Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης"

Transcript

1 Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης

2 Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων Δημιουργία κλειδιών Επιλογή ποσοτήτων που καθορίζουν τα κλειδιά (πρώτος αριθμός) Δεν μπορούμε να χαρακτηρίσουμε έναν αριθμό σαν τυχαίο Π.χ 3526 είναι τυχαίος αριθμός? Οι αριθμοί 5 κ 7 είναι τυχαίοι?? Αναφερόμαστε στην πηγή η οποία παράγει μια ακολουθία αριθμών Στην κρυπτογραφία μας ενδιαφέρει η αξιόπιστη παραγωγή τυχαίων ακολουθιών Κρυπτοαλγόριθμους ροής γεννήτρια κλειδοροής 2

3 Ψευδοτυχαίες ακολουθίες Μια ακολουθία αριθμών είναι ψευδοτυχαία όταν 1. Περνά όλους τους στατιστικούς ελέγχους περί τυχαιότητας (στατιστική απαίτηση) 2. Η ακολουθία είναι απρόβλεπτη Δηλαδή, δοθέντος ενός τμήματος της ακολουθίας είναι υπολογιστικά αδύνατο για τον αντίπαλο να καθορίσει τον αμέσως επόμενο αριθμό (κρυπτογραφική απαίτηση) Μια ακολουθία αριθμών είναι πραγματικά τυχαία όταν Ικανοποιεί τα 1, κ 2 Δεν μπορεί να αναπαραχθεί με αξιοπιστία 3

4 Ψευδοτυχαίες ακολουθίες Στατιστικοί έλεγχοι τυχαιότητας Έλεγχος συχνότητας (frequency test) Το πλήθος των άσσων n1 και των μηδενικών n0 είναι το ίδιο Η κατανομή x 2 μπορεί να χρησιμοποιηθεί για να ελεγχθεί η υπόθεση n0 = n1, για έναν βαθμό ελευθερίας x ( n0 2 = n n1) Αν no n1 η πηγή είναι πολωμένη no > n1 πολωμένη προς το μηδέν n1 > n0 πολωμένη προς το ένα 2 Η πόλωση μπορεί να δώσει πληροφορία στον αντίπαλο 4

5 Ψευδοτυχαίες ακολουθίες Στατιστικοί έλεγχοι τυχαιότητας Σειριακός έλεγχος (serial test) Εξετάζεται η κατανομή των συμβόλων στην ακολουθία (εναλλαγή 0, 1) Η ακολουθία [ ] περνάει τον έλεγχο συχνότητας αλλά δεν θεωρείται ψευδοτυχαία Έστω n00, n01, n10 κ n11 το πλήθος των 00, 01, 10 κ 11 Θα πρέπει n00 = n01 = n10 = n11 (n-1)/4 H κατανομή x 2 για δύο βαθμούς ελευθερίας προσεγγίζεται από την παρακάτω ποσότητα x 2 4 n nij i i= 0 j= 0 n n i=

6 Ψευδοτυχαίες ακολουθίες Στατιστικοί έλεγχοι τυχαιότητας Έλεγχος της αυτοσυσχέτισης (autocorrelation test) Ελέγχει αν τα δυαδικά σύμβολα είναι τυχαία διασπαρμένα μέσα στη δυαδική ακολουθία Έστω η ακολουθία [a 1 a 2 a n ], ορίζεται η συνάρτηση A(d) n d n ( n 1 A( d) = a a μ = i i+ d 2 = i 1 n 2 d), Αν τα 0 κ 1 είναι τυχαία διεσπαρμένα μέσα στην ακολουθία Τότε Α(d) = μ, όπου n 1 το πλήθος των άσσων και d 0 6

7 Ψευδοτυχαίες ακολουθίες Στατιστικοί έλεγχοι τυχαιότητας Έλεγχος της αυτοσυσχέτισης Ο ορισμός του A(d) προέρχεται από το γενικό ορισμό της αυτοσυσχέτισης C( d) = lim c T N 1 ( d) = Τ 1 N Τ i= 1 N i= 1 aiai+ d aiai+ d και για περίοδο Τ Οι τιμές των a i ορίζονται από την αντιστοιχία (0,1) (-1, 1) (πολλαπλασιασμό) Με βάση τα παραπάνω ο Golomb (1984) έθεσε τρία κριτήρια που πρέπει να πληροί μια ακολουθία προκειμένου να χαρακτηριστεί ΨΕΥΔΟΥΧΑΙΑ 7

8 Ψευδοτυχαίες ακολουθίες Στατιστικοί έλεγχοι τυχαιότητας Έλεγχος της αυτοσυσχέτισης κριτήρια Golomb 1 ο Η διαφορά μεταξύ του πλήθους των 0 κ 1 να είναι η μικρότερη δυνατή 2 ο Διαδρομή: η σειρά ομοίων συμβόλων η οποία περιβάλλεται από διαφορετικά σύμβολα Σε μια περίοδο της ακολουθίας Το 1/2 των διαδρομών έχουν μήκος 1, το 1/4 μήκος 2, το 1/8 μήκος 3, κοκ. Το παραπάνω ισχύει μέχρι ο αριθμών των διαδρομών να είναι 2 l (l : μήκος διαδρομής 3 ο Για T d η αυτοσυσχέτιση σταθερή Για d = 0 ή T = d η αυτοσυσχέτιση = 1 8

9 Ψευδοτυχαίες ακολουθίες Έλεγχος της αυτοσυσχέτισης κριτήρια Golomb Παράδειγμα Έστω η ακολουθία [ ] Η περίοδος = μήκος ακολουθίας, Τ = 15 Ο αρ. των 1 = 8 κ των 0 = 7 1 ο κριτήριο 8-7 = 1 η μικρότερη δυνατή διαφορά Από τις 8 διαδρομές: το 1/2 (4) έχουν μήκος 1, το ¼ μήκος 2, το 1/8 μήκος 3 Για τη διαδρομή μήκους 4 δεν γίνεται έλεγχος (8 < 2 4 = 16) Για d = 0, C T (d) = 1, για d T, C T (d) = -1/5 σταθερή 9

10 Ψευδοτυχαίες ακολουθίες Γεννήτριες ψευδοτυχαίων ακολουθιών Καταχωρητές ολίσθησης με ανάδραση Δυνατότητα αποθήκευσης n δυαδικών στοιχείων (μνήμη n bits) Συνάρτηση ανάδρασης f:{0,1} n {0,1} F(x 1, x 2, x n ) = c 1 x 1 +c 2 x c n x n mod 2 Καταχωρητής ολίσθησης με γραμμική ανάδραση (linear feedback shift register) 10

11 Ψευδοτυχαίες ακολουθίες Γεννήτριες ψευδοτυχαίων ακολουθιών Στην κρυπτογραφία προτιμώνται οι καταχωρητές ολίσθησης με γραμμική ανάδραση έναντι των μη γραμμικών παράγουν ακολουθίες με μέγιστη περίοδο Μέγιστη περίοδο (μνήμη n bits) 2 n 1 (εκτός την ) Αν εμφανιστεί η κατάσταση (0,0...0) η γεννήτρια κλειδώνει παράγει μόνο 0 Για να μην κλειδώσει θα πρέπει να ισχύουν : Η αρχική τιμή του καταχωρητή να είναι διαφορετική της (0,0,...0) Να επιλεγεί συνάρτηση ανάδρασης τέτοια ώστε για οποιαδήποτε είσοδο χ (0,0,...0) η f(x) να μην παράγει n μηδενικά στη σειρά 11

12 Ψευδοτυχαίες ακολουθίες Γεννήτριες ψευδοτυχαίων ακολουθιών Καθορισμός χαρακτηριστικού πολυωνύμου γραμμικής συνάρτησης ανάδρασης (n = 5) c 1 = 1, c 2 = 0, c 3 = 0, c 4 = 1 c 5 = 1 F(x) = 1 + x + x 4 + x 5 Ο μέγιστος εκθέτης του πολυωνύμου καθορίζει το βαθμό του 12

13 Ψευδοτυχαίες ακολουθίες Γεννήτριες ψευδοτυχαίων ακολουθιών Για να παράγει ένας καταχωρητής ολίσθησης με γραμμική ανάδραση την ακολουθία με τη μέγιστη περίοδο (2 n 1) Θα πρέπει το χαρακτηριστικό πολυώνυμο της συνάρτησης ανάδρασης να πληροί τα ακόλουθα: Να έχει βαθμό ίσο με το μέγεθος του καταχωρητή n Να είναι ανάγωγο Να διαιρεί το χ κ + 1, για κ = 2 n 1 και Να μη διαιρεί χ κ + 1, για οποιοδήποτε κ < 2 n 1 Τότε το πολυώνυμο ονομάζεται πρωτεύον 13

14 Ψευδοτυχαίες ακολουθίες Γεννήτριες ψευδοτυχαίων ακολουθιών Γραμμική πολυπλοκότητα: Μέτρηση η οποία εφαρμόζεται στις γεννήτριες Βασίζονται σε καταχωρητές ολίσθησης με γραμμική ανάδραση Έστω μια ακολουθία a = [a 1, a 2, ], a n τα πρώτα n bits Γραμμική πολυπλοκότητα της a n ονομάζουμε τον ελάχιστο αριθμό στοιχείων ( LC(a n ) ) ενός καταχωρητή ολίσθησης που απαιτούνται για να παραχθεί η a n 14

15 Ψευδοτυχαίες ακολουθίες Γεννήτριες ψευδοτυχαίων ακολουθιών Γραμμική πολυπλοκότητα Για n 1, ισχύει 0 LC(a n ) n Αν a = [0,0,0, ] τότε LC(a n ) = 0, για κάθε n 1 LC(a n ) = 0 αν και μόνο αν a n = [0,0,0,...,0,1] Αν δεν υπάρχει καταχωρητής ολίσθησης με γραμμική ανάδραση ο οποίος να μπορεί να παράγει την ακολουθία LC(a n ) τότε LC(a n ) = Αν μια ακολουθία α είναι περιοδική με περίοδο Τ, τότε LC(a n ) Τ Η γραμμική πολυπλοκότητα εξαρτάται από το χαρακτηριστικό πολυώνυμο της γραμμικής συνάρτησης ανάδρασης Αν το πολυώνυμο είναι ανάγωγο ίση με το βαθμό του πολυωνύμου 15

16 Μονόδρομες hash συναρτήσεις Στις hash συναρτήσεις βασίζονται οι μηχανισμοί ελέγχου της ακεραιότητας και αυθεντικοποίησης Hash h: F* G n αντιστοιχίζει ένα στοιχείο χ є F* αυθαίρετου μήκος, στο y є G n μήκους n y=h(x), σύνοψη μηνύματος 16

17 Μονόδρομες hash συναρτήσεις Ιδιότητες μιας hash συνάρτησης 1. Δοθέντος y, είναι υπολογιστικά αδύνατο να βρεθεί χ τέτοιο ώστε h(x)=y 2. Δοθέντων x, h(x) είναι υπολογιστικά αδύνατο να βρεθεί x τέτοιο ώστε h(x ) = h(x) 3. Είναι υπολογιστικά αδύνατο να βρεθούν x1, x2 є F* τέτοια ώστε h(x1)=h(x2) Οι (1) κ (2) χαρακτηρίζουν μονόδρομες hash συναρτήσεις (one-way hash functions) Οι (2) κ (3) χαρακτηρίζουν ανθεκτικές σε συγκρούσεις hash συναρτήσεις (collision resistance hash functions) H (3) «ισχυρή αντίσταση σε συγκρούσεις» περιλαμβάνει την (2) «ασθενής αντίσταση σε συγκρούσεις» Η ύπαρξη πραγματικών μονόδρομων συναρτήσεων δεν έχει αποδειχθεί 17

18 Μονόδρομες hash συναρτήσεις Η έννοια του κλειδιού στις μονόδρομες hash συναρτήσεις h κ : F* G n, k є K Δημιουργία μονόδρομης hash συνάρτησης με κλειδί h κ (x) = h(x k) or h κ (x) = h(k x) Υπηρεσίες ασφάλειας που παρέχουν οι συναρτήσεις hash Κώδικας αυθεντικοποίησης μηνύματος (Message Authentication Code - MAC) Μονόδρομη συνάρτηση hash με κλειδί Δοθέντων x, h κ (x) είναι υπολογιστικά αδύνατο να βρεθεί x τέτοιο ώστε h κ (x ) = h κ (x) Κώδικας ανίχνευσης τροποποίησης (Modification Detection Code - MDC) Μονόδρομη συνάρτηση hash άνευ κλειδιού Δοθέντων x, h(x) είναι υπολογιστικά αδύνατο να βρεθεί x τέτοιο ώστε h(x ) = h(x) 18

19 Μονόδρομες hash συναρτήσεις Έλεγχος ακεραιότητας με MAC 19

20 Μονόδρομες hash συναρτήσεις Η χρήση του MDC συναντάται σε ασύμμετρη επικοινωνία Ένας στέλνει ένα μήνυμα σε πολλούς (λήψη ηλεκτρονικών αγαθών, ηλεκτρονικά βιβλία, λογισμικό, κτλ) Ο αποστολέας δημοσιεύει το MDC O «πελάτης» προμηθεύεται το αγαθό (μέσω διαδικτύου) και υπολογίζει το MDC Συγκρίνει το δικό του MDC με αυτό που έχει δημοσιευτεί Δεν υπάρχει κλειδί οπότε ο καθένας μπορεί να υπολογίσει το MDC 20

21 Μονόδρομες hash συναρτήσεις Ταξινόμηση στόχων και ικανοτήτων του αντιπάλου 21

22 Μονόδρομες hash συναρτήσεις Συνδυάζοντας αυθεντικοποίηση και εμπιστευτικότητα Κρυπτογραφική μονόδρομη hash συνάρτηση h( ) Κρυπτοαλγόριθμο e k ( ) 22

23 Μονόδρομες hash συναρτήσεις Εναλλακτικές συνδυασμού αυθεντικοποίηση και εμπιστευτικότητα Το κρυπτοσύστημα είναι συμμετρικό 23

24 Μονόδρομες hash συναρτήσεις Επαναληπτικές κρυπτογραφικές μονόδρομες hash συναρτήσεις Στην πράξη δέχονται για είσοδο μηνύματα πεπερασμένου μήκους (θεωρητικά αυθαίρετου...!) Κατάτμηση του μηνύματος εισόδου και επαναληπτική εφαρμογή της συνάρτησης g: Z m Z n, τότε το s i έχει μήκος m n bits Διάνυσμα αρχικοποίησης (Initialization vector) 24

25 Μονόδρομες hash συναρτήσεις Επαναληπτική μονόδρομη hash βασισμένη σε κρυπτοαλγόρυθμο τμήματος 25

26 Μονόδρομες hash συναρτήσεις MD5 (Message-Digest algorithm 5 ) Στόχοι ασφάλειας Ασφάλεια: θα πρέπει να είναι υπολογιστικά αδύνατο να βρεθούν δύο μηνύματα τα οποία να δίνουν το ίδιο αποτέλεσμα Άμεση ασφάλεια: ο αλγόριθμος δεν βασίζεται σε υποθέσεις π.χ., δυσκολία παραγοντοποίησης ακεραίων Απλότητα και κατάληψη χώρου: ο αλγόριθμος είναι απλός και δεν απαιτεί μεγάλους πίνακες αντικατάστασης τιμών ή μεγάλα σε μήκος προγράμματα Εύνοια αρχιτεκτονικής little-endian: (intel x386, το λιγότερο σημαντικό bit σε χαμηλή διεύθυνση μνήμης) χρησιμοποιεί απευθείας τις αποθηκευμένες λέξεις (αντίθετο big-endian, Sparc) 26

27 Μονόδρομες hash συναρτήσεις MD5 (Message-Digest algorithm 5 ) Είσοδο: μήνυμα αυθαίρετου μήκους Έξοδο: 128 bits Η επεξεργασία γίνεται σε τμήματα των 512 bits Αρχικά στο μήνυμα προστίθενται bits ώστε το μέγεθός του να είναι ίσο με (448 mod 512) Προστίθενται ακόμα 64 bits τα οποία παρουσιάζουν το μέγεθος του αρχικού μηνύματος Τα 512 bits απαιτούν 16 δυαδικές λέξεις των 32 bits Οι ενδιάμεσες τιμές καθώς και το αποτέλεσμα της σύνοψης αποθηκεύεται σε 4 καταχωρητές A,B,C,D (αλυσιδωτές μεταβλητές chaining variables) 27

28 Μονόδρομες hash συναρτήσεις MD5 (Message-Digest algorithm 5 ) Κατά την εκκίνηση οι A,B,C,D παίρνουν τις ακόλουθες τιμές Α=( ) 16 Β=(EFCDAB89) 16 C=(98BADCFE) 16 D=( ) 16 Η συνάρτηση συμπίεσης αποτελείται από 4 γύρους και κάθε γύρος εκτελεί 16 πράξεις Κάθε πράξη εκτελεί μία μη γραμμική συνάρτηση μεταξύ των τριών από τα A,B,C,D και προσθέτει το αποτέλεσμα σε μία από τις αλυσιδωτές μεταβλητές Τέλος το αποτέλεσμα αποθηκεύεται σε μία από τις αλυσιδωτές μεταβλητές 28

29 Μονόδρομες hash συναρτήσεις MD5 Μια MD5 εκτέλεση = 64 επαναλήψεις = 4 κύκλους των 16 F μη γραμμική συνάρτηση Μ i 32-bit τμήμα της εισόδου T i, S i σταθερές 29

30 Μονόδρομες hash συναρτήσεις SHA (Secure Hash Algorithm) Είσοδο: όχι μεγαλύτερη του 2 64 Bits Έξοδο: 160 bits Η επεξεργασία γίνεται σε τμήματα των 512 bits Αρχικά στο μήνυμα προστίθενται bits ώστε το μέγεθός του να είναι ίσο με (448 mod 512) Προστίθενται ακόμα 64 bits τα οποία παρουσιάζουν το μέγεθος το αρχικού μηνύματος Λόγω του μεγαλύτερου μήκους της σύνοψης έχουμε 5 καταχωρητές A,B,C,D,Ε (αλυσιδωτές μεταβλητές chaining variables) 30

31 SHA Μονόδρομες hash συναρτήσεις Κατά την εκκίνηση οι A,B,C,D,E παίρνουν τις ακόλουθες τιμές Α=( ) 16 Β=(EFCDAB89) 16 C=(98BADCFE) 16 D=( ) 16 E=(C3D 2E1F0) 16 Όμοια με την MD5 το κάθε τμήμα υποβάλλεται σε 4 γύρους και κάθε γύρος αποτελείται από μια μη γραμμική πράξη που εφαρμόζεται 20 φορές Τα 512 bits του τμήματος επεκτείνονται σε 2560 bits (80 δυαδικές λέξεις των 32 bits) 31

32 Μονόδρομες hash συναρτήσεις SHA CV q 160 Y q 512 A B C D 32 E f 1, K, W[0...19] 20 βήματα A B C D E f 2, K, W[ ] 20 βήματα A B C D E f 3, K, W[ ] 20 βήματα A B C D E f 4, K, W[ ] 20 βήματα CV q+1 32

33 Δίκτυα Αντικατάστασης Μετάθεσης (ΔΑΜ) Substitution Permutation Networks Έχουν σα στόχο την υψηλή διάχυση και σύγχυση Η υψηλή διάχυση επιτυγχάνεται από στάδια μετάθεσης Συναρτήσεις μετάθεσης Η υψηλή σύγχυση επιτυγχάνεται από στάδια αντικατάστασης Κουτιά αντικατάστασης (substitution boxes) τα οποία εισάγουν μη γραμμικότητα Οι παράμετροι ενός ΔΑΜ Το μήκος εισόδου n, ο αριθμός των γύρων r, το μέγεθος των κουτιών αντικατάστασης m x m 33

34 Δίκτυα Αντικατάστασης Μετάθεσης Για n = 16, r = 4 και m = 4 34

35 Δίκτυα Αντικατάστασης Μετάθεσης (ΔΑΜ) Κουτιά αντικατάστασης Ένα κουτί αντικατάστασης αντιστοιχίζει m bits εισόδου σε n bits εξόδου Τα σχετικά μικρά κουτιά υλοποιούνται με πίνακες Είσοδος: δείκτης του πίνακα, Έξοδος: περιεχόμενο Κουτί αντικατάστασης {0,1} 3 {0,1} 4 35

36 Δίκτυα Αντικατάστασης Μετάθεσης (ΔΑΜ) Κριτήρια που θα πρέπει να πληρούν τα κουτιά αντικατάστασης Μη γραμμικότητα: ένα κουτί αντικατάστασης το οποίο είναι γραμμικό μπορεί εύκολα να κρυπτοαναλυθεί (γραμμική κρυπτοανάλυση) Αμφίεση (bijection) : είναι απαραίτητο για να ορίζεται μονοσήμαντα η αποκρυπτογράφηση (δεν ισχύει στις hash functions) Αυστηρή χιονοστιβάδα: η αντιστροφή οποιουδήποτε bit εισόδου έχει τη δυνατότητα να προκαλέσει την αντιστροφή οποιουδήποτε bit εξόδου με πιθανότητα 0,5 (σύγχυση διάχυση) Ανεξαρτησία των bits της εξόδου: η ύπαρξη αυτοσυσχέτησης μεταξύ δύο η περισσοτέρων Bits εξόδου μειώνει το χώρο αναζήτησης 36

37 Δίκτυα Feistel Κρυπτογραφική πράξη τύπου Feistel Πλήρης ελευθερία στην επιλογή της F (συνάρτηση γύρου) Ορίζεται πάντα η αντίστροφη σχέση ακόμα και αν η f δεν είναι ενριπτική (1 προς 1) Σε ορισμένες περιπτώσεις ένα δίκτυο Feistel είναι αποδείξιμα ασφαλές Σε κάθε γύρο i Είσοδο L i-1, R i-1 Έξοδο L i, R i Ki πρόγραμμα κλειδιού Απλό κείμενο L 0, R 0 Κρυπτοκείμενο r γύρους L r, R r 37

38 Δίκτυα Feistel Κρυπτογραφική πράξη τύπου Feistel Απαιτούνται τουλάχιστον 3 γύροι προκειμένου το κρυπτοσύστημα να αποκρύψει το απλό κείμενο Ο αριθμός των γύρων και η κρυπτογραφική δύναμη του κρυπτοσυστήματος εξαρτώνται από την F Αν n L κ n R το μέγεθος του αριστερού κ δεξιού τμήματος αντίστοιχα F: {0,1} nr {0,1} nl Αν n L = n R = n/2 τότε το δίκτυο ισορροπημένο e i ki ( L i, R i ) = L i 1 ( f ( R i 1 R, k i ) L i 1 ), 0 < i r 38

39 Δίκτυα Feistel Μια αντιστοίχηση F1 ( μη αντιστρέψιμη) Δύο μεταθέσεις h1 κ h2 ( αντιστρέψιμες) 39

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4.1. Εισαγωγή Τα προηγούμενα κεφάλαια αποτελούν μια εισαγωγή στην κρυπτολογία, στις κατηγορίες κρυπτογραφικών πράξεων καθώς και στα βασικά μοντέλα κρυπτανάλυσης και αξιολόγησης

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC

Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυμάτων 1 Αυθεντικότητα Μηνύματος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού ΤΕΙ ΚΡΗΤΗΣ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΉΣ Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Συναρτήσεις Κατακερματισμού Ο όρος συνάρτηση κατακερματισμού (hash function) υποδηλώνει ένα μετασχηματισμό που παίρνει

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Συμμετρική Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Συμμετρική Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Συμμετρική Κρυπτογραφία Χρήστος Ξενάκης Χρονολογείται από την Αρχαία Αίγυπτο Η πλειοψηφία των συμμετρικών κρυπτοαλγορίθμων είναι κρυπτοαλγόριθμοι

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Συμμετρικά κρυπτοσυστήματα

Συμμετρικά κρυπτοσυστήματα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property) Hash Functions Συρρικνωνει μηνυμα οποιουδηποτε μηκους σε σταθερο μεγεθος h = H(M) Συνηθως θεωρουμε οτι η hash function ειναι γνωστη σε ολους Το hash χρησιμοποιειται για να ανιχνευσει τυχον αλλαγες στο

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 3η Δρ. A. Στεφανή Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Ψηφιακές Υπογραφές- Βασικές Αρχές Η Ψηφιακή Υπογραφή είναι ένα µαθηµατικό

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Κεφάλαια 2&21. Συναρτήσεις κατακερματισμού Πιστοποίηση ταυτότητας μηνυμάτων

Κεφάλαια 2&21. Συναρτήσεις κατακερματισμού Πιστοποίηση ταυτότητας μηνυμάτων Κεφάλαια 2&21 Συναρτήσεις κατακερματισμού Πιστοποίηση ταυτότητας μηνυμάτων Ενεργητικές επιθέσεις Η κρυπτογράφηση παρέχει προστασία από παθητικές επιθέσεις (υποκλοπή). Μια διαφορετική απαίτηση είναι η προστασία

Διαβάστε περισσότερα

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5.. Εισαγωγή Η συμμετρική κρυπτογραφία είναι κατά πολύ αρχαιότερη από την ασύμμετρη κρυπτογραφία. Η συμμετρική κρυπτογραφία χρονολογείται από την Αρχαία Αίγυπτο, ενώ η ασύμμετρη

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων. Αυθεντικότητα Μηνυµάτων 1

Ασφάλεια Πληροφοριακών Συστηµάτων. Αυθεντικότητα Μηνυµάτων 1 Αυθεντικότητα Μηνυµάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυµάτων 1 Αυθεντικότητα Μηνύµατος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

UP class. & DES και AES

UP class. & DES και AES Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος

Διαβάστε περισσότερα

Κεφάλαιο 2. Κρυπτογραφικά εργαλεία

Κεφάλαιο 2. Κρυπτογραφικά εργαλεία Κεφάλαιο 2 Κρυπτογραφικά εργαλεία Συμμετρική κρυπτογράφηση Καθολικά αποδεκτή τεχνική που χρησιμοποιείται για τη διαφύλαξη της εμπιστευτικότητας δεδομένων τα οποία μεταδίδονται ή αποθηκεύονται Γνωστή και

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com 1 Περίληψη Ηash functions (συναρτήσεις σύνοψης) Assurance

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Κεφάλαιο 6. Κρυπταλγόριθμοι Ροής. 6.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο 6. Κρυπταλγόριθμοι Ροής. 6.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο 6 Κρυπταλγόριθμοι Ροής Πίνακας Περιεχομένων 6.1 Εισαγωγή............................................... 1 6.2 Καταχωρητές ολίσθησης με ανάδραση........................6 6.3 Κρυπταλγόριθμοι ροής

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Κατακερματισμός (Hashing)

Κατακερματισμός (Hashing) Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Μ. Αναγνώστου 13 Νοεμβρίου 2018 Συναρτήσεις κατακερματισμού Απλές συναρτήσεις κατακερματισμού Κρυπτογραφικές συναρτήσεις κατακερματισμού Secure

Διαβάστε περισσότερα

Κεφάλαιο 8. Ακεραιότητα και Αυθεντικότητα Μηνυμάτων

Κεφάλαιο 8. Ακεραιότητα και Αυθεντικότητα Μηνυμάτων Κεφάλαιο 8. Ακεραιότητα και Αυθεντικότητα Μηνυμάτων Σύνοψη Κατά τη μεταφορά δεδομένων με τη μορφή μηνυμάτων στο Διαδίκτυο, κρίσιμο ζητούμενο αποτελεί η ύπαρξη μηχανισμών για την επιβεβαίωση της ακεραιότητας

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.

Διαβάστε περισσότερα

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτολογία 3. Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κωδικός DIΤ114 Σταύρος ΝΙΚΟΛΟΠΟΥΛΟΣ

Εισαγωγή στην Κρυπτολογία 3. Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κωδικός DIΤ114 Σταύρος ΝΙΚΟΛΟΠΟΥΛΟΣ Εισαγωγή στην Κρυπτολογία 3 Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κωδικός DIΤ114 Σταύρος ΝΙΚΟΛΟΠΟΥΛΟΣ Ακεραιότητα Μονόδρομη Κρυπτογράφηση Ακεραιότητα Αυθεντικότητα μηνύματος Ακεραιότητα μηνύματος Αυθεντικότητα

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία

Διαβάστε περισσότερα

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦIΑ Α ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Μαθησιακοί στόχοι, Περίγραμμα θεματικών ενοτήτων και αξιολόγηση των φοιτητών Διδάσκων : Δρ. Αθανάσιος Κούτρας Επίκουρος Καθηγητής Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007 Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Διαχείριση κλειδιών Χρήστος Ξενάκης Διαχείριση κλειδιών Η ασφάλεια ενός κρυπτοσυστήματος εξαρτάται αποκλειστικά από τα κλειδιά (αρχή του Kerchoff)

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Διπλωματική Εργασία. Τίτλος:

Διπλωματική Εργασία. Τίτλος: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Μεταπτυχιακό Πρόγραμμα Σπουδών Πληροφορική και Επικοινωνίες Διπλωματική Εργασία Τίτλος: Ανάλυση και υλοποίηση κρυπτογραφικού

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη

Διαβάστε περισσότερα

Προσομοίωση Συστημάτων

Προσομοίωση Συστημάτων Προσομοίωση Συστημάτων Παραγωγή τυχαίων αριθμών Άγγελος Ρούσκας Τυχαίοι αριθμοί και τυχαίες μεταβλητές Δεν έχει νόημα να αναφερόμαστε σε ένα τυχαίο αριθμό, αλλά σε ακολουθία τυχαίων αριθμών Οι τυχαίοι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ: Κυκλικός Έλεγχος Πλεονασμού CRC codes Cyclic Redundancy Check codes Ο μηχανισμός ανίχνευσης σφαλμάτων στις επικοινωνίες

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό

Διαβάστε περισσότερα

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Hash functions Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34 Περιεχόμενα 1 Συναρτήσεις μονής-κατεύθυνσης

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών Συμπίεση Δεδομένων Δοκιμής (Test Data Compression), Παν Πατρών Test resource partitioning techniques ΑΤΕ Automatic Test Equipment (ATE) based BIST based Έλεγχος παραγωγής γής βασισμένος σε ΑΤΕ Μεγάλος

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος 1 ΠΕΡΙΕΧΟΜΕΝΑ Ψηφιακές Υπογραφές Ασύμμετρης Κρυπτογραφίας Συστήματα ψηφιακής υπογραφής με αυτοανάκτηση Συστήματα

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xv xx I Θεµέλια 27 1 Μαθηµατικά 29 1.1 Κριτήρια διαιρετότητας................ 30 1.2 Μέγιστος κοινός διαιρέτης και Ευκλείδειος αλγόριθµος 31 1.3 Πρώτοι αριθµοί....................

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

Διπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Διπλωματική Εργασία της φοιτήτριας του Τμήματος

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 9: Εισαγωγή στην τεχνική πολυπλεξίας Code Division Multiple Access - CDMA Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορισμός Σχέση CDMA με την TDMA και την

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 6: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα