουργία μετά από n αποκρυπτογραφήσεις από το τελευταίο σφάλμα.

26 QUIZ Mosquito: Selfsynchronizing stream cipher Moustique: Selfsynchronizing stream cipher

27 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΠΡΑΞΕΙΣ Αναδιάταξη (Transposition): Επιδρά αποκλειστικά στη θέση των συμβόλων του απλού κειμένου Αντικατάσταση (Substitution): Επιδρά στα σύμβολα του απλού κειμένου Μονοαλφαβητική Αντικατάσταση Πολυαλφαβητική Αντικατάσταση Κωδικοποιητής από n σε 2 n Αποκωδικοποιητής από 2 n σε n

28 ΑΝΑΔΙΑΤΑΞΗ Στην αναδιάταξη ισχύει F=G, δηλαδή τα σύμβολα του κρυπτοκειμένου είναι ίδια με τα σύμβολα του απλού κειμένου αφού η κρυπτογράφηση αναδιάταξης επιδρά μόνο στις θέσεις των συμβόλων του απλού κειμένου Παράδειγμα: Έστω τα σύνολα του απλού κειμένου και του κρυπτοκειμένου, F=G={α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω} Έστω το απλό κείμενο [αλλαγη] Έστω το κλειδί [261453]. Αυτό σημαίνει ότι το πρώτο γράμμα του απλού κειμένου θα εμφανιστεί στη δεύτερη θέση, το δεύτερο γράμμα στη έκτη, κ.ο.κ. Η κρυπτογράφηση του απλού κειμένου θα δώσει [λαηαγλ] Το κρυπτοκείμενο είναι αναγραμματισμός του απλού κειμένου

29 ΜΟΝΟΑΛΦΑΒΗΤΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ Μονοαλφαβητική αντικατάσταση είναι η κρυπτογραφική πράξη e i : F (n) G (m), όπου η e i παραμένει σταθερή σε όλη τη διάρκεια της κρυπτογραφηση ενός απλού κειμένου. Στην περίπτωση που έχουμε F (1) G ονομάζεται απλή αντικατάσταση όπου η κρυπτογραφική πράξη αντιστοιχίζει ένα σύμβολο του απλού κειμένου σε ένα σύμβολο του κρυπτοκειμένου. Κρυπταλγόριθμος μετατόπισης του Καίσαρα (The Shift (Caesar) Cipher) Γραμμικός Κρυπταλγόριθμος (The Affine Cipher)

30 ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΣ ΜΕΤΑΤΟΠΙΣΗΣ του ΚΑΙΣΑΡΑ Ο κρυπταλγόριθμος μετατόπισης ορίζει το κρυπτοσύστημα F=G=K=Z n και με e k E, d k D, τέτοια ώστε c= e k (p)=p+k mod n και p= d k (c)=c-k mod n, για p F, c G και k K. Στο ελληνικό αλφάβητο έχουμε n=24 με α,α=0, β,β=1,...,ω,ω=23

31 ΓΡΑΜΜΙΚΟΣ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΣ Ο γραμμικός κρυπταλγόριθμος ορίζει το κρυπτοσύστημα F=G=K=Z n, Κ={(a, b) Z n xz n : gcd(a, n)=1} και με e k E, d k D, τέτοια ώστε c= e k (p)=ap+b mod n και p= d k (c)=a -1 (c-b) mod n, για p F, c G και k = (α, β) K. Για a=1 ο αλγόριθμος εκφυλίζεται στην περίπτωση του κρυπταλγορίθμου μετατόπισης.

32 ΠΟΛΥΑΛΦΑΒΗΤΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ Πολυαλφαβητική αντικατάσταση είναι η κρυπτογραφική πράξη e i : F (n) G (m), όπου το i παίρνει τουλάχιστον δύο διαφορετικές τιμές κατά την κρυπτογραφηση ενός απλού κειμένου. Σύνολο Αλφαβήτων V (m) Σύνολο Αλφαβήτων W (n) Σύνολο Αλφαβήτων V (m) Σύνολο Αλφαβήτων W (n) p 1 c 1 p 1 c 1 p 2 e k1 c 2 p 2 e k c 2 p 3 e k2 c 3 p 3 c 3.. e k Απλό Κείμενο Κρυπτοκείμενο Απλό Κείμενο Κρυπτοκείμενο Πολυαλφαβητική Αντικατάσταση Μονοαλφαβητική Αντικατάσταση Κρυπταλγόριθμος Vigenere Κρυπταλγόριθμος του Hill

33 ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΣ VIGENERE Ο κρυπταλγόριθμος Vigerere ορίζει το κρυπτοσύστημα F=G=K=Z n1 και με e k E 1, d k D 1 τέτοια ώστε c=e k (p)=(e k1 (p 1 ), e k2 (p 2 ),..., e kl (p l )) και p=d k (c)=(d k1 (c 1 ), d k2 (c 2 ),..., d kl (d l )) για p F, c G και k=(k 1, k 2,...k l ) K και όπου e k (p)=p+k mod n και d k (p)=p-k mod n Η κρυπτογραφική πράξη e k είναι αυτή του κρυπταλγορίθμου μετάθεσης. Η ποσότητα l προσδιορίζει το μήκος του κλειδιού καθώς και τον αριθμό των αλφάβητων που συμμετέχουν στην κρυπτογράφηση. Αν l=1 τότε εκφυλίζεται στο μονοαλφαβητικό κρυπταλγόριθμο μετάθεσης.

34 ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΓΙΝΟΜΕΝΟΥ Περιγράφει την σύνθεση δύο η περισσοτέρων κρυπτογραφικών πράξεων για την δημιουργία ενός κρυπταλγορίθμου ο οποίος είναι κρυπτογραφικά δυνατότερος από τις δύο πράξεις. Έχει σαν αποτέλεσμα την σημαντική ενίσχυση των χαρακτηριστικών της σύγχυσης και της διάχυσης. Κρυπτογραφικό γινόμενο μπορεί να προκύψει και από ένα μόνο κρυπτοσύστημα όταν το απλό κείμενο κρυπτογραφείται και το αποτέλεσμα (κρυπτοκείμενο) επανακρυπτογραφείται με την ίδια πράξη. Σε αυτή την περίπτωση δεν θα πρέπει το κρυπτοσύστημα να αποτελεί ομάδα. Ένα κρυπτοσύστημα {F, G, E, D, K} αποτελεί ομάδα όταν: Υπάρχει κλειδί k K τέτοιο ώστε: e k (p)=e k1 (e k2 (p)), για κάθε k 1, k 2 K.

35 ΓΥΡΟΣ ΚΡΥΠΤΟΓΡΑΦΗΣΗΣ / ΓΕΝΝΗΤΡΙΑ ΚΛΕΙΔΙΩΝ Ένα κρυπτοσύστημα γινομένου του οποίου η πράξη κρυπτογράφησης επαναλαμβάνεται στη σειρά t φορές, λέμε ότι αποτελείται από t γύρους κρυπτογράφησης Σε κάθε γύρο κρυπτογράφησης το κλειδί είναι διαφορετικό. Η ακολουθία των κλειδιών {k 1, k 2,..., k 3 } ονομάζεται «πρόγραμμα» κλειδιών (key schedule) Η γεννήτρια προγράμματος κλειδιού (key schedule generator) αντιστοιχεί ένα κλειδί k K στο σύνολο των κλειδιών του γινομένου: s k :K K t. Ουσιαστικά παράγει το πρόγραμμα κλειδιού από το αρχικό κλειδί.

36 ΑΣΚΗΣΕΙΣ Άσκηση 1: Έστω ότι θέλετε να κρυπτογραφήσετε ένα μήνυμα με τον γραμμικό αλγόριθμο. Υποθέτουμε το λατινικό αλφάβητο για το οποίο θεωρούμε ότι a=0, b=1,..., z=25 καθώς επίσης και τα σύμβολα?=26, ;=27, =28 και!=29. Άρα χρησιμοποιούμε τον αλγόριθμο κρυπτογραφίας y αx+β (mod 30) για δύο ακέραιους α, β. Να δείξετε ότι υπάρχουν ακριβώς 8 πιθανές επιλογές για τον ακέραιο α, με 0<α<30, που μπορείτε να χρησιμοποιήσετε κατά την αποκρυπτογράφηση. Λύση: Αν ισχύει y=αx+β τότε x= α -1 (y-β). Για να υφίσταται η αποκρυπτογράφηση πρέπει να ισχύει gcd(α, 30)=1. Τότε οι πιθανές τιμές του α είναι οι 1, 7, 11, 13, 17, 19, 23, 29.

37 ΑΣΚΗΣΕΙΣ (1/2) Άσκηση 2: Έστω τρία σύνολα από χαρακτήρες. Σύνολο1={a, b,..., z}=26 χαρακτήρες Σύνολο2={a, b,..., z, Α, Β,..., Ζ}=52 χαρακτήρες Σύνολο3={a, b,..., z, Α, Β,..., Ζ, 0, 1,.., 9,!,,, &, #, $, *, (, ), [, ], {, }, <, >, ;, :}=78 χαρακτήρες Για κάθε σύνολο υπολογίστε τον αριθμό των κλειδιών με μέγεθος 3, 6 και 12 χαρακτήρες. Έστω ότι ο εισβολέας μπορεί να δοκιμάζει κλειδιά ανά second υπολογίστε τον χρόνο που απαιτείται για να βρει το κλειδί από το κάθε σύνολο. Λύση: Ο αριθμός των κλειδιών είναι (n!/(k!(n-k)!))

38 ΑΣΚΗΣΕΙΣ (2/2) Ο μέγιστος χρόνος (σε second) που απαιτείται για να βρεθεί το κλειδί είναι ο συνολικός αριθμός των κλειδιών διαιρεμένος με τον αριθμό κλειδιών που μπορεί να ελεγχθεί σε ένα δευτερόλεπτο. (Ο μέσος χρόνος που λαμβάνεται είναι ο μισός μέγιστος χρόνος.) Για παράδειγμα, εάν το κλειδί έχει μήκος 3 γράμματα, μπορεί να βρεθεί πολύ γρήγορα, δεδομένου ότι όλα τα πιθανά κλειδιά μπορούν να εξεταστούν σε ένα λιγότερο από δευτερόλεπτο. Σε αντίθεση, ο χρόνος που απαιτείται για να ελέγξει όλα τα κλειδιά μήκους 12 που λαμβάνεται από το αλφάβητο των 26 χαρακτήρων, είναι περίπου δευτερόλεπτα, το οποίο είναι περίπου 300 έτη.

39 ΑΣΚΗΣΕΙΣ (1/2) Άσκηση 3: Θεωρώντας το κρυπτοσύστημα Vigenere, αν το κλειδί, Κ, είναι η λέξη CIPHER βρείτε το κρυπτοκείμενο που αντιστοιχεί στο παρακάτω απλό κείμενο: this cryptosystem is not secure. Λύση: (Αλγόριθμος Vigenere e k (p)=p+k mod n) Το κλειδί είναι η λέξη Κ = CIPHER το οποίο μετατρέπεται σε αριθμούς στο εξής, Κ = (2, 8, 15, 7, 4, 17). Το μήκος του κλειδιού είναι 6. Άρα μετατρέπουμε το απλό κείμενο σε ομάδες των 6 χαρακτήρων. Έχουμε thiscr yptosy stemis notsec ure. Έπειτα το μετατρέπουμε και αυτό σε αριθμούς και προσθέτουμε το κλειδί στο πεδίο Z 26. Έτσι έχουμε τον παρακάτω πίνακα.

40 ΑΣΚΗΣΕΙΣ (2/2) Η τελευταία γραμμή του πίνακα δίνει το κρυπτοκείμενο που αντιστοιχεί το δοθέν απλό κείμενο.

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3.. Θεωρία της πληροφορίας Το 948 και το 949 ο Shannon παρουσίασε δύο εργασίες ορόσημα στις επικοινωνίες και στην ασφάλεια της πληροφορίας. Στο σημείο αυτό θα

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

1.1. Ορισμοί και ορολογία

1.1. Ορισμοί και ορολογία 1 ΕΙΣΑΓΩΓΗ Προτού ξεκινήσουμε την περιήγησή μας στον κόσμο της κρυπτογραφίας, ας δούμε ορισμένα πρακτικά προβλήματα που κατά καιρούς έχουμε συναντήσει ή έχουμε φανταστεί. Το πρόβλημα του «μυστικού υπολογισμού».

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38

Διαβάστε περισσότερα

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Θεοδωρακοπούλου Ανδριάνα atheodorak@outlook.com Βαθμολόγηση Ασκήσεις Εργαστηρίου: 40% Τελική Εξέταση: 60% Ρήτρα: Βαθμός τελικής εξέτασης > 3.5 ΠΡΟΣΟΧΗ στις

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?

Διαβάστε περισσότερα

Επισκόπηση Κρυπτογραφίας: privacy. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Επισκόπηση Κρυπτογραφίας: authentication, integrity

Επισκόπηση Κρυπτογραφίας: privacy. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Επισκόπηση Κρυπτογραφίας: authentication, integrity Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επισκόπηση

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5.. Εισαγωγή Η συμμετρική κρυπτογραφία είναι κατά πολύ αρχαιότερη από την ασύμμετρη κρυπτογραφία. Η συμμετρική κρυπτογραφία χρονολογείται από την Αρχαία Αίγυπτο, ενώ η ασύμμετρη

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4 Κρυπτογραφία Εργαστηριακό μάθημα 2-3-4 Ασκήσεις επανάληψης Αλγόριθμοι μετατόπισης Προσπαθήστε, χωρίς να γνωρίζετε το κλειδί, να αποκρυπτογραφήσετε το ακόλουθο κρυπτόγραμμα που έχει προκύψει από κάποιον

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers

Κρυπτογραφία. Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers Κρυπτογραφία Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers Γενικά χαρακτηριστικά Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από bits (ή bytes) Απαιτούν μία γεννήτρια ψευδοτυχαίας ακολουθίας

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 2: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Κεφαλαιο 2 Κλασσικες Τεχνικες Κρυπτογράφησης "I am fairly familiar with all the forms of secret writings, and am myself the

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

Υπολογιστική Κρυπτογραφία

Υπολογιστική Κρυπτογραφία Υπολογιστική Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 32 Ιστορικά

Διαβάστε περισσότερα

Κεφάλαιο 6. Κρυπταλγόριθμοι Ροής. 6.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο 6. Κρυπταλγόριθμοι Ροής. 6.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο 6 Κρυπταλγόριθμοι Ροής Πίνακας Περιεχομένων 6.1 Εισαγωγή............................................... 1 6.2 Καταχωρητές ολίσθησης με ανάδραση........................6 6.3 Κρυπταλγόριθμοι ροής

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4.1. Εισαγωγή Τα προηγούμενα κεφάλαια αποτελούν μια εισαγωγή στην κρυπτολογία, στις κατηγορίες κρυπτογραφικών πράξεων καθώς και στα βασικά μοντέλα κρυπτανάλυσης και αξιολόγησης

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

Αλγόριθµοι συµµετρικού κλειδιού

Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Τι είναι Κρυπτογραφία; Επιστήμη που μελετά τρόπους κωδικοποίησης μηνυμάτων. Με άλλα λόγια,

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013 Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά

Διαβάστε περισσότερα

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Ορισμός κρυπτογραφίας Με τον όρο κρυπτογραφία, αναφερόμαστε στη μελέτη μαθηματικών τεχνικών

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers

Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Κρυπτογραφία Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Αλγόριθμοι τμήματος Τμήμα (μπλοκ) αρχικού μηνύματος μήκους n encrypt decrypt Τμήμα (μπλοκ) κρυπτογράμματος μήκους n 2 Σχηματική αναπαράσταση Plaintext

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία 09/10/2015 1 / 46 (ΕΜΠ - Κρυπτογραφία) Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Περιεχόμενα Ορισμός Κρυπτοσυστήματος

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΗΜΙΟΥΡΓΙΑ ΕΦΑΡΜΟΓΗΣ

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 3. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 3. Fifth Edition by William Stallings Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Κρυπτογραφικοι Αλγοριθµοι Τµηµατων (Block Ciphers) All the afternoon Mungo had been working on Stern's code, principally with

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xv xx I Θεµέλια 27 1 Μαθηµατικά 29 1.1 Κριτήρια διαιρετότητας................ 30 1.2 Μέγιστος κοινός διαιρέτης και Ευκλείδειος αλγόριθµος 31 1.3 Πρώτοι αριθµοί....................

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Υπολογιστών Διάλεξη 1η Δρ. Β. Βασιλειάδης Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Πληροφορίες για το Μάθηµα Διαλέξεις: Κάθε Δευτέρα 11:00-13:00 Ιστότοπος

Διαβάστε περισσότερα

Συμμετρικά Κρυπτοσυστήματα

Συμμετρικά Κρυπτοσυστήματα Κεφάλαιο 5 Συμμετρικά Κρυπτοσυστήματα 5.1 Εισαγωγή 5.1.1 Το πρόβλημα Όπως αναφέραμε στην εισαγωγή 1.1, ένα από τα προβλήματα που καλείται να λύσει η σύγχρονη κρυπτογραφία (και το οποίο είναι και το ιδρυτικό

Διαβάστε περισσότερα

Βασικές έννοιες της κρυπτογραφίας

Βασικές έννοιες της κρυπτογραφίας ΚΕΦΑΛΑΙΟ 4 Βασικές έννοιες της κρυπτογραφίας Στο κεφάλαιο αυτό εισάγονται οι ϐασικές έννοιες της κρυπτογρα- ϕίας, όπως τα είδη των αλγορίθµων ανάλογα µε το κλειδί, τα είδη αλγορίθµων ανάλογα µε το πως

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Διατμηματικό Μεταπτυχιακό Πρόγραμμα Ηλεκτρονική και Επεξεργασία της Πληροφορίας

Διατμηματικό Μεταπτυχιακό Πρόγραμμα Ηλεκτρονική και Επεξεργασία της Πληροφορίας Ειδική Επιστημονική Εργασία Συμμετρικοί Αλγόριθμοι Κρυπτογράφησης Δεδομένων Οι περιπτώσεις των αλγορίθμων DES και TDEA Φλωκατούλα Δώρα, Μηχανικός Η/Υ & Πληροφορικής Επιβλέπων : Μπακάλης Δημήτριος, Επίκουρος

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία Υποπλοίαρχος Ν. Πετράκος ΠΝ Page 1 Μαθησιακοί Στόχοι Η ενότητα αυτή του μαθήματος Ηλεκτρονικών Υπολογιστών ΙΙ της Δ' Τάξης καλύπτει βασικά ζητήματα ασφαλείας

Διαβάστε περισσότερα

ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES

ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES ρ. Παύλος Αντωνίου Department of Computer Science 1 S-DES Γενικά (1) Ο αλγόριθμος DES χρησιμοποιεί κλειδιά μεγέθους 56 bit Ο απλοποιημένος

Διαβάστε περισσότερα

Συμμετρικοί Αλγόριθμοι Κρυπτογράφησης Δεδομένων Η περίπτωση του Αλγόριθμου AES

Συμμετρικοί Αλγόριθμοι Κρυπτογράφησης Δεδομένων Η περίπτωση του Αλγόριθμου AES Ειδική Επιστημονική Εργασία Συμμετρικοί Αλγόριθμοι Κρυπτογράφησης Δεδομένων Η περίπτωση του Αλγόριθμου AES Λυκούδης Κων/νος Πτυχιούχος Τμήματος Φυσικής Πανεπιστημίου Πατρών Πανεπιστήμιο Πατρών, 2/11/2012

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΝΙΚΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΑ ΣΧΕ ΙΑΣΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΥΜΜΕΤΡΙΚΟΥ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του Κωνσταντίνου. Φραγκιαδάκη Επιβλέπων : Αντωνιδάκης

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L

Διαβάστε περισσότερα

Ασφάλεια ικτύων. Ασφάλεια δικτύων

Ασφάλεια ικτύων. Ασφάλεια δικτύων Ασφάλεια ικτύων Ασφάλεια δικτύων Στα χαµηλά επίπεδα: να φτάσουν τα πακέτα στον παραλήπτη χωρίς σφάλµατα Σε ανώτερο επίπεδο: να προστατευθεί η διακινούµενη πληροφορία έτσι ώστε: Να µην µπορεί να διαβαστεί

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΜΥΤΙΛΗΝΑΚΗΣ ΘΕΟΔΩΡΟΣ Α.Μ 2012 ΙΟΥΝΙΟΣ 2013 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΑΤΖΗΣ

Διαβάστε περισσότερα

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6.1. Εισαγωγή Οι σύγχρονες κρυπτογραφικές λύσεις συμπεριλαμβάνουν κρυπτογραφία δημόσιου κλειδιού ή αλλιώς, ασύμμετρη κρυπτογραφία. Η ασύμμετρη κρυπτογραφία βασίζεται αποκλειστικά

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ. Η κρυπτογραφία παρέχει 4 βασικές λειτουργίες (αντικειμενικοί σκοποί):

ΚΡΥΠΤΟΓΡΑΦΙΑ. Η κρυπτογραφία παρέχει 4 βασικές λειτουργίες (αντικειμενικοί σκοποί): ΚΡΥΠΤΟΓΡΑΦΙΑ Η λέξη κρυπτογραφία προέρχεται από τα συνθετικά "κρυπτός" + "γράφω" και είναι ένας επιστημονικός κλάδος που ασχολείται με την μελέτη, την ανάπτυξη και την χρήση τεχνικών κρυπτογράφησης και

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. MPEG 2 bitstream και πολυπλεξία

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. MPEG 2 bitstream και πολυπλεξία ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 3 MPEG 2 bitstream και πολυπλεξία 2 Μικρότερο δομικό στοιχείο: Το block 8x8 με τους συντελεστές DCT είτε για τη φωτεινότητα ή

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης

Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I 1 Αρχές του Kerckhoff `La Cryptographie Militaire' (1883) Auguste Kerkhoffs, Ολλανδός φιλόλογος Πρώτη επιστημονική

Διαβάστε περισσότερα

Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν»

Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν» Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας, Κέρκυρα Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν» Βιβλιογραφία Μαθήµατος Douglas Stinson. Cryptography, Theory and Practice, 1995

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή. 1.1 Εισαγωγή Ιστορική Αναδρομή

Κεφάλαιο 1. Εισαγωγή. 1.1 Εισαγωγή Ιστορική Αναδρομή Κεφάλαιο 1 Εισαγωγή 1.1 Εισαγωγή Η κρυπτολογία, ως ο κλάδος που ασχολείται με ζητήματα ασφάλειας των επικοινωνιών, έχει μία πλούσια ιστορία χιλιάδων ετών, όσων δηλαδή και οι διάφοροι τρόποι επικοινωνίας:

Διαβάστε περισσότερα

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7.1. Εισαγωγή Το σημείο αναφοράς της ασφάλειας ενός κρυπτοσυστήματος είναι οι ειδικές ποσότητες πληροφορίας που ονομάζουμε κλειδιά. Σε ένα καλά σχεδιασμένο κρυπτοσύστημα, η ασφάλειά

Διαβάστε περισσότερα

Γκλίβας Δημήτριος ΑΕΜ ΤΕΙ ΚΑΒΑΛΑΣ Τμήμα Βιομηχανικής Πληροφορικής

Γκλίβας Δημήτριος ΑΕΜ ΤΕΙ ΚΑΒΑΛΑΣ Τμήμα Βιομηχανικής Πληροφορικής ΤΕΙ ΚΑΒΑΛΑΣ Τμήμα Βιομηχανικής Πληροφορικής Πτυχιακή Εργασία Δημιουργία λογισμικού ανοιχτού κώδικα για τη δημιουργία και επαλήθευση ψηφιακών υπογραφών Γκλίβας Δημήτριος ΑΕΜ 1958 Περιεχόμενα Περιεχόμενα...

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Κρυπτογραφία και Ασφάλεια

Κρυπτογραφία και Ασφάλεια Κεφάλαιο 16 Κρυπτογραφία και Ασφάλεια 16.1 Ιστορική αναδρομή Η τέχνη της κρυπτογραφίας ξεκίνησε εδώ και 2500 χρόνια, το λιγότερο και έπαιξε σημαντικό ρόλο στην ιστορία απο τότε. Στην αρχαία Ελλάδα, οι

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 3: Κρυπτογραφία δημόσιου κλειδιού Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ Το πρόβλημα: Δεδομένα: δύο ακέραιοι a και b Ζητούμενο: ο μέγιστος ακέραιος που διαιρεί και τους δύο δοσμένους αριθμούς, γνωστός ως Μέγιστος Κοινός Διαιρέτης τους (Greatest

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» - Κρυπτογραφία είναι - Κρυπτανάλυση είναι - Με τον όρο κλειδί. - Κρυπτολογία = Κρυπτογραφία + Κρυπτανάλυση - Οι επιστήµες αυτές είχαν

Διαβάστε περισσότερα

Στοιχεία Κρυπτογραφίας

Στοιχεία Κρυπτογραφίας Κεφάλαιο 1 ο Στοιχεία Κρυπτογραφίας 1.1 Εισαγωγή Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα με δύσκολη επίλυση, με σκοπό την εξασφάλιση της α- σφάλειας

Διαβάστε περισσότερα

Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα

Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα Διδασκαλία: Δ. Ζήνδρος Επιμέλεια διαφανειών: Δ. Ζήνδρος, Α. Παγουρτζής, Σ. Ζάχος ΗΜΜΥ ΕΜΠ Στόχοι του σημερινού μαθήματος Τι είναι κρυπτογραφία; Ορισμοί και ορολογίες

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Κρυπτοσύστηµα µετατόπισης Στο συγκεκριµένο κρυπτοσύστηµα, οι χώροι P, C, K είναι ο δακτύλιος. Για κάθε κλειδί k, ορίζουµε τη συνάρτηση κρυπτογράφησης: f : : x x+ k, k

Διαβάστε περισσότερα

Γενική Επισκόπηση της Κρυπτογραφίας

Γενική Επισκόπηση της Κρυπτογραφίας Κεφάλαιο 1 Γενική Επισκόπηση της Κρυπτογραφίας Πίνακας Περιεχομένων 1.1 Εισαγωγή..............................................1 1.2 Ασφάλεια πληροφοριών και κρυπτογραφία................... 3 1.3 Υπόβαθρο

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα