A note on a conjecture of Calderón

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A note on a conjecture of Calderón"

Transcript

1 A ote o a cojecture of Calderó Jiecheg CHEN & Xiagrog ZHU Dept of Math Xixi Campus), Zhejiag Uiversitry Abstract For f SR ) ad Ω L 1 S 1 ), S 1 Ωx )dx = 0, defie T Ω f)x) = lim ɛ 0+ x y ɛ Ωy/ y ) y fx y)dy I this paper, we shall prove that there are a class of fuctios i H 1 S 1 ) L l + LS 1 ) such that T Ω is weak type L 1 bouded Supported by 973 project ad NSFZJ 1

2 1 Itroductio For f SR d ) ad Ω L 1 S d 1 ), S d 1 Ωx )dx = 0, defie Ωy/ y ) T Ω f)x) = lim ɛ 0+ x y ɛ y d fx y)dy 1) I [1], Calderó ad Zygmud proved that if Ω L l + LS d 1 ), ie S d 1 Ωx ) l + Ωx ) )dx <, ) T Ω is L p bouded for 1 < p < I [7] ad [5], Ricci, Weiss ad idepedetly Coett proved that if Ω H 1 S d 1 ), T Ω is L p bouded for 1 < p < Also see [4] But, it remaied ope for log time if T Ω is weak type L 1 bouded uder the correspogdig coditios for Ω L l + LS d 1 ), it is a cojecture of Calderó) I [3], Christ ad Rubio de Fracia proved that for Ω L l + LS d 1 ) d 7), T Ω is weak type L 1 bouded Ad at the same time, i [6], Hofma idepedetly proved that for Ω L q S d 1 ) d =, q > 1), T Ω is weak type L 1 bouded Fially, i [8], Seeger geeralized the result to all d ad Ω L l + LS d 1 ) We kow that L l + LS d 1 ) H 1 S d 1 ) So, it is atural to ask a harder questio: for Ω H 1 S d 1 ), is T Ω weak type L 1 bouded? I [9], Stefaov proved that if Ω is a fiite sum of H 1 S 1 ) atoms with the additioal assumptio that the atoms are supported o almost disjoit arcs of comparable size ote that such a Ω must be L S 1 ) fuctio), T Ω L 1 W L 1 essetially depeds oly o Ω H1 Precisely, he proved Theorem 1 Let N, l be positive itegers satisfyig N π l c 0 where c 0 is suitably choose, ad I deote the arc i S 1 with ceter e ad satisfyig I l, I I m 1 mi I, I m ) for m Suppose Ω = N 1 a where > 0 ad a is a H 1 S 1 ) atom o S 1 satisfyig suppa ) I, a l ad S 1 a θ)dθ = 0 The, T Ω L 1 W L 1 C N =1 ) where C is idepedet of N ad l I this paper, we shall prove that there are a class of fuctios i H 1 S 1 ) L l + LS 1 ) such that T Ω is weak type L 1 bouded We have

3 Theorem Let I deote the arc i S 1 with ceter e ad legth ρ, disjoit mutually, ad A = sup θ S 1 :θ / I ρ < ; 3) θ e let Ω = 1 a where 1 < ad a is a H 1 S 1 ) atom o S 1 satisfyig i) suppa ) I, ii) S 1 a θ)dθ = 0, iii) a ρ 1, 4) The, {x : T Ω f)x) > } C A ) 1 f 1 5) for all f SR ) ad > 0, where C is idepedet of f, ad Ω Theorem 3 Suppose ρ 0, 1) ad ρ < There are {e } S 1, arcs I S 1 with ceter e ad legth ρ such that for ay sequece of H 1 atoms {a } satisfyig 4))ad Ω = a, {x : T Ω f)x) > } C ρ f 1 6) for all f SR ) ad > 0, where C is idepedet of f, ad Ω From Theorem 3, we have Corollary 4 For ay icreasig fuctio ϕ : [0, ) [0, ) with ϕ0+) = 0, if ϕt) lim =, 7) t t the, there must be a Ω H 1 ϕl) such that T Ω is weak type L 1 bouded, where Some lemmas ϕl) = { } Ω : ϕ Ωθ) )dθ < S 1 Without loss of geerality, we always assume that 1 = 1 ad > 0 3

4 For a rectagle Q = Qy, r) R ) with ceter y ad sides legth r = r 1, r ), let mq = Qy, mr), dq) = maxr 1, r ) Set ad A = Q : the loger side of Q is parallel to e, the shorter side legth is ρ time of the loger side legth 1 M f)x) = sup x Q A Q Q fz) dz It is easy to see that M is weak type L 1 bouded ad sup M L 1 W L 1 we first give a modified Whitey s decompositio, < Now, Lemma 5 Suppose E R is ope There is m R + such that for ay, there are mutually disjoit rectagles {Q,i } A satisfyig i) ii) E = i Q,i 4Q,i E iii) mq,i E c { } iv) dq,i ) k : k = 0, ±1, ±, This lemma ca be proved alog the idea of the proof of the Whitey s decompositio, see[10] For f L 1 R ) ad > 0, let E = { } x : M f)x) > E = {x : Mf)x) > } E ) where M is the Hardy-Littlewood maximal operator For ay, we shall make C Z decompositio of f based o the modified Whitey s decompositio of E ot E, key poit) By Lemma 5, we have that E = i Q,i where {Q,i } satisfy the coditios i Lemma 5 Take We have b Q,i = fx) 1 g x) = i 1 Q,i Q,i gx) = fx)χ E cx) B,j = i:dq,i )= j b Q,i Q,i fy)dy)χ Q,i x) Q,i fy)dyχ Q,i x) 4

5 Lemma 6 For ay, f = g + g + i b Q,i, ad i) ii) R b Q,i x)dx = 0 bq,i R x) dx C Q,i bq,i i Q,i x) dx f 1 g C f 1, g C f 1 iii) E E + {x : Mf)x) > } C 1 f 1 Lemma 7 Uder the hypothesis of Theorem, for all f SR ) ad > 0 a ) g C A f 1 8) Proof We first prove that a ) ) ξ) C A 9) By a well-kow computatio see [10] page 39), a ) ) 1 ξ) = a θ) l S 1 θ, ξ ξ + πi sig θ, ξ dθ 10) which is idepedet of ξ So, we may assume ξ = 1 Let ξ S 1 deote ayoe of the TWO uit vectors orthogoal to ξ If ±ξ / I, sig θ, ξ is costat for θ I, thus without loss of geerality, we may assume that e, ξ ) < π/, i this case, e, ξ e ξ ) ) a ) ξ) = S 1 a θ) l θ, ξ 1 l e, ξ 1) dθ S 1 a θ) l1 + θ e, ξ e, ξ 1 )dθ C sup θ I θ e e ξ C ρ e ξ 11) By 11), we have ote that A 1) ) a ) ξ) = + ) ) a ) ξ) :ξ I or ξ I :±ξ / I C1 + ρ ) C A e ξ 1) 5

6 Thus a ) g = = S 1 Lemma 7 is proved m S 1 m m a ) ) g ) a ) C A m ĝ m C A m m ) ) ) ξ) g ) am ξ) m ξ) g m ) ξ)dξ g m ) ξ) ) a ) ξ) dξ ) m m f 1 C A f 1 Take β C c 1, )) such that 0 β 1 ad j β j t) = 1 for all t R +, ψ Cc 1, 1)) such that 0 ψ 1 ad ψ [ 1, 1 ] = 1 ad ψ k) ± 1 ) = 0 for all k = 0, 1,, Let a,j x) = β j x ) ax/ x ) x ) ϕ s x) = ψ s 13) 6 ρ 1, e ) x) We have Lemma 8 Uder the hypothesis of Theorem, a,j ϕ s B,j s C A f 1 14) s>0 j Proof By a similar estimate i [9] see sectio 5 below for details), we have a,j B,j s C s f j 1 15) Now, we estimate ϕ s ξ) where s 0 If ϕ s ξ) = ψ s 6 ρ 1 ξ ξ, e ) > 0, we have s 6 ρ 1 ξ ξ, e 1, thus ξ ξ, e s 6 ρ 16) Note that ξ ξ, e ξ e for all satisfyig ±ξ / I ad e, ξ ) < π/, we have ξ s e C 6 ξ ρ, ad thus ρ 1 e C s 6 By Theorem 3), the umber of satisfyig 16) does ot exceed CA s 3, thus ϕ s ξ) CA s 3 17) 6

7 By 15) ad 17), ) a,j ϕ s B,j s s>0 j s>0 a,j ϕ s B,j s j ) ) = ϕ s>0 s â,j B,j s j s>0 ϕ s ξ) ) 1/ ) 1/ â,j B,j s j CA s 3 1/ a s>0,j B,j s j ) ) ) CA s 3 s 1/ f 1 = CA f 1 s>0 Lemma 8 is proved Lemma 9 Uder the hypothesis of Theorem, a,j δ ϕ s ) B,j s 1 C f 1 18) s>0 j Proof By a similar estimate i [9] see sectio 5 below for details), we have a,j δ ϕ s ) 1 C s 1 19) So Lemma 9 is proved a,j δ ϕ s ) B,j s 1 s>0 j C s 1 B,j s 1 = C f 1 s>0 j 3 Proof of Theorem For fixed f ad, T Ω f)x) = T Ω g)x) + a ) g x) + i a ) b Q,i x), 7

8 so, {x : T Ω f)x) > } I + II + III I = {x : T Ω g)x) > /3} { } II = x : a ) g x) > /3 { } III = x : i a ) b Q,i x) > /3 0) By L boudedess of T Ω, I C T Ω g) C Ω H 1 g C ) f 1 = C 1 f 1 1) Similarly, we have For III, we have II C a ) g x) CA 1 f 1 ) a ) b i Q,i x) = a,j B,j s x) s0 j + a,j B,j s x) s>0 j = a,j B,j s x) s0 j + a,j ϕ s B,j s x) s>0 j + a,j δ ϕ s ) B,j s x) s>0 j 3) If dq,i ) j, suppa,j b Q,i ) 4Q,i, so supp a,j B,j s ) i 4Q,i = E s0 j Noticig that E C 1 f 1, we have { } III E + x : a,j ϕ s B,j s x) s>0 j > /9 { } + x : a,j δ ϕ s ) B,j s x) > /9 s>0 = E + IV + V j 4) 8

9 By Lemma 8, IV C a,j ϕ s B,j s s>0 j CA 1 f 1 5) By Lemma 9, V C 1 a,j δ ϕ s ) B,j s CA 1 f 1 6) 1 s>0 j Combiig 0)-) ad 4)-6), we get {x : T Ω f)x) > } CA 1 f 1 Theorem is proved 4 Proof of Theorem 3 Without loss of geerality, we may assume that {ρ } is decreasig ad ρ < π/64 Let d m = 1 sup m m ρ We have Lemma 10 m d m 16 ρ Proof For m, ρ 1 i ρi ) im ρi ), thus d m m m m im ρi ) O the other had, m ρi ) m ρi ρj m im m jm ij = ρj ρi ) m j ij m j 4 j 4 j j 1 ρj ij ρi ) ρ j ) 1/ j 1 ρi ) ) 1/, j ij so d m m m m im ρi ) 16 j ρ j Lemma 10 is proved 9

10 By Lemma 10 ad the assumptio ρ < π/64, we get m d m < π/ So, we ca choose {e m } S 1, such that e m+1 e m = d m ad 0 < arg e m < arg e m+1 < π/ for all m I additio, by the fact d m ρ m + ρ m+1, {I m } are disjoit mutually We shall first apply iductio to prove that e m e for m > For m = + 1, e m e = d > m ) m ρ, we have m ) m ρ 7) +1 ρ = m ) m e m+1 e = e m+1 e m + e m e d m + m ) m ρ > m+1 ) m+1 ρ So, 7) holds for all m > Now, we shall prove that For θ S 1, we first cosider sup θ S 1 :θ / I m ρ Suppose e m e + m ) ) m ρ ρ < 8) θ e N + θ N θ N 0 θ def = { : 0 arg θ arg e π/} def = { : 0 arg θ arg e π/} def = { : arg θ arg e > π/} Label the elemets i N + θ by sub-idex such that < θ e < θ e 1 < θ e 0 The, N + θ = { < 1 < 0 } or N + θ = { K < < 1 < 0 } By 7), i the secod case, θ e l > e K e l > l K l ) K ρ l, thus : N + θ,θ / I ρ θ e i the fist case, θ e l > l ρ l, so 1 + K 1 K 1 l=0 l=1 ρ θ e : N + θ,θ / I 1 + l=1 ) l K l ) K l K l ) K ) C < ; l ) = C < 9) 10

11 Label the elemets i N θ by sub-idex such that θ e 0 < θ e 1 < θ e < The, N + θ = { 0 < 1 < } or N + θ = { 0 < 1 < < K } By 7), it is easy to show that I additio, : N 0 θ,θ / I : N θ,θ / I ρ C < 30) θ e ρ θ e C : N 0 θ,θ / I ρ = C < 31) From 9)-31), we get 8) By 8) ad Theorem, we get Theorem 3 Fially, we prove Corollary 4 By 7), we ca choose {t } such that 1 < t 1 < t < ad ϕt ) > t Set =, ρ = t 1, Ω = a where {a } are H 1 atoms satisfyig 4) ad a θ) = ρ 1 ie Ω / ϕl) for θ I The, Ω H 1 S 1 ), but S 1 ϕ Ωθ) )dθ = ρ ϕ ρ 1 ) =, 5 Appedix I the proofs of Lemmas 8-9, we apply the estimates 15) ad 19) without proofs I what follows, we shall give details of their proofs alog the ideas developped i [], [3], [6], [8] ad [9] Proof of 15) We have j a,j B,j s = a,j B,j s, a,i B,i s j i B,j s, ã,j a,i B,i s j ij B,j s 1 ã,j a,i B,i s j ij f 1 sup j ã,j a,i B,i s, ij 3) 11

12 where ã,j x) = a,j x) We first estimate i 3 ã,0 a,i B,i s 0) We have ã,0 a,i B,i s 0) = R B,i s y) R a,0 y + z)a,i z)dz)dy = B,i s y) + R S 1 def = S 1 a θ)t i,s a )θ)dθ 0 a y+tθ y+tθ ) β y+tθ ) β i t) y+tθ t dt)a θ)dθ)dy where So, by 4), T i,s a )θ) = R B,i s y)l y i a )θ)dy L y i a )θ) = + i 3 ã,0 a,i B,i s 0) 0 a y+tθ y+tθ ) β y+tθ ) β i t) y+tθ t dt i 3 S 1 a θ)t i,s a )θ)dθ sup θ i 3 T i,sa )θ) 33) For coveiece, let Q θ) def = Θ,i,θ def = { } y : 1 y, 4 y 3, θ 4ρ { y, t) : a y+tθ y+tθ ) β y+tθ ) β i t) y+tθ t 0 } 34) where θ be oe of the two uit vectors orthogoal to θ The suppl y i a )θ)) Q θ) 35) Actually, if L y i a )θ) 0, i 3 ad y, t) Θ,i,θ, we have y y + tθ + tθ + i+1 3, y y + tθ tθ 1 i+1 1 4, ad Let y, θ = y + tθ, θ y + tθ y+tθ y+tθ, θ y + tθ y+tθ y+tθ θ ) y+tθ y + tθ y+tθ e + e θ 4ρ Q s θ) = { } y : y 4 ad y, θ ρ s where s > 0, the i 3 T i,s a )θ) i 3 i 3 R B,i s y)l y i a )θ)dy + ) j:q,j Q s θ),dq,j )= i s j:q,j Q s θ)=,dq,j )= i s R b,j y)l y i a )θ)dy def = I + II 36) 1

13 For I, oticig that we have L y i a )θ) I + 0 ρ 1 β y + tθ ) β i t) y + tθ t Cρ 1 i 3 j:q,j Q s θ),dq,j )= i s Cρ 1 Cρ 1 j:q,j Q sθ),dq,j ) s Q,j ρ s = C s dt Cρ 1, Q,j To estimate II, for y Q,j Q θ) where dq,j ) = i s, y θ such that y y θ //θ, y θ y Q //θ where y Q is the ceter of Q,j, thus 37) y y θ = y y Q, θ i s y θ y Q = y y Q, θ C i s ρ yy θ Q s θ) = y θ y Q Q s θ) = By Lemma 11 below ad 38), we have L y i a )θ) L y θ i a )θ) i s sup θ Lz i a )θ) C s ρ 1 z yy θ L y θ i a )θ) L y Q i a )θ) i s ρ sup L z θ i a )θ) C s ρ 1 z y θ y Q 38) 39) So, II = i 3 R b,j y)l y i a )θ)dy j:q,j Q s θ)=,dq,j )= i s R b,j y) L y i a )θ) L y Q i a )θ) dy i 3 j:q,j Q sθ)=,dq,j )= i s C i 3 j:q,j Q s θ)=,q,j Q θ),dq,j )= i s sup y L y i a )θ) L y θ i a )θ) + L y θ i C s ρ 1 j:q,j Q θ),dq,j ) s Q,j C Q,j a )θ) L y ) Q a )θ) i s 40) By 33), 36), 38) ad 40), we get i 3 ã,0 a,i B,i s 0) C s 13

14 By traslatio argumets, ã,0 a,i B,i s By dilatio argumets, i 3 L R ) C s ã,j a,i B,i s C ij s 41) Combiig with 3), it gives 15) Lemma 11 For θ suppa ), y, θ ρ s where s > 0, y 4, we have i) ii) θ Ly i a )θ) i ρ 1 L y θ i a )θ) i+ s ρ Proof Without loss of geerality, we may assume θ = 1, 0) Let e 1 = 1, 0), e = 0, 1), the y = y 1 e 1 + y e, y ρ s Settig w = y+tθ y+tθ = y+te 1 y+te 1, we have Jw, y) = dw dt = y y + te 1 4) Note that y + te 1, w = 0, so t = y,w e 1,w Obviously, for y, t) Θ,i,θ where Θ,i,θ is defied by 34), we have t y 1 = 1 t y = e,w e 1,w = e 1,w e,w Cρ 1 s We first estimate y 1 L y i a )θ) By 43), y+te 1) y 1 = 0 = y+te 1 Thus, y 1 Jw, y) = y y 1 y 1 y + te 1 ) = 0, ad for y, t) Θ,i,θ, β y + te 1 ) β i t) y 1 y + te 1 ) t C β i t) ) y 1 t C i t + 1 t C i Therefore y 1 L y i a )θ) a w) + a w) y 1 β y+tθ ) β i t) dw y+tθ t ) Jw,y) β y+tθ ) β i t) Jw,y) y 1 y+tθ t Jw,y) dw Jw,y) Cρ 1 i w[ i 1, i+1 ]) Cρ 1 i i+1 i 1 dt = Cρ 1 i dw Jw,y) 43) 44) 14

15 Now, we estimate y L y i a )θ) At first, by 43), we have y+te 1 y = y+te 1, C y+te y 1 ) y+te 1 t y + 1) Cρ 1 s y y + te 1 ) 45) Thus, by 43) ad 45), for y, t) Θ,i,θ, y β i t) t ) C i t+1 t t y χ i 1 t i+1t) C i ρ 1 s y β y+te 1 ) ) y+te 1 C y+te 1 + y+te 1 y+te 1 ) y+te 1 4 y χ 1 y+te 1 Cρ 1 s, which meas that β y + te 1 ) β i t) y y + te 1 ) t C i ρ 1 s 46) I additio, for y, t) Θ,i,θ such that y, θ ρ s, we have thus, By 46) ad 47), we get Lemma 11 is proved Proof of 19) Jw,y) y = y y y+te 1 ) C1 + y ρ 1 ) y+te1 + y y y+te 1 ) y y+te 1 y ) Jw, y) Jw, y) y C1 + y ρ 1 y y L y i a )e 1 ) a w) + a w) C i+ s ρ 1 +Cρ 1 ) y β y+tθ ) β i t) dw y+tθ t ) Jw,y) β y+tθ ) β i t) Jw,y) y y+tθ t Jw,y) ρ 1 dw w[ i 1, i+1 ]) Jw,y) dw w[ i 1, i+1 ]) Jw,y) s ρ 1 C i+ s ρ Cρ 1 s 47) i+1 i 1 dt = C i+ s ρ dw Jw,y) For simplicity, we omit the subidex By the defiitio of ϕ s ie ϕ s, see 13)) ad ψ, we have δ ϕ s ) ) = 1 ψ s 6 ρ 1, e ) = φ s 6 m ρ 1, e ) m 0 15

16 where φ C0, 1 ) 1, )) is defied by φ {u: 1 < u 1} = 1 ψ, φ {u:1 u <} = ψ ), φ {u: 1 < u <}c = 0 which satisfies m 0 φ m u) = 1 ψu) for all u R 1 Take a oegative fuctio ς { } C0 1 < < ) such that + ς k u) = 1 for all u R 1, ad set L k = ς k )), the a j δ ϕ s ) = Cm s,k ) a j L k m 0 k 48) Cm s,k y) = ς k y)φ s 6 m ρ 1 y y, e ) where a j is just a,j defied by 13) with ceter e = e ad radius ρ = ρ We first estimate Cm s,k ) 1 Defie a iversible liear operator A km : R R by A k,m y = k+ s 6 +m ρy 1, k y ) where y 1 //e ad y e Let h = s 6 +m ρ, by Sobolev imbeddig theorem f C 1 α α fq )) where Q is a osigular liear trasform o R ) C s,k m ) 1 C = C I the supports of ς ad φ, we have which meas that so From 49)-51), we get C s,k m ) 1 C y α α y α α C s,k m A k,m y)) ςhy 1 + y )φ y 1,e hy 1 +y ) ) 1 hy 1 + y, 1 y 1 hy 1 + y, y 1 4, y, h hy 1 + y y 1 49), 50) ) y 1, e α y ςhy 1 + y )φ hy 1 + y ) C 51) α y α ) y 1, e ςhy 1 + y )φ hy 1 + y ) C 5) 16

17 Now, a j L k 1 = ay/ y )β j y ) y = S 1 0 R S 1 j+1 C C β j r) aθ) r sup r [ j 1, j+1 ],θ suppa) L k x y)dy dx L kx rθ)drdθ dx j 1 j aθ) L k x rθ) L k x re) drdθdx R L k x rθ) L k x re) dx sup r θ e L k 1 C k+j ρ r [ j 1, j+1 ],θ suppa) 53) By 5)-53), C s,k m ) a j L k 1 C k+j ρ 54) But, for larger k say, k + j 0), the estimate 54) is ot eough, we eed some other estimate Applyig Sobolev imbeddig thorem agai, we get by 50)-51) Write C s,k m ) a j L k 1 C C y α α α C s,k m A k,m y)â j A k,m y)) α y â j A k,m )) χ suppc s,k m A k,m )) 55) Note that y = y 1 e + y e suppc s,k m A k,m )), θ = θ 1 e + θ e suppa), θ 1 1, θ ρ ς k A k,m y) 0 = A k,m y k φ s 6 m ρ 1 A k,my A k,m y, e ) 0 = A k,my A k,m y, e s 6 +m ρ I additio, θ e < ρ ad s 6 + m > 0, so A k,my A k,m y, θ s 6 +m ρ A k,m y, θ s 6 +m+k ρ, 56) 57) ad ) α y A k,m y, θ = y α θ 1 s 6 +m+k ρy 1 + θ k y C s 6 +m+k ρ) α1 k ρ) α C s 6 +m+k ρ) α 58) 17

18 Now, by itegratio by parts, â j A k,m y) = aθ) β j r) r e ir Ak,my,θ drdθ = aθ) i A k,m y,θ ) 3 3 r β j r) r )e ir Ak,my,θ drdθ So, by 57)-58) ad the fact r 3 β j r) )r α 1 C j3 α +1), we have r y α â j A k,m y)) C aθ) ir) γ y γ A k,m y,θ i A 0γα k,m y,θ ) 3 3 r β j r) r )e ir Ak,my,θ drdθ C 0γα ρρ 1 s 6 +m+k ρ) 3 j3 γ +1) j s 6 +m+k ρ) γ = C s 6 +m+k+j ρ) 3+ γ 0γα 59) By 55), 50) ad 59), we have C s,k m ) a j L k 1 C α s 6 +m+k+j ρ) 3+ α = C 3 s 6 +m+k+j ρ) l 60) l=1 So, C s,k m ) a j L k m 0 k 1 C { } mi k+j 3 ρ, s 6 +m+k+j ρ) l m 0 k l=1 C k+j ρ m 0 k: k+j ρ 1 s m +C 3 s 6 +m+k+j ρ) l m 0 k: k+j ρ> 1 s m l=1 C s 1 m = C s m ) From 48), 61), we get 19) 18

19 Refereces [1] A P Calderó ad A Zygmud, O sigular itegrals, Amer Math Soc ), [] M Christ, Weak type bouds for rough kerels, A of Math ), 19-4 [3] M Christ ad J-L Rubio de Fracia, Weak type 1,1) bouds for rough operators II, Ivet Math ), 9-37 [4] R R Coifma ad G Weiss, Extesios of Hardy spaces ad their use i aalysis, Bull Amer Math Soc ), [5] W C Coett, Sigular itegrals ear L 1, Proc Sympos Pure Math of Amer Math Soc S Waiger ad G Weiss eds), Vol35 1) 1979), [6] S Hofma, Weak 1,1) boudedess of sigular itegrals with osmooth kerels, Proc Amer Math Soc ), [7] F Ricci ad G Weiss, A characterizatio of H 1 1 ), Proc Sympos Pure Math of Amer Math Soc S Waiger ad G Weiss eds), Vol35 1) 1979), [8] A Seeger, Sigular itegral operator with rough covolutio kerels, J Amer Math Soc 91996), [9] A Stefaov, Weak type estimates for certai Calderó-Zygmud sigular itegral operators, Studia Math 1471)001), 1-13 [10] E M Stei, Sigular itegrals ad differetiability properties of fuctios, Priceto Uiversity Press, Priceto N J,

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα