Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών"

Transcript

1 Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22

2 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική ασφάλεια/σημασιολογική ασφάλεια 3 Ψευδοτυχαιότητα 4 Blum-Blum-Shub 5 RC4 6 Πραγματικά κρυπτοσυστήματα ροής Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 2 / 22

3 Εισαγωγή Ένα καλό σύστημα κρυπτογράφησης: One Time Pad (OTP): M = K = C = {0, 1} n, Enc k (m) = k m, Dec k (c) = k c KEY PLAINTEXT CIPHER Το OTP έχει τέλεια μυστικότητα, αλλά πρέπει key plaintext Μη ρεαλιστικό! Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 22

4 Κρυπτοσυστήματα ροής Ιδέα: από ένα μικρό, πραγματικά τυχαίο κλειδί, σπόρο (seed) φτιάχνω ένα μεγάλο, ψευδοτυχαίο κλειδί και έτσι κρυπτογραφώ μεγάλου μεγέθους δεδομένα: KEY G(KEY) PLAINTEXT CIPHER c = Enc k (m) = m G(k) m = Dec k (c) = c G(k) Πώς; Με γεννήτριες ψευδοτυχαιότητας Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 4 / 22

5 Υπολογιστική ασφάλεια Τι είναι ασφαλές; Σύγχρονη προσέγγιση: Υπολογιστική μυστικότητα έναντι τέλειας μυστικότητας Χαλάρωση απαιτήσεων: αντίπαλος πολυωνυμικά περιορισμένος και με μικρή πιθανότητα σπάει το σύστημα 1 Η μυστικότητα διατηρείται για αποδοτικούς αντιπάλους που διαθέτουν εφικτό χρόνο 2 Οι αντίπαλοι μπορούν να πετύχουν μόνο με πολύ μικρή πιθανότητα (σχεδόν απίθανο να συμβεί) Στηρίζεται σε μη αποδεδειγμένες υποθέσεις (προβλήματα για τα οποία δεν έχουμε αποδοτικούς αλγορίθμους μέχρι σήμερα πχ διακριτός λογάριθμος, παραγοντοποίηση ακεραίων σε πρώτους αριθμούς) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 5 / 22

6 Παίκτες και αντίπαλος χρησιμοποιούν πιθανοτικούς αλγορίθμους πολυωνυμικού χρόνου ως προς την παράμετρο ασφαλείας n (οι αντίπαλοι έχουν πολύ μεγαλύτερη δύναμη) Αντίπαλος μπορεί να πετύχει με μικρή πιθανότητα (αμελητέα συνάρτηση: για κάθε σταθερά c, η πιθανότητα επιτυχίας του αντιπάλου μικρότερη από n c, για αρκετά μεγάλες τιμές του n) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 6 / 22

7 Κρυπτογραφία ιδιωτικού κλειδιού Ορισμός Ένα σχήμα κρυπτογράφησης ιδιωτικού-κλειδιού (private-key encryprtion scheme) είναι μια πλειάδα πιθανοτικών αλγορίθμων πολυωνυμικού χρόνου (Gen, Enc, Dec) έτσι ώστε: 1 Gen ο αλγόριθμος παραγωγής κλειδιού: k Gen(1 n ), όπου 1 n η παράμετρος ασφάλειας 2 Enc ο αλγόριθμος κρυπτογράφησης: c Enc k (m), όπου m {0, 1} 3 Dec ο αλγόριθμος αποκρυπτογράφησης Dec: m = Dec k (c) Για κάθε n, κάθε κλειδί k Gen(1 n ) και κάθε m {0, 1}, πρέπει Dec k (Enc k (m)) = m Οι Gen, Enc, Dec είναι γνωστοί, μυστικό μόνο το κλειδί Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 7 / 22

8 Γεννήτορας ψευδοτυχαίων συμβολοσειρών διαισθητικά Ιδέα: κάτι που μοιάζει με τυχαίο, αλλά δεν είναι πραγματικά Δε ξεχωρίζει ένα τυχαίο string από ένα που δημιουργείται από τη γεννήτρια ψευδοτυχαιότητας Εφαρμογή ψευδοτυχαιότητας και αλλού όπως πχ παίγνια, δειγματοληψία Θα την χρησιμοποιήσουμε για να αποδείξουμε την ασφάλεια σχημάτων κρυπτογράφησης ιδιωτικού κλειδιού Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 22

9 Δημιουργία τυχαιότητας υλικό, φυσικά φαινόμενα πχ θερμικός ή ηλεκτρικός θόρυβος λογισμικό πχ πάτημα πλήκτρων πληκτρολογίου, κίνηση του ποντικιού Γενικού σκοπού γεννήτριες τυχαίων αριθμών, μη κατάλληλες για κρυπτογραφία πχ random() της C Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 22

10 Μια κατανομή πιθανοτήτων D είναι ψευδοτυχαία αν κανένας διαχωριστής πολυωνυμικού χρόνου δεν μπορεί να καταλάβει αν του έχει δοθεί ένα δείγμα της D ή από ένα string επιλεγμένο ομοιόμορφα τυχαία Ορισμός Έστω l( ) ένα πολυώνυμο και G ένας ντετερμινιστικός αλγόριθμος πολυωνυμικού χρόνου τέτοιος ώστε για κάθε είσοδο s {0, 1} n, ο αλγόριθμος δίνει έξοδο μια συμβολοσειρά μήκους l(n) Λέμε ότι ο G είναι γεννήτορας ψευδοτυχαιότητας αν ισχύουν τα ακόλουθα: 1 (Επέκταση) Για κάθε n ισχύει l(n) > n 2 (Ψευδοτυχαιότητα) Για όλους τους πιθανοτικούς διαχωριστές πολυωνυμικού χρόνου D, υπάρχει μια αμελητέα συνάρτηση negl έτσι ώστε: Pr [D(r) = 1] Pr R r {0,1} l(n) s {0,1} R n[d(g(s)) = 1] negl(n) l: παράγοντας επέκτασης Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 10 / 22

11 Παρατηρήσεις: ντετερμινιστικός και αποδοτικός (πολυωνυμικός) αλγόριθμος Είναι τυχαίο; Καθόλου! αν l(n) = 2n, τότε η ομοιόμορφη κατανομή στο {0, 1} 2n, έχει χώρο 2 2n, άρα η πιθανότητα να επιλέγει μια συμβολοσειρά είναι 2 2n, dom(g) = 2 n, range(g) = 2 2n, άρα πιθανότητα μια συμβολοσειρά μήκους 2n να επιλέγει είναι 2 n /2 2n = 2 n Αν ο διαχωριστής είναι εκθετικού χρόνου, τότε με εξαντλητική αναζήτηση μπορεί να ξεχωρίσει ένα ψευδοτυχαίο string από ένα τυχαίο Ο σπόρος πρέπει να μείνει μυστικός και αρκετά μεγάλος, ώστε να μη μπορεί ο διαχωριστής να δοκιμάσει όλους τους δυνατούς σπόρους (αύξηση του μήκους κλειδιού, αν χρειαστεί) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 11 / 22

12 Υπάρχουν αποδεδειγμένα ασφαλείς γεννήτριες ψευδοτυχαιότητας; Άγνωστο Υπάρχουν όμως υποψήφιες Στηρίζεται στην υπόθεση ύπαρξης συναρτήσεων μονής κατεύθυνσης (one-way functions) Ισχύει: G γεννήτρια ψευδοτυχαιότητας ανν G μη προβλέψιμη Ορισμός (Μη προβλέψιμη) Υπάρχει πολυωνυμικός αλγόριθμος A τέτοιος ώστε: για μη αμελητέο ϵ Pr[A(G(K) 1i ) = G(K) i+1 ] > ϵ Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 12 / 22

13 Ασφαλές σχήμα κρυπτογράφησης Ορισμός Έστω G ένας ψευδοτυχαίος γεννήτορας με παράγοντα επέκτασης l έτσι ώστε: 1 Gen: k R {0, 1} n 2 Enc: c = m Gen(k), όπου m {0, 1} l(n) 3 Dec: m = c Gen(k) Ντετερμινιστικοί Enc, Dec Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 22

14 Με βάση τη μη διακρισιμότητα και το IND-EAV της προηγούμενης διάλεξης, έχουμε: Θεώρημα Αν G είναι ένας γεννήτορας ψευδοτυχαιότητας, τότε το παραπάνω σχήμα κρυπτογράφησης έχει μη διακρίσιμες κρυπτογραφήσεις στο μοντέλο παθητικού αντιπάλου (IND-EAV) Απόδειξη (Ιδέα) Με αναγωγή: Απόδειξη βασισμένη στην υπόθεση της ασφάλειας του γεννήτορα Υποθέτουμε ότι έχουμε αντίπαλο A ο οποίος διακρίνει τις κρυπτογραφήσεις Χρησιμοποιώντας τον A μπορούμε να διακρίνουμε την έξοδο του G από ένα πραγματικά τυχαίο Το συγκρίνουμε με το OTP Καταλήγουμε σε άτοπο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 22

15 Πιθανοτική κρυπτογράφηση Μη ασφαλές για πολλαπλά μηνύματα: Two Time Pad Ανάγκη για πιθανοτική κρυπτογράφηση Θεώρημα Έστω Π = (Gen, Enc, Dec) ένα σχήμα κρυπτογράφησης όπου Enc είναι ντετεριμινιστικό Τότε το Π δεν έχει μη διακρίσιμες πολλαπλές κρυπτογραφήσεις στο μοντέλο παθητικού αντιπάλου Απόδειξη Ạ στέλνει τα M 0 = (0 n, 0 n ) και M 1 = (0 n, 1 n ) και παίρνει C = (c 1, c 2 ) Λανθασμένη χρήση στα MS Word, Excel (το ίδιο διάνυσμα αρχικοποίησης/κλειδί χρησιμοποιείται όταν τροποποιείται ένα αρχείο) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 22

16 Blum-Blum-Shub (1986) Αλγόριθμος Πάρε δύο μεγάλους πρώτους p, q, με p q 3( mod 4), και θέσε n = pq Επίλεξε τυχαία ένα s 0 σχετικά πρώτο με το n Για 1 i l όρισε z i+1 = (s 2i 0 mod n) mod 2 Παρατήρηση: σχετικά αργό, αλλά ασφαλές με την υπόθεση ότι η παραγοντοποίηση του n σε πρώτους παράγοντες είναι δύσκολη Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 22

17 Παράδειγμα BBS Έστω n = = και s 0 = πρώτα 5 bits που παράγονται από τον BBS είναι mod n = Τα και προκύπτουν: i s i z i Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 17 / 22

18 H γεννήτρια ψευδοτυχαίων RC4 Συστατικά: 2 arrays of bytes: Μετάθεση P[0255] Αρχικοποίηση: for all i {0255} do : P[i] i Κλειδί K[0keylen 1], keylen 256 συνήθως keylen [58] Επιλέγεται από χρήστη Δημιουργία σειράς κλειδιών (key-scheduling algorithm KSA) Η αρχική (ταυτοτική) μετάθεση P μετατρέπεται μέσω μιας σειράς ανταλλαγών (swap) σε μια (φαινομενικά τυχαία) μετάθεση Το ανακάτεμα επηρεάζεται από το αρχικό κλειδί K Παραγωγή ψευδοτυχαίων bytes (pseudorandom generation algorithm PRGA) Επαναληπτικός βρόχος Σε κάθε επανάληψη επιλέγεται κάποιο byte της P ως κλειδί εξόδου με τρόπο που καθορίζεται από τα τρέχοντα περιεχόμενα της P Οι επαναλήψεις συνεχίζονται για όσο χρειάζεται (δηλ μέχρι να τελειώσει το stream) Σε κάθε επανάληψη γίνεται και ένα νέο swap Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 22

19 H γεννήτρια ψευδοτυχαίων RC4 Περιγραφή KSA, PRGA Δημιουργία σειράς κλειδιών (KSA) j 0 for i 0 to 255 do : j (j + P[i] + K[i mod keylen]) mod 256 swap(p[i], P[j]) Παραγωγή ψευδοτυχαίων bytes (PRGA) i 0; j 0 while next key needed : i (i + 1) mod 256 ; j (j + P[i]) mod 256 swap(p[i], P[j]) K o P[(P[i] + P[j]) mod 256] output K o Κάθε κλειδί εξόδου K o χρησιμοποιείται για την κρυπτογράφηση ενός byte αρχικού κειμένου Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 19 / 22

20 H γεννήτρια ψευδοτυχαίων RC4 Παρατηρήσεις Με ίδιο αρχικό κλειδί K προκύπτει η ίδια σειρά κλειδιών εξόδου Απλή και γρήγορη στην υλοποίηση με software (σε αντίθεση με άλλα stream cipher, πχ αυτά που βασίζονται σε LFSRs) Χρήση σε πολύ διαδεδομένα πρωτόκολλα: TSL, WEP, WPA Η ασφάλεια της γεννήτριας RC4 έχει αμφισβητηθεί έντονα Κάποιοι τρόποι χρήσης ιδιαίτερα ανασφαλείς (πχ WEP) επίθεση Fluhrer, Mantin, Shamir (2001) Άμυνα: απόρριψη αρχικού τμήματος κλειδοροής (RCA4-drop[n]), ενδεικτικά: n = 768 bytes, συστήνεται ακόμη και n = 3072 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 20 / 22

21 Πραγματικά συστήματα LFSR (linear feedback shift register): εύκολο στο hardware, κακό γιατί είναι γραμμικό Χρήση: 1 DVD κρυπτογράφηση (CSS): 2 LFSRs 2 GSM (A5/1,2): 3 LFSRs 3 Bluetooth (E0): 4 LFSRs Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 21 / 22

22 Μοντέρνα κρυπτοσυστήματα ροής Μοντέρνα κρυπτοσυστήματα ροής: estream (2008) G : {0, 1} s R {0, 1} n όπου το R: nonce, δεν επαναλαμβάνεται για το ίδιο κλειδί Enc k (m, k; r) = m G(k, r) Ιδέα: επαναχρησιμοποίηση ίδιου κλειδιού k καθώς το (k, r) αλλάζει Salsa20, Sosemanuk Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 22

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία 09/10/2015 1 / 46 (ΕΜΠ - Κρυπτογραφία) Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Περιεχόμενα Ορισμός Κρυπτοσυστήματος

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

1 Diffie-Hellman Key Exchange Protocol

1 Diffie-Hellman Key Exchange Protocol 1 Diffie-Hellman Key Exchange Potocol To 1976, οι Whitefield Diffie και Matin Hellman δημοσίευσαν το άρθρο New Diections in Cyptogaphy, φέρνοντας επανάσταση στην οποία οφείλεται η λεγόμενη "μοντέρνα κρυπτογραφια".

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία Κωνσταντινίδης Ορέστης Σ.Ε.Μ.Φ.Ε. Επιβλέπων καθηγητής: Άρης Παγουρτζής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία

Διαβάστε περισσότερα

Κρυπτογραφικά Πρωτόκολλα

Κρυπτογραφικά Πρωτόκολλα Κρυπτογραφικά Πρωτόκολλα Παύλος Εφραιµίδης 25/04/2013 1 Κρυπτογραφικά Πρωτόκολλα Bit Commitment Fair Coin Mental Poker Secret Sharing Zero-Knowledge Protocol 2 πρωτόκολλα και υπηρεσίες χρήστης κρυπτογραφικές

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας Γιάννης Κ. Σταµατίου ΣΕΠ ΠΛΗ 10 Πάτρα, Ιουνιος 2003 Τι θα εξετάσουµε Πώς η κρυπτογραφία

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ψευδοτυχαίοι Αριθμοί Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Ψευδοτυχαίοι Αριθμοί Μια γεννήτρια ψευδοτυχαίων αριθμών είναι

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Κρυπτογραφικά Πρωτόκολλα Ασφ Υπολ Συστ 1 Fair Coin Millionaires Problem Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous Exchange of Secrets προηγμένα

Διαβάστε περισσότερα

Αλγόριθµοι συµµετρικού κλειδιού

Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)

Διαβάστε περισσότερα

Στοιχεία Κρυπτογραφίας

Στοιχεία Κρυπτογραφίας Κεφάλαιο 1 ο Στοιχεία Κρυπτογραφίας 1.1 Εισαγωγή Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα με δύσκολη επίλυση, με σκοπό την εξασφάλιση της α- σφάλειας

Διαβάστε περισσότερα

Κεφάλαιο 6. Κρυπταλγόριθμοι Ροής. 6.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο 6. Κρυπταλγόριθμοι Ροής. 6.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο 6 Κρυπταλγόριθμοι Ροής Πίνακας Περιεχομένων 6.1 Εισαγωγή............................................... 1 6.2 Καταχωρητές ολίσθησης με ανάδραση........................6 6.3 Κρυπταλγόριθμοι ροής

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7.1. Εισαγωγή Το σημείο αναφοράς της ασφάλειας ενός κρυπτοσυστήματος είναι οι ειδικές ποσότητες πληροφορίας που ονομάζουμε κλειδιά. Σε ένα καλά σχεδιασμένο κρυπτοσύστημα, η ασφάλειά

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1

Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 1 Βασικές αρχές κρυπτανάλυσης Στο κεφάλαιο αυτό παρουσιάζονται οι ϐασικές αρχές και τα µέσα τα οποία χρησιµοποιεί η κρυπτανάλυση, προκειµένου να γίνουν πιο κατανοητοί οι στόχοι των επόµενων κεφαλαίων.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία

Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία Κεφάλαιο 1. Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα δύσκολο να λυθούν, με σκοπό την εξασφάλιση της ασφάλειας (εμπιστευτικότητα, ακεραιότητα, αυθεντικότητα)

Διαβάστε περισσότερα

Chapter 12 Cryptography

Chapter 12 Cryptography Chapter 12 Cryptography Σακαβάλας Δημ ήτρης Δ ΠΜΣ Εφαρμοσμ ένες μαθημ ατικές επιστήμ ες Σχη μ ατική αναπαράσταση κρυπτοσυστή μ ατος Κλειδί κρυπτογράφησης : e Κλειδί αποκρυπτογράφησης : d (ιδιωτικό) Αλγόριθμ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα

Διαβάστε περισσότερα

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4.1. Εισαγωγή Τα προηγούμενα κεφάλαια αποτελούν μια εισαγωγή στην κρυπτολογία, στις κατηγορίες κρυπτογραφικών πράξεων καθώς και στα βασικά μοντέλα κρυπτανάλυσης και αξιολόγησης

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

1 Βασικές Έννοιες Ιδιωτικότητας

1 Βασικές Έννοιες Ιδιωτικότητας 1 Βασικές Έννοιες Ιδιωτικότητας Τα κρυπτογραφικά εργαλεία που συζητήσαμε μέχρι στιγμής δεν μπορούν να λύσουν το πρόβλημα της ανάγκης για ιδιωτικότητα των χρηστών ενός συστήματος Η ιδιωτικότητα με την έννοια

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα

Διαβάστε περισσότερα

Η ΘΡΑΥΣΜΑΤΙΚΗ ΔΙΑΣΤΑΣΗ ΩΣ ΜΕΤΡΟ ΑΞΙΟΛΟΓΗΣΗΣ ΓΕΝΝΗΤΡΙΩΝ ΨΕΥΔΟΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ

Η ΘΡΑΥΣΜΑΤΙΚΗ ΔΙΑΣΤΑΣΗ ΩΣ ΜΕΤΡΟ ΑΞΙΟΛΟΓΗΣΗΣ ΓΕΝΝΗΤΡΙΩΝ ΨΕΥΔΟΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ ΑΦΡΟΔΙΤΗ Ν. ΒΕΝΕΤΗ Επιβλεπων: Μ.Ν. ΒΡΑΧΑΤΗΣ Η ΘΡΑΥΣΜΑΤΙΚΗ ΔΙΑΣΤΑΣΗ ΩΣ ΜΕΤΡΟ ΑΞΙΟΛΟΓΗΣΗΣ ΓΕΝΝΗΤΡΙΩΝ ΨΕΥΔΟΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ Μεταπτυχιακη Διατριβη ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΤΡΑ, ΜΑΡΤΙΟΣ

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

802.11 Security Cracking 802.11 Security with aircrack

802.11 Security Cracking 802.11 Security with aircrack 802.11 Security Cracking 802.11 Security with aircrack Giorgos Kappes 1. Εισαγωγή στο 802.11 Η μελέτη για τα ασύρματα LAN ξεκίνησε το 1987 από την ομάδα εργασίας 802.4 της επιτροπής

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Pseudorandomness = Μη αληθής + Τυχαιότητα. Combinatorial Constructions = Κατασκευές Συνδυαστικής

Pseudorandomness = Μη αληθής + Τυχαιότητα. Combinatorial Constructions = Κατασκευές Συνδυαστικής Pseudorandomness = Μη αληθής + Τυχαιότητα * Συνήθως παίρνουμε μια στατιστική τυχαιότητα από μια ντετερμινιστική επεξεργασία. * Η παραγωγή ψευδοτυχαιότητας είναι πιο εύκολη από την πραγματική τυχαιότητα.

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασµένες

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

f f x f x = x x x f x f x0 x

f f x f x = x x x f x f x0 x 1 Παράγωγος 1. για να βρω την παράγωγο της f σε διάστηµα χρησιµοποιώ βασικές παραγώγους και κανόνες παραγωγισης. για να βρω την παράγωγο σε σηµείο αλλαγής τύπου η σε άκρο διαστήµατος δουλεύω µε ορισµό

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers

Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Κρυπτογραφία Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Αλγόριθμοι τμήματος Τμήμα (μπλοκ) αρχικού μηνύματος μήκους n encrypt decrypt Τμήμα (μπλοκ) κρυπτογράμματος μήκους n 2 Σχηματική αναπαράσταση Plaintext

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Towards a Practical Cryptographic Voting Scheme Based on Malleable Proofs

Towards a Practical Cryptographic Voting Scheme Based on Malleable Proofs University of Patras Computer Engineering and Informatics Department Cryptography Towards a Practical Cryptographic Voting Scheme Based on Malleable Proofs Authors: Ioannis Douratsos Ioanna Tzanetou Nikolas

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΤΡΑΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ.

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΤΡΑΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΤΡΑΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΚΩΝΣΤΑΝΤΙΝΟΥ ΣΤΑΪΚΟΥ Α.Μ. 5260 Επιβλέπων : Σερπάνος Δημήτριος

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας

Διαβάστε περισσότερα

Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ

Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΑ ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΚΑΙ ΟΙ ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥΣ ΧΑΤΖΗΣΤΕΦΑΝΟΥ ΣΤΥΛΙΑΝΟΣ ΧΑΝΙΑ ΜΑΙΟΣ 2013 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΜΠΑΡΜΟΥΝΑΚΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 3. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 3. Fifth Edition by William Stallings Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Κρυπτογραφικοι Αλγοριθµοι Τµηµατων (Block Ciphers) All the afternoon Mungo had been working on Stern's code, principally with

Διαβάστε περισσότερα

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε.

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Αννα Νταγιου ΑΕΜ: 432 Εξαμηνο 8 Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Παρόµοια, πληκτρολογήστε την εντολή: openssl ciphers v Ποιοι συµµετρικοί αλγόριθµοι

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Υπολογιστών Διάλεξη 1η Δρ. Β. Βασιλειάδης Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Πληροφορίες για το Μάθηµα Διαλέξεις: Κάθε Δευτέρα 11:00-13:00 Ιστότοπος

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Γεώργιος Κοτζάμπασης Εκπαιδευτήρια «Ο Απόστολος Παύλος» georgekotzampasis@gmail.com Επιβλέπων καθηγητής: Λάζαρος Τζήμκας Καθηγητής

Διαβάστε περισσότερα

Προγραμματισμός Ι. Είσοδος/Έξοδος. Δημήτρης Μιχαήλ. Ακ. Έτος 2009-2010. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Είσοδος/Έξοδος. Δημήτρης Μιχαήλ. Ακ. Έτος 2009-2010. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Είσοδος/Έξοδος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2009-2010 Είσοδος/Έξοδος Μέχρι τώρα όποτε θέλαμε να διαβάσουμε χρησιμοποιούσαμε πάντα

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα