A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators"

Transcript

1 Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet of Mathematics, Uiversity of Rajastha, Jaiur , Idia ad J. K. Prajaat Deartmet of Mathematics, Sobhasaria Egieerig College, Goulura, NH-11, Siar , Idia Received August 20, 2003, Acceted December 31, Abstract I this aer we defie a ew class of fuctios which are aalytic ad -valet with egative coefficiets, by usig fractioal differ-itegral oerators studied recetly by authors. Characterizatio, distortio theorems ad other iterestig roerties of this class of fuctios are studied. Some secial cases of mai results are also oited out. Keywords ad Phrases: Aalytic fuctios, -valet fuctios, Fractioal differitegral oerators, Distortio roerty.

2 176 S. P. Goyal ad J. K. Prajaat 1. Itroductio Let T (, ) deote the class of fuctios f (z) of the form f (z) = z a z ( a 0;, N = { 1,2,3, L } ) (1.1) = + which are aalytic ad multivalet (-valet) i the oe uit dis U = { z : z C ad z < 1 } (1.2) μ A fuctio of f (z) T (, ) is said to be i the class J, νη, ( abσ ) if ad oly if S 0, z f (z) 1 b S f (z) a < σ ( z U) (1.3) for 1 a < b 1 ; 0 < b 1 ; 0 < σ 1, < μ < 1, ν < + 1, η R +, N μ ad S, νη, is the fractioal differitegral oerator of order μ (- < μ < 1) (see Goyal ad Prajaat [1] ). For this oerator If the S : T (, ) T (, ) (1.4) φ μ ν η = + S f (z) = z (, ) a z (1.5) ( a 0;, N = { 1,2,3, L }, z U ) where φ (, ) = L (, ) M (,) (1.6) Here ad L (, ) M (,) (1 ν ) ( 1 μ+ η) = ( 1 ν + η) Γ ( + 1) Γ ( + 1) ( 1 ν + η ) = ( 1 ν ) ( 1 μ+ η) (1.7) (1.8) Throughout the aer ( a) = ( a + 1), or = a (a + 1) (a + 2) L (a + + 1) (1.9) = 1 is the Factorial fuctio, or if a > 0, the Γ (a + ) (a) = Γ ( a) ( where Γ is Euler's Gamma fuctio). (1.10)

3 A New Class of Aalytic -Valet Fuctios 177 For z 0, (1.5) may be exressed as S f (z) Γ(1 ν + ) Γ(1 μ + η + ) z ν J μ, ν, η f (z) ; 0 μ < 1 Γ (1 + ) Γ(1 ν + η + ) = Γ (1 ν + ) Γ (1 μ + η + ) z ν I μ, ν, η f (z) ; < μ < 0 Γ (1 + ) Γ(1 ν + η + ) (1.11) μ where J, νη, f (z) is the fractioal derivative oerator of order μ (0 μ < 1), while μ, νη, I f (z) is the fractioal itegral oerator of order - μ (- < μ < 0) itroduced ad studied by Saigo ( [4], [5] ). becomes It may be worthotig that, by choosig - < μ = ν < 1 the oerator μμη μ Γ (1 μ + ) μ μ z z S μ νη f (z) S f (z) = S f(z) = z D f (z) (1.12) Γ ( + 1) where D μ z f (z) is resectively, the fractioal itegral oerator of order - μ (- < μ < 0) ad fractioal derivative oerator of order μ (0 μ < 1) cosidered by Owa [3] ad defied by Liouville [2]. Further if μ = ν = 0, the S f (z) = f (z) (1.13) 0,0, η 0, z ad for μ 1 ad ν = 1 ' lim S f (z) = z f ( z) (1.14) μ 1 μ,1, η Note that (i) For μ 1 ad ν = 1 ad σ = 1, we have lim J (a,b,1) = τ (, a, b) (1.15) μ 1 μ,1, η where τ (, a, b) is the subclass of fuctios f (z) T (, ) satisfyig the coditio ' zf ( z) 1 < 1 (1.16) ' bz f ( z) a ( 1 a < b 1, 0 < b 1, N, z U ) The class τ (, a, b) was studied by Shula ad Dashrath [6] i a slight differet form.

4 178 S. P. Goyal ad J. K. Prajaat (ii) For < μ = ν < = α = σ reduces to 1, a 2 1, b 1, J μνη ( a, b, ) J ( 2α 1,1, σ) = T ( α, σ, μ) (1.17) μμη where T ( α, σ, μ ) is the subclass of fuctios satisfyig the coditios μ Sz f (z) 1 μ S f (z) + (1-2 α ) z < σ ( z U, 0 α < 1, 0 < σ 1, < μ < 1, N ad η R+ ) (1.18) Here S μ z is give by (1.12), the class of fuctios T (α, σ, μ) was studied by Srivastava ad Aouf ( [7] ad [8] ) uder restricted coditio for μ (0 μ < 1). Our urose i this aer is to obtai certai roerties for J μ νη ( abσ ) such as coefficiet bouds, iclusio theorems, closure roerty ad distortio roerties. 2. Coefficiet Characterizatio Theorem Theorem 1. Let fuctio f (z) defied by (1.1) be i class T (, ) the the fuctio f(z) belogs to the class J μ νη 0, z ( abσ ) ( -1 a < b 1,0 < b 1, 0 < σ 1, - < μ < 1, ν < + 1, η R +, N ) iff φ ( μ, ν, η, ) (b σ + 1) a σ ( b a) (2.1) = + Proof. Let the iequality (2.1) holds true, the S f (z) 1 σ b S f (z) a 0, z = z φ ( μ, ν, η, )a z 1 σ bz bφ ( μ, ν, η, )a z a = + = + φ ( μ, ν, η, )(bσ + 1) a σ ( b a) = + 0 [ by (2.1) ] Hece by maximum module theorem f (z) belogs to class J μ νη ( abσ ).

5 A New Class of Aalytic -Valet Fuctios 179 Now to rove coverse, we assume that f(z) is defied by (1.1) ad f (z) J ( a, b, σ ). The by usig (1.5) i (1.3), we get S z )a z μνη φ μ ν η 0, z f (z) 1 = + = 0, z φ ( μ, ν, η, = + (, 1 b S f (z) a b z )a z a Sice Re (z) z, therefore we have Re z φ ( μ, ν, η, )a z 1 = + σ < b z b φ ( μ, ν, η, )a z a = + (2.2) Now lettig z 1, through real values i (2.2), we at oce obtai (2.1) ad theorem is comletely roved. Corollary 1. Let a = 2α - 1, b = 1 ad - < μ = ν < 1, i theorem 1. The a fuctio f (z), as i (1.1), is i class T (α, σ, μ) (- < μ < 1, 0 α < 1, 0 < σ 1, N, η R + ) iff Γ ( + 1) (1 μ) ( σ + 1) a 2 σ (1 α) (2.3) Γ ( + 1) (1 μ) = + The result (2.3), for the class of fuctios T (α,σ, μ) was studied by Srivastava ad Aouf ( [7] ad [8] ), uder the coditio for μ (0 μ < 1). Remar. Similarly o taig μ 1, ν = 1 ad σ = 1 i theorem 1 ad by usig (1.14), the coefficiet characterizatio theorem for the class τ (, a, b) is obtaied ad thereby results due to Shula ad Dashrath [7] become articular cases of our theorem.

6 180 S. P. Goyal ad J. K. Prajaat 3. Growth ad Distortio Theorems μνη Theorem 2. Let the fuctio f(z) of (1.1) be i class J ( a, b, σ ) uder the coditios of validity 1 a < b 1,0 < b 1, 0 < σ 1, < μ < 1, ν < + 1, ν η η R+, N ad < μ < 1 ad if further, for β < + 1, γ R+, α > ν ad satisfyig the iequality the β ( α + γ) ( + 1) (3.1) α α, β, γ σ ( b α) (1 β + γ + ) (1 ν + ) (1 μ+ η+ ) S f (z) z z (bσ + 1) (1 β + ) (1 + α + γ + ) (1 ν + η+ ) ad + α, β, γ σ ( b a) (1 β + γ + ) (1 ν + ) (1 μ+ η+ ) S f (z) z + z (bσ + 1) (1 β + ) (1 + α + γ + ) (1 ν + η+ ) + Equatios (3.2) ad (3.3) are justified for σ ( b a)(1 ν + ) (1 μ+ η+ ) f (z) = z z ( bσ + 1)( + 1) (1 ν + η+ ) + (3.2) (3.3) (3.4) Proof. Uder the assumtio ad coditios of validity for the theorem it is obvious that the fuctio φ ( μ, ν, η, ) = is icreasig for +. ( 1 ν ) (1 μ+ η) Γ ( + 1) (1 ν + η) (1 ν + η) Γ ( + 1)(1 ν) (1 μ+ η) Ideed ( + 1) (1 ν + η+ ) φ+ 1( μ, ν, η, ) φ( μ, ν, η, ) = φ( μ, ν, η, ) 1 (1 ν + ) (1 μ+ η+ ) μ( + 1) ν ( μ η) = φ ( μ, ν, η, ) > 0 (1 ν + ) (1 μ+ η+ )

7 A New Class of Aalytic -Valet Fuctios 181 or φ (, ) φ (, ) μ( + + 1) ν ( μ η) = φ+ ( μ, ν, η, ) > 0 (1 ν + + ) (1 μ+ η+ + ) Thus φ ( μ, ν, η, )(bσ + 1) a φ ( μ, ν, η, )(bσ + 1) σ ( b a) + = + = + or equivaletly σ ( b a) (1 ν + ) (1 μ+ η+ ) a (3.5) ( bσ + 1)( + 1) (1 ν + η+ ) = + S α βγ 0, z Now usig (1.5), the oerator for f (z) may be exressed as α, β, γ φ α β γ = + S f (z) = z (, )a z ( a 0) (3.6) The assumtio (3.1) comrehesively sells that (1 β ) (1 + α + γ) Γ ( + 1)(1 β + γ) φ ( α, β, γ, ) = (1 β + γ) Γ ( + 1) (1 β) (1 + α + γ) is o icreasig for +, ad thus, we have ( + 1) (1 β + γ + ) 0 φ ( αβγ, ) φ+ ( αβγ, ) = (1 β + ) (1+ α + γ + ) Now emloyig (3.5) ad (3.8) i (3.6) we ote that α, β, γ + 0, z φ+ ( α, β, γ, = + S f (z) z z ) a (1 β + γ + ) (1 ν + ) (1 μ+ η+ ) σ ( b a) z z (1 β + ) (1 + α + γ + ) (1 ν + η+ ) ( bσ + 1) + (3.7) (3.8) which is icidetally asserts (3.2) of theorem 2. Assertio (3.3) follows a similar aalysis. Corollary 2. Let we set β = - α, a = 2α - 1, b = 1 ad - < μ = ν < 1 i theorem 2. Now if f (z) be as i class T (α, σ, μ) (- < μ < 1, 0 α < 1, 0 < σ 1, N, η R + ) the α 2 σ (1 α)(1 μ+ ) + Sz f (z) z z (3.9) ( σ + 1)(1+ α + )

8 182 S. P. Goyal ad J. K. Prajaat ad α 2 σ (1 α)(1 μ+ ) Sz f (z) z + z ( σ + 1)(1+ α + ) + where α > 0 ad iequality (3.9) ad (3.10) are justified if 2 σ (1 α)(1 μ+ ) f (z) = z z ( σ + 1)(1+ ) + (3.10) (3.11) Remar. O taig μ 1, ν = 1ad σ = 1i Theorem 2, ad usig (1.14), the distortio theorem for the class τ (, a, b) is obtaied, ad thereby result due to Shula ad Dashrath [6] i slight differet form, become articular case of our theorem. 4. Closure Theorem Let the fuctio f i (z) be defied for i = 1,L, m by fi( z) = z ai, z ( ai, 0, N ad z U ) (4.1) = + Now we rove a result for the closure uder Arithmatic mea of fuctio i the class J ( a, b, σ ). Theorem 3. Let the fuctio f i (z) defied by (4.1) be i class each i = 1,, m the the fuctio K (z) defied by is i class 1 K (z) = z ai, z m = + i = 1 J ( a, b, σ ), where J ( a, b, σ ) for i i (4.2) a = mi { a }, b = max{ b } (4.3) i 1 i m 1 i m i μνη Proof. Let f i (z) J ( a, b, σ ) for each i = 1,L, m the by (2.1) we have i i m m 1 1 ( bi ai) σ ( b a) σ φ ( μ, ν, η, ) ai, m m bσ + 1 b σ + 1 = + i = 1 i = 1 i where a ad b are defied by (4.3). This imlies that K (z) J ( a, b, σ ).

9 A New Class of Aalytic -Valet Fuctios 183 μ,ν,η 5. Further Proerties of ( a,b, σ) J Theorem 4. If < ξ ν < + 1, < λ μ < 1 ad η R+, 1 a < b 1, 0 < b 1, 0 < σ 1ad N the J ( a, b, σ ) J ( a, b, σ ) (5.1) λξη Proof. Let f (z) J ( a, b, σ ) the by Theorem 1 (1 ν ) (1 μ+ η) Γ ( + 1) (1+ ν + η) ( bσ + 1) a < σ ( b a) (5.2) (1 ν + η) Γ ( + 1) (1 ν) (1 μ+ η) = + If we write (1 ) (1 ) (1 ) ( ) ν ν + η ad ( ) μ + φν = ϕ μ = η (1 ν + η) (1 ν) (1 μ+ η) we observe that (2 ν ) (2 ν + η) (1 ν) (1 ν + η) φν ( 1) φν ( ) = (2 ν + η) (2 ν) (1 ν + η) (1 ν) (5.3) Γ(1 ν + ) Γ(1 ν + η+ ) (1 ν + ) (1 ν + η+ ) = 1 Γ(1 ν + η+ ) Γ(1 ν + ) (1 ν + η+ ) (1 ν + ) Γ(1 ν + ) Γ(1 ν + η+ ) η ( ) = < 0 (5.4) Γ(1 ν + η+ ) Γ(1 ν + ) (1 ν + η+ ) (1 ν + ) which states that φ (ν) beig a icreasig fuctio of ν (- <ν < + 1) ad similarly, we ca show that ϕ (μ) is icreasig fuctio of μ, such that - < μ < 1 therefore φ ( λξη, )(bσ + 1) a φ (, ) (bσ + 1) a < ( b a) σ (5.5) = + = + which imlies that f J ( a, b, σ ) ad thereby theorem is established. λξ η

10 184 S. P. Goyal ad J. K. Prajaat Theorem 5. If 1 a < b 1, < μ < 1, ν < + 1, η R+, 0 < b 1, 0 < σ 1, N ad 1 a' < b' 1, 0 < b' 1, the J ( a, b, σ ) = J ( a', b', σ ) (5.6) if ad oly if σ ( ab' ba') = (a' a) ( b' b) (5.7) Proof. From (2.1) of theorem, we have b σ + 1 b' σ + 1 φ ( μ, ν, η, ) a = φ ( μ, ν, η, ) a 1 σ ( b a) σ ( b' a') = + = + which imlies that b σ + 1 b' σ + 1 = σ ( b a) σ ( b' a') (5.8) immediately yields (5.7). (5.8) Remar. O uttig b' = 1 i Theorem 5, we get uder the coditios metioed therei 1+ a b a σ J ( a, b, σ ) = J,1, σ (5.9) b σ + 1 Theorem 6. If 1 a 1 a 2 < b 1, < μ < 1, ν < + 1, η R+, 0 < b 1, 0 < σ 1, ad N the J ( a, b, σ ) J ( a, b, σ ) (5.10) 1 2 Proof. Let f J ( a, b, σ ), them from (2.1) of theorem 1, we have = + φ ( μ, ν, η, )a σ ( b a2) σ ( b a1) ( b σ + 1) ( b σ + 1) uder the coditio 1 a a 1 which imlies that 1 2 f (z) J ( a, b, σ ) ad we get (5.10).

11 A New Class of Aalytic -Valet Fuctios 185 Theorem 7. If 1 a b 1 b 2 1, < μ < 1, ν < + 1, η R+ ad N the J ( a, b, σ ) J ( a, b, σ ) (5.11) 1 2 Proof. Theorem follows by similar aalysis as i theorem 6. Theorem 8. 1 a < a < b b 1, < μ < 1, ν < + 1, 0 < b b 1, η + R ad N the J ( a, b, σ ) J ( a, b, σ ) (5.12) Proof. Let f (z) J ( a, b, σ ) the by (2.1) of Theorem 1, we have 2 1 φ ( μ, ν, η, )a ( b1 a2) σ ( b 2 a1) σ ( b σ + 1) ( b σ + 1) = Now uder the coditios stated i the theorem, we get which gives (5.12). f (z) J ( a, b, σ ), 2 1 Acowledgemet The first author (S.P.G.) is thaful to the Uiversity Grats Commissio, New Delhi, for rovidig some fiacial assistace. The authors are also thaful to the worthy referee for his useful suggestios for imrovemet of the aer.

12 186 S. P. Goyal ad J. K. Prajaat Refereces [1] Goyal,S.P. ad Prajaat, J.K., New class of aalytic fuctios ivolvig certai fractioal differ-itegral oerators, Proceedigs of 4 th Aual Coferece of the Society for Secial Fuctios ad their Alicatios. (Eds: A.K.Agarwal, M.A.Patha ad S.P.Goyal), 4 (2004), [2] Liouville,J., Memoire sur le Calcul des differetielles a idices quelcoques, J. Ecole Polytech. 13 (1832), [3] Owa,S. O the distortio theorems I, Kyugoo Math. J. 18 (1978), [4] Saigo, M., A remar o itegral oerators ivolvig the Gauss hyergeometric fuctios, Math. Re. College Geeral Ed. Kyushu Uiv. 11 (1978), [5] Saigo,M., A certai boudary value roblem for the Euler-Darboux equatio, Math. Jao, 25 (1979), [6] Shula,S.L. ad Dashrath, O the certai classes of multivalet fuctios with egative coefficiets, Idia J. Pure Al. Math. 20 (1984), [7] Srivastava,H.M. ad Aouf, M.K., A certai fractioal derivative oerator ad its alicatios to a ew class of aalytic ad multivalet fuctios with egative coefficiets. I, J. Math. Aal. Al. 171 (1992), [8] Srivastava,H.M. ad Aouf, M.K., A certai fractioal derivative oerator ad its alicatios to a ew class of aalytic ad multivalet fuctios with egative coefficiets. II, J. Math. Aal. Al. 192 (1995),

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH

SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 14, Article ID ama17, 13 ages ISSN 37-7743 htt://scienceasiaasia SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M S

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Pure Mathematical Sciences, Vol. 1, 01, no. 4, 187-196 The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Goh Jiun Shyan School of Science and Technology Universiti Malaysia Sabah Jalan

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

arxiv: v1 [math.nt] 17 Sep 2016

arxiv: v1 [math.nt] 17 Sep 2016 arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

Certain Subclass of p Valent Starlike and Convex Uniformly Functions Defined by Convolution

Certain Subclass of p Valent Starlike and Convex Uniformly Functions Defined by Convolution Int. J. Oen Problems Comt. Math., Vol. 9, No. 1, March 2016 ISSN 1998-6262; Coyright c ICSRS Publication, 2016 www.i-csrs.org Certain Subclass of Valent Starlie and Convex Uniformly Functions Defined by

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα