Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)"

Transcript

1 Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

2 Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή έναν αριθμό a με την ιδιότητα aa 1 mod n (όπου, γιαναμπορούμεναβρούμεπάνταέναντέτοιονμοναδικόαριθμό a, πρέπει gcd(a,n)=1) Το πρόβλημα εύρεσης αντιστρόφου το συναντήσαμε: Στον γραμμικό αλγόριθμο αλλά και στον αλγόριθμο Hill για την αποκρυπτογράφηση Στον RSA για τον υπολογισμό του ιδιωτικού κλειδιού d (θυμίζουμε ότι το d είναι τέτοιο ώστε ed 1 mod φ(n)) Στον El Gamal, για την αποκρυπτογράφηση (όπου χρειάζεται ο υπολογισμός του γ -a, δηλαδή η εύρεση του αντίστροφου του γ a ). Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 2

3 Πώς βρίσκουμε τον αντίστροφο??? Πρώτος τρόπος: αν τα νούμερα είναι σχετικά μικρά, μπορούμε να τον βρούμε με δοκιμές, δοκιμάζοντας όλαταπιθανάνούμερα. Παράδειγμα: έστω ότι θέλουμε τον αντίστροφο του 5 mod 11. Οιπιθανοίαντίστροφοιείναιπροφανώς οι 1,2,,10 (όλοι οι αριθμοί από 1 μέχρι 11-1=10). Δοκιμάζουμε λοιπόν για αυτούς τους 10 αριθμούς ποιος ικανοποιεί τη σχέση 5x 1mod 11. Μπορούμε να δούμε λοιπόν ότι mod 11. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 3

4 Υπάρχει πιο συστηματικός τρόπος?? Ο επεκταμένος αλγόριθμος του Ευκλείδη (τον αναλύσαμε κατά την περιγραφή του RSA). Παράδειγμα RSA Ένας χρήστης θέλει να δημιουργήσει ζευγάρι δημόσιου και ιδιωτικού κλειδιού. Κάνει λοιπόν τα εξής: Επιλέγει p=19, q=29. Τότε N=pq=551. φ(ν)=18 28 = 504 Επιλογή e που να μην έχει κοινούς διαιρέτες με το 504. Έστω e=25. Υπολογισμός του ιδιωτικού κλειδιού d. Έχουμε λοιπόν: 504 = = = Σταματάμε (όπου πράγματι επιβεβαιώσαμε ότι gcd(504,25)=1) Πώς βρίσκουμε λοιπόν το d??? Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 4

5 Αλγόριθμος του Ευκλείδη (συνέχεια) Διαβάζουμε τις προηγούμενες σχέσεις ανάποδα ως εξής: 1 = = 25 6 ( ) = = => 1 = Άρα mod 504 (επαλήθευση: = 3025, το οποίο αν το διαιρέσουμεμετο504 δίνει υπόλοιπο 1). Άρα d=121. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 5

6 Κρυπτογράφηση Αποκρυπτογράφηση RSA Αν m το μήνυμα που θέλουμε να στείλουμε, τότε το κρυπτογραφούμε με την πράξη c = m e mod Ν. Ο παραλήπτης (κάτοχος του ιδιωτικού κλειδιού d) το αποκρυπτογραφεί με την πράξη c d mod Ν. Στη συγκεκριμένη περίπτωση, ισχύει το εξής: Αν m 25 mod 551 = c, τότε c 121 mod 551 = m για όλα τα m (η απόδειξη αυτού έγινε στο μάθημα του RSA). Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 6

7 μεθόδων: Ας κρυπτογραφήσουμε τη λέξη HELLO με όσους αλγορίθμους έχουμε δει μέχρι τώρα: Αλγόριθμος του Καίσαρα: KHOOR (κάθε γράμμα μετατοπίζεται κατά 3 θέσεις δεξιά). Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 7

8 Αλγόριθμος του Vigenere: χρειαζόμαστε μια λέξη-κλειδί. Έστω σαν κλειδί η λέξη CRYPTOGRAPHY. Τότε το κρυπτόγραμμα για τη λέξη HELLO είναι JVJAH. Υλοποίηση στο MATLAB: (το αρχείο ventable.zip) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 8

9 Γραμμικός αλγόριθμος: έστω a=3, b=1 (θα μπορούσαμε να είχαμε επιλέξει π.χ. a=4?? Όχι, γιατί πρέπει gcd(a,n)=1, όπου n το πλήθος των γραμμάτων του αλφαβήτου κι αφού είμαστε στο αγγλικό αλφάβητο, n=26). To Η είναιτο8 ο γράμμα, άρα κρυπτογραφείται σε mod 26 = 22. Συνεπώς το H κρυπτογραφείται στο 23 ο γράμμα, που είναι το W. Αντίστοιχα για το E έχουμε: ( ) mod 26 = 13, οπότε το E κρυπτογραφείται στο 14 ο γράμμα δηλαδή στο N. Για το L: ( ) mod 26 = 34 mod 26 = 8, οπότε το L κρυπτογραφείται στο 9 ο γράμμα δηλαδή στο I. Τέλος, για το O: ( ) mod 26 = 43 mod 26 = 17. Άρα το O κρυπτογραφείται στο 18 ο γράμμα, που είναι το R. Συνεπώς, το HELLO κρυπτογραφείται σε WNIIR. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 9

10 Γραμμικός αλγόριθμος (αποκρυπτογράφηση): Κάθε ένα κρυπτογραφημένο γράμμα c αποκρυπτογραφείται με την πράξη a -1 (c-b)mod Ν Ας δούμε πως θα αποκρυπτογραφούσαμε το WNIIR. Καταρχήν πρέπει να βρούμε το 3-1 mod 26. Είτε με αλγόριθμο του Ευκλείδη είτε με δοκιμές μπορούμε να βρούμε ότι ισούται με 9. Συνεπώς: Για το W (23 ο γράμμα) έχουμε: 9(22-1) 189 mod 26 7 Άρα, το W αποκρυπτογραφείται στο 8 ο γράμμα του αλφαβήτου, δηλαδή το H Για το N (14 ο γράμμα) έχουμε 9(13-1) 108 mod Άρα, το N αποκρυπτογραφείται στο 5 ο γράμμα του αλφαβήτου, δηλαδή στο E. Ομοίως συνεχίζουμε και για τα υπόλοιπα.. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 10

11 Αλγόριθμος Hill Έστω ότι κάποιοι προτείνουν σαν πίνακα κρυπτογράφησης τον Μπορούμε να τον χρησιμοποιήσουμε?? Η ορίζουσα του παραπάνω πίνακα ισούται με = 2, και gcd(2,26) = 2. Συνεπώς, αφού η ορίζουσα δεν είναι πρώτη ως προς το 26, ο πίνακας δεν είναι αντιστρέψιμος mod 26 άρα δεν μπορεί να χρησιμοποιηθεί για κρυπτογράφηση. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 11

12 Αλγόριθμος Hill (συνέχεια) Έστω ότι εξετάζουμε τον πίνακα Η ορίζουσα αυτού είναι 11 άρα, πράγματι είναι ένας πίνακας που μπορεί να χρησιμοποιηθεί για την κρυπτογράφηση Hill. Tο ζευγάρι γραμμάτων HE κρυπτογραφείται με βάση το γινόμενο = = Κ = mod 26 Άρα, το ζευγάρι HE γίνεται AJ Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 12

13 Αλγόριθμος Hill (συνέχεια) Tο ζευγάρι γραμμάτων LL κρυπτογραφείται με βάση το γινόμενο = Άρα, το ζευγάρι LL γίνεται DK = 3 10 mod 26 Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 13

14 Tέλος, το O επειδή μένει μόνο του συμπληρώνεται αυθαίρετα με ένα άλλο γράμμα, κατάλληλο ώστε να μην μπερδεύει τον παραλήπτη να καταλάβει ότι είναι απλά πλεονάζον γράμμα. Συνηθέστερα επιλέγεται το πλεονάζον γράμμα να είναι το Q (χωρίς βέβαια να αποκλείονται και άλλα γράμματα). Έτσι, το ζευγάρι γραμμάτων OQ κρυπτογραφείται με βάση το γινόμενο = = mod 26 Άρα, το ζευγάρι LQ γίνεται ΥW Άρα η λέξη HELLO γίνεται AJDKΥW Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 14

15 Αποκρυπτογράφηση Hill Χρειάζεται να υπολογιστεί ο αντίστροφος του πίνακα κρυπτογράφησης, ο οποίος αντίστροφος είναι ο: mod 26 Ο 11-1 mod 26 μπορεί να υπολογιστεί με τον αλγόριθμο του Ευκλείδη Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 15

16 Αποκρυπτογράφηση Hill (συνέχεια) Συνεπώς: 1 = = = 3 = = = 4 1 (11 2 4) = = ( ) = Άρα 11-1 mod 26 = -7 mod 26 = 19 (το 19 προέκυψε από την πράξη ) = Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 16

17 Αποκρυπτογράφηση Hill (συνέχεια) O πίνακας αποκρυπτογράφησης λοιπόν ισούται με: mod mod Κάθε λοιπόν ζευγάρι από το κρυπτόγραμμα πολλαπλασιάζεται με τον παραπάνω πίνακα K -1 έτσι προκύπτει το αρχικό μήνυμα. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 17

18 Αποκρυπτογράφηση Hill (συνέχεια) Έστω ότι λαμβάνουμε το κρυπτογραφημένο μήνυμα ML. Ποιο είναι το μήνυμα που λάβαμε?? Θα πολλαπλασιάσουμε τον K -1 με το διάνυσμα (αφού το M είναι το 13 ο γράμμα και το L το 12 ο ). Άρα mod26 8 Συνεπώς, το M αντιστοιχεί στο 8 ο γράμμα του αλφαβήτου, δηλαδή το H, και το L αντιστοιχεί στο 9 ο γράμμα, δηλαδή το I. Άρα, η λέξη που εστάλη είναι HI Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 18

19 Αλγόριθμος Playfair με κλειδί τη λέξη CRYPTOGRAPHY. Αρχικά, κατασκευάζουμε τον αντίστοιχο πίνακα: (επιλέξαμε την περίπτωση όπου παραλείπουμε το Q από τον πίνακα, που είναι η συνηθέστερη περίπτωση) C R Y P T O G A H B D E F I J K L M N S U V W X Z Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 19

20 Playfair (συνέχεια) Στη συνέχεια, «σπάμε» το μήνυμα HELLO σε δυάδες, δηλαδή HE, LX, LO (προσέξτε πως δεν πρέπει ένα ζεύγος να αποτελείται από δύο ίδια γράμματα, συνεπώς επειδή θα σχηματιζόταν το ζεύγος LL παρεμβάλλαμε ένα Χ ανάμεσα) ΠΡΟΣΟΧΗ!! Δεν παρεμβάλλουμε το X ανάμεσα σε οποιοδήποτε ζευγάρι διαδοχικών ίδιων γραμμάτων, παρά μόνο αν το ζευγάρι σχηματίζεται κατά την παραπάνω κατάτμηση της λέξης. Για παράδειγμα, για τη λέξη GOOD, θα είχαμε τα ζευγάρια GO και OD χωρίς κανένα πρόβλημα C R Y P T O G A H B D E F I J K L M N S U V W X Z Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 20

21 Playfair (συνέχεια) Η κρυπτογράφηση γίνεται ως εξής: Τα H,E σχηματίζουν ορθογώνιο στον πίνακα, άρα κρυπτογραφούνται στα G,I. Tα L,X σχηματίζουν επίσης ορθογώνιο, άρα κρυπτογραφούνται στα N,V. Tέλος, τα LO σχηματίζουν ορθογώνιο και αυτά, άρα κρυπτογραφούνται στα K,G Συνεπώς, το HELLO γίνεται GINVKG. C R Y P T O G A H B D E F I J K L M N S U V W X Z Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 21

22 Playfair (Αποκρυπτογράφηση) Η αποκρυπτογράφηση γίνεται με ακριβώς την αντίστροφη διαδικασία. Έστω ότι λαμβάνουμε το κρυπτογραφημένο μήνυμα GLGMMRAGDK. Tα G,L βρίσκονται στην ίδια στήλη, άρα το καθένα αποκρυπτογραφείται στο γράμμα που βρίσκεται από πάνω του συνεπώς GL->RE Τα G,M σχηματίζουν ορθογώνιο, άρα αποκρυπτογραφούνται σε AL Τα M,R σχηματίζουν ορθογώνιο, άρα αποκρυπτογραφούνται σε L,Y. Tα A,G είναι στην ίδια γραμμή, άρα το καθένα αποκρυπτογραφείται στο αμέσως προηγούμενό του, συνεπώς AG->GO. Tέλος, τα D,K είναι στην ίδια στήλη οπότε το καθένα αποκρυπτογραφείται στο γράμμα που βρίσκεται από πάνω του με άλλα λόγια, DK -> OD. Άρα το αρχικό μήνυμα είναι: REALLY GOOD. C R Y P T O G A H B D E F I J K L M N S U V W X Z Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 22

23 Σύνοψη Οι αλγόριθμοι μετατόπισης (π.χ. του Καίσαρα) και ο γραμμικός αλγόριθμος είναι απλοί αλγόριθμοι αντικατάστασης ή μονοαλφαβητικοί (κι αυτό γιατί ένα γράμμα πάντοτε κρυπτογραφείται στο ίδιο). Οι αλγόριθμοι Vigenere, Hill, Playfair είναι πολυαλφαβητικοί αλγόριθμοι αντικατάστασης (ένα γράμμα που εμφανίζεται πολλές φορές στο αρχικό μήνυμα μπορεί να κρυπτογραφείται σε διαφορετικό γράμμα στο παραγόμενο κρυπτόγραμμα) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 9 23

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Υπολογιστών Διάλεξη 1η Δρ. Β. Βασιλειάδης Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Πληροφορίες για το Μάθηµα Διαλέξεις: Κάθε Δευτέρα 11:00-13:00 Ιστότοπος

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης

Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Τα μαθηματικά των αρχαίων Ελλήνων στις πιο σύγχρονες μεθόδους κρυπτογράφησης Γεώργιος Κοτζάμπασης Εκπαιδευτήρια «Ο Απόστολος Παύλος» georgekotzampasis@gmail.com Επιβλέπων καθηγητής: Λάζαρος Τζήμκας Καθηγητής

Διαβάστε περισσότερα

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3.. Θεωρία της πληροφορίας Το 948 και το 949 ο Shannon παρουσίασε δύο εργασίες ορόσημα στις επικοινωνίες και στην ασφάλεια της πληροφορίας. Στο σημείο αυτό θα

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» - Κρυπτογραφία είναι - Κρυπτανάλυση είναι - Με τον όρο κλειδί. - Κρυπτολογία = Κρυπτογραφία + Κρυπτανάλυση - Οι επιστήµες αυτές είχαν

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων 1 ΑΣΎΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΊΑ ΚΑΙ PGP...- 3-1.1 ΕΙΣΑΓΩΓΉ...- 3-1.2 ΤΙ ΕΊΝΑΙ ΤΟ PGP;...- 4-1.3 ΤΟ PGP ΒΉΜΑ ΒΉΜΑ......-

Διαβάστε περισσότερα

Σύγχρονη Κρυπτογραφία

Σύγχρονη Κρυπτογραφία Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Κρυπτογραφικά Πρωτόκολλα Ασφ Υπολ Συστ 1 Fair Coin Millionaires Problem Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous Exchange of Secrets προηγμένα

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΙΚΤΥΑ

Διαβάστε περισσότερα

Κρυπτογραφικά Πρωτόκολλα

Κρυπτογραφικά Πρωτόκολλα Κρυπτογραφικά Πρωτόκολλα Παύλος Εφραιµίδης 25/04/2013 1 Κρυπτογραφικά Πρωτόκολλα Bit Commitment Fair Coin Mental Poker Secret Sharing Zero-Knowledge Protocol 2 πρωτόκολλα και υπηρεσίες χρήστης κρυπτογραφικές

Διαβάστε περισσότερα

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε.

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Αννα Νταγιου ΑΕΜ: 432 Εξαμηνο 8 Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Παρόµοια, πληκτρολογήστε την εντολή: openssl ciphers v Ποιοι συµµετρικοί αλγόριθµοι

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΜΥΤΙΛΗΝΑΚΗΣ ΘΕΟΔΩΡΟΣ Α.Μ 2012 ΙΟΥΝΙΟΣ 2013 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΑΤΖΗΣ

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΗΜΙΟΥΡΓΙΑ ΕΦΑΡΜΟΓΗΣ

Διαβάστε περισσότερα

Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν»

Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν» Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας, Κέρκυρα Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν» Βιβλιογραφία Μαθήµατος Douglas Stinson. Cryptography, Theory and Practice, 1995

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

1 Βασικές Έννοιες Ιδιωτικότητας

1 Βασικές Έννοιες Ιδιωτικότητας 1 Βασικές Έννοιες Ιδιωτικότητας Τα κρυπτογραφικά εργαλεία που συζητήσαμε μέχρι στιγμής δεν μπορούν να λύσουν το πρόβλημα της ανάγκης για ιδιωτικότητα των χρηστών ενός συστήματος Η ιδιωτικότητα με την έννοια

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα.

ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. α. Πριν εμφανιστεί η τεχνολογία ISDN οι υπηρεσίες φωνής, εικόνας και δεδομένων απαιτούσαν διαφορετικά δίκτυα. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ Α ΚΥΡΙΑΚΗ 04/05/2014- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΕΚΦΩΝΗΣΕΙΣ Α1. Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ Ψηφιακές υπογραφές ΝΙΚΟΣ ΣΑΡΙΔΑΚΗΣ ΣΤΑΣΗΣ ΑΝΤΩΝΗΣ Γενική Γραμματεία Δημόσιας Διοίκησης και Ηλεκτρονικής Διακυβέρνησης ΥΠΕΣΔΔΑ 1 ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ ΠΟΛΙΤΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 5.. Εισαγωγή Η συμμετρική κρυπτογραφία είναι κατά πολύ αρχαιότερη από την ασύμμετρη κρυπτογραφία. Η συμμετρική κρυπτογραφία χρονολογείται από την Αρχαία Αίγυπτο, ενώ η ασύμμετρη

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΣΦΑΛΕΙΑ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ιδάσκων: Ζορκάδης (Χ) Γεωργίου Χάρης, ΑΜ:4 e-mail: csst9328@cs.uoi.gr Μακρής Ηλίας. ΑΜ:ΧΧ e-mail: csst93xx@cs.uoi.gr Παπαδόπουλος ηµήτρης, ΑΜ:ΧΧ e-mail: csst9337@cs.uoi.gr ΑΣΦΑΛΕΙΑ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα

Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα Διδασκαλία: Δ. Ζήνδρος Επιμέλεια διαφανειών: Δ. Ζήνδρος, Α. Παγουρτζής, Σ. Ζάχος ΗΜΜΥ ΕΜΠ Στόχοι του σημερινού μαθήματος Τι είναι κρυπτογραφία; Ορισμοί και ορολογίες

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Γενική Επισκόπηση της Κρυπτογραφίας

Γενική Επισκόπηση της Κρυπτογραφίας Κεφάλαιο 1 Γενική Επισκόπηση της Κρυπτογραφίας Πίνακας Περιεχομένων 1.1 Εισαγωγή..............................................1 1.2 Ασφάλεια πληροφοριών και κρυπτογραφία................... 3 1.3 Υπόβαθρο

Διαβάστε περισσότερα

Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1

Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 1 Βασικές αρχές κρυπτανάλυσης Στο κεφάλαιο αυτό παρουσιάζονται οι ϐασικές αρχές και τα µέσα τα οποία χρησιµοποιεί η κρυπτανάλυση, προκειµένου να γίνουν πιο κατανοητοί οι στόχοι των επόµενων κεφαλαίων.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

ΥΠΟΓΡΑΦΗ. Ηλεκτρονική επικοινωνία. Κρυπτογραφία και ψηφιακές υπογραφές ΚΡΥΠΤΟΓΡΑΦΙΑ & ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

ΥΠΟΓΡΑΦΗ. Ηλεκτρονική επικοινωνία. Κρυπτογραφία και ψηφιακές υπογραφές ΚΡΥΠΤΟΓΡΑΦΙΑ & ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ & Γιώργος Ν.Γιαννόπουλος Λέκτορας στο Πανεπιστήμιο Αθηνών gyannop@law.uoa.gr 1 ΥΠΟΓΡΑΦΗ ΑΚ 160 και ΚΠολΔ 443 α Το έγγραφο πρέπει να έχει ιδιόχειρη

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ. στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος

ΕΡΓΑΣΙΑ. στο µάθηµα : ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος ΕΡΓΑΣΙΑ στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος Καθηγητής : Μελετίου Γεράσιµος Μάιος 2000 Περιεχόµενα : Εισαγωγή - Ιστορική αναδροµή Η συνθήκη του συστήµατος των Diffie και Hellman Η κρυπτογράφηση

Διαβάστε περισσότερα

Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία

Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία Κεφάλαιο 1. Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα δύσκολο να λυθούν, με σκοπό την εξασφάλιση της ασφάλειας (εμπιστευτικότητα, ακεραιότητα, αυθεντικότητα)

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ Εαρινό εξάμηνο 2011 21.02.11 Χ. Χαραλάμπους Μεσοποταμία Αίγυπτος 3000 1000 π.χ. Αίγυπτος: ο πάπυρος του Rhind ~1650 π.χ. Αγοράσθηκε από τον Σκωτσέζο Rhind το 1858 Αίγυπτος: ο πάπυρος της Μόσχας ~ 1600

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα