Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction"

Transcript

1 Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α + 1 α ɛ, ζ = α α ɛ It follows from simple algebra that t > δ + 1 > ζ > αδ ad ζ > 1 ζ/α Set m = 1/α+1 log δ, ɛ = α/α+1 log t, ɛ = α/α+1 log ζ ad deote f m x = m β kψ k x give that N = m, ie, β k = 0 for al k > m We first verify coditio 5 with ω = 1 ad k = ɛ 1/α Clearly, k ɛ = O1 For sufficietly large, write f k x = = k f k x = f k x = β k ψ k x : f 0 f k ɛ, k k sice f 0 H α Q ad for sufficietly large, We proceed to boud f k x = k β k ψ k x : k=k +1 k β 0k β k ψ k x : β k ψ k x : 1 ɛ 1/α α β k β 0k ɛ k k k=k +1 k k=k +1 β k β 0k + β k β 0k ɛ β k β 0k ω k=k +1, β 0k ɛ β 0kk α 1 ɛ 1/α α 1 ɛ, f k x = k β k ψ k x : m β k β 0k β k : β k β 0k A 1/ k ɛ k A 1 k ɛ for some sequece A k such that A 1 k 1/ We pick A k = c k γ for some costat c > 0 Set c m = mi 1 k m mi k γ β k β 0k 1 gk γ β k It follows that mi k γ β k β 0k 1 gkγ β k mi exp τ 0 k γ β k τ β:k γ β β 0k 1 exp τ k γ β 0k τ ] exp τ Q τ ], mi exp τ 0 k γ β k β 0k + k γ β 0k τ ] β:k γ β β 0k 1 1

2 sice k γ β 0k k α β 0k β 0k k α Q for all k N +, as we assume that f 0 C α Q Therefore c m c 0 for some costat c 0 > 0 for all m N + Hece for sufficietly large, Π f k f 0 ɛ N = k Therefore Π f f 0 ɛ, k=k +1 = k k Π β k : k γ β k β 0k A 1/ k k γ ɛ N = k Π β k : k γ β k β 0k cɛ N = k = k k γ β 0k +cɛ k γ β 0k cɛ gk γ β k dk γ β k k ] cɛ mi β k :k γ β k β 0k 1 gkγ β k exp k logcc 0 k log 1 ] ɛ exp k log 1 ] ɛ β k β 0k ω Π f k f 0 ɛ N = k π N k exp ɛ 1/α log 1 ɛ b 0 ɛ 1/α log ɛ 1/α exp D 1/α+1 log 1 ζ/α] exp D 1/α+1 log ζ] = exp Dɛ ] for some costat D > 0 Now set δ = Q ad costruct the sieve F m δ as follows: F m Q = fx = β k ψ k x : k α β k β 0k Q Clearly, F m Q satisfies, m ɛ 0 Next we verify coditio 3 Note N j N ξjɛ, F m δ f f 0 j + 1ɛ, Write m F m δ f f 0 j + 1ɛ fx = β k ψ k x : β k β 0k j + 1 ɛ fx = β k ψ k x : β k β 0k k α Q It follows that N ξjɛ, F m δ f f 0 j + 1ɛ, ξjɛ N, m β 1,, β m : β k β 0k j + 1 ɛ,

3 N ξjɛ, β m+1,, : β k β 0k k α Q, We ow boud the two coverig umber separately For the first coverig umber, computatio of coverig umber i Euclidea space due to lemma 41 i Pollard 1990 yields ξjɛ N, m β 1,, β m : β k β 0k j + 1 ɛ, For the secod coverig umber, we see that m 6j + 1ɛ exp m log 4 ξjɛ / ξ ξjɛ N, β m+1,, : β k β 0k k α Q, ξjɛ 1/α 6Q N, β 1, β,, : β k β 0k k α Q, exp log4e α ], ξjɛ where the last iequality is due to the coverig umber of Sobolev ball see lemma 64 i Belitser ad Ghosal 003 We coclude that N j exp D 1 1/α+1 log δ] for some costat D 1 > 0, sice ɛ 1/α 1/α+1 log t/α 1/α+1 log δ m Hece j=m N j exp Dj ɛ exp D 1 1/α+1 log δ] j=m j j 1 exp Dɛ x dx exp D 1 1/α+1 log δ] exp Dɛ x dx M 1 exp D 1 1/α+1 log δ] exp 1 ] DM 1 1/α+1 log t 0 for sufficietly large, ad hece, coditio 3 holds We are ow left to show that F m Q satisfies 4 with the same costat D Write F c m Q = fx = fx = β k ψ k x : β k ψ k x : β k β 0k k α > Q βkk α > Q 4 sice by defiitio f 0 H α Q ad β 0k kα < Q /4 for sufficietly large Next write F c m Q fx = m=1 β k ψ k x : fx = β k ψ k x : βkk α > Q 4 β kk α > Q 4, N = m 3

4 = m=1 m=m +1 fx = m β k ψ k x : fx = m β k ψ k x : βkk α > Q 4, N = m m βkk α > Q 4, N = m m=m +1 N = m It follows that ΠF c m Q m=m +1 exp π N m exp b 1 m log m exp D 1/α+1 log δ+1] D + 1σ ] 1/α+1 log ζ = exp D + 1σ ] ɛ for some costat D > 0 whe is sufficietly large Hece coditio 4 holds with the same costat D B Proof of Theorem 3 Defie K α = 8Q 1/α 1/α+1 Let L to be the smallest iteger such that e L k = e L > K α, ad defie Lemma B1 For k defied above, ɛ = 1/α+1, ad f 0 H α Q, Π holds for sufficietly large k=k +1 Proof First write by the uio boud β k β 0k ɛ, β k β 0k Q 1 k=k +1 Π β k β 0k ɛ, β k β 0k Q k=k +1 k=k +1 Π β k β 0k ɛ + Π β k β 0k Q 1 k=k +1 k=k +1 = Π β k β 0k ɛ Π β k β 0k > Q k=k +1 k=k +1 By lemma 54 i Gao ad Zhou 016a, we kow that the fist term o the right-had side of the proceedig display is 1 o1 Hece it suffices to show that the secod term o the right-had side is o1 Write Π k=k +1 β k β 0k > Q 1 Q k=k +1 E Π β k β 0k 1 Q k=k +1 EΠ β k + β 0k ] 1/ 4

5 Q Q Q k=k +1 k=k +1 k=k +1 We are ow left with showig k>k EΠ β k = o1: k=k +1 E Π β k where the last iequality is due to 33 l=l 1 E Π β k + Q E Π β k + Q E Π β k + o1 k l+1 1 k=k l EΠ A l k=k +1 k=k +1 l=l 1 β 0k β 0kk α 1/ k=k +1 e l+1 cl / = o1, 1/ 1 k α Lemma B For the block prior Π defied i sectio 3 with f 0 H α Q for some α > 1/ ad Q > 0, there exists some costat D > 0 such that Π B k, ɛ, Q exp Dɛ, where ɛ = α/α+1, k = e L, L is the smallest iteger such that e L > K α, ad K α = 8Q 1/α 1/α+1 Proof By lemma B1 we have ΠB k, ɛ, Q = Π β k β 0k ɛ, k=k +1 Π β k β 0k ɛ, k>k 1 k Π β k β 0k ɛ k=k +1 β k β 0k Q k β k β 0k Q Π β k β 0k ɛ Exploitig the proof of 6 i theorem 1 i Gao ad Zhou 016a, we see that k Π β k β 0k ɛ exp D ɛ for some costat D > 0, ad thus the proof is completed Proof of theorem 3 Set ɛ = ɛ = α/α+1, δ = Q, ad m = κ 1 1/α+1, where κ is a costat determied later Let k =1 be defied as i lemma B ad ω = Q Clearly, m ɛ 0, k ɛ = O1, ad δ = O1, sice α > 1/ By assumptio f 0 H α Q, ad hece yields the followig series expasio f 0 x = β 0k ψ k x, where k α β0k Q 5

6 For coditio 5, by lemma B we see that it holds for some costat D > 0 with k ɛ = O1 ad ω = Q = O1 For coditio 3 ad 4, We use the followig sieve F m Q have F m Q = fx = β k ψ k x : k α β k β 0k Q We ext verify coditio 3 with the same costat D > 0 Followig the proof of theorem 31, we ξjɛ N j N, m β 1,, β m : β k β 0k j + 1 ɛ, ξjɛ N, β m+1,, : β k β 0k k α Q, For the first coverig umber, lemma 41 i Pollard 1990 yields N ξjɛ, m β 1,, β m : β k β 0k j + 1 ɛ, exp m log 4 ξ For the secod coverig umber, we obtai by lemma 64 i Belitser ad Ghosal 003 that N ξjɛ, β m+1,, : 1/α 6Q β k β 0k k α Q, exp log4e α ], ξjɛ We coclude that N j expd 1 ɛ for some costat D 1 > 0 by applyig the fact that ɛ 1/α ɛ = 1/α+1, ad hece, m N j exp Dj ɛ expd 1 ɛ j=m j=m expd 1 ɛ exp j exp Dɛ x dx expd 1 ɛ exp Dɛ x dx j 1 M 1 1 ] DM 1 ɛ 0 as log as M is sufficietly large Hece coditio 3 holds We are ow left to verify coditio 4 with the same costat D Set κ = mi 8e c 3 D + 1 ] α+1 3e σ, D Q + 1σ ] α+1, deote Π A = Π A for ay sequece A l l=1, ad defie the set A = A l e l for all l logm / 1 It follows that ΠF c m Q = ΠF c m Q A A ΠA + ΠF c m Q A A c ΠA c sup A A Π A F c m Q + ΠA c 6

7 Usig a similar argumet as that i page 340 i Gao ad Zhou 016a, for sufficietly large we have ΠA c l log m / 1 exp Π A l > e l 1 ] c 3 explog m log l log m / 1 exp exp c 3 e l exp 1 ] c 3 exp log m / 1 c 3 8e κ 1/α+1 1/α+1] = exp D + 1σ ] ɛ, where we use the fact that log m log m 1 ad m κ 1 1/α+1 / for sufficietly large For ay A A ad sufficietly large, the followig holds: Π A F c m Q Π β kk α + sice for sufficietly large, β 0k kα < Q /4 Write βkk α > Q 4 l:k l+1 m k l+1 1 k=k l l= logm / 1 l= logm / 1 β kk α > Q 4 k α l+1 β l > β 0kk α > Q Π l= logm / 1 l= logm / 1 l k α l+1 β l > Q = Q l l= logm / 1 βkk α > Q, 4 k l+1 1 kl+1 α k=k l β k > Q 4 l k α l+1a l χ l l > Q, sice for sufficietly large, l= logm / 1 l < 1/4, ad χ l l are idepedet χ l -radom variables We proceed to compute Π A F c m Q = l= logm / 1 l= logm / 1 l= logm / 1 Π α e αl+1 l e l χ l l > Q Π expα log + αl log l l χ l l > Q Π exp 1 l χ l l > Q for sufficietly large By the Cheroff boud for χ -radom variables, we obtai for sufficietly large Π A F c m Q l= logm / 1 l= logm / 1 l= logm / 1 ] exp l 4 log l Q e l / + l logq e l / ] exp el 4 log el Q e l / + e l logq e l / ] exp Q 4 el / exp Q 16 exp logm / 1 7

8 exp D + 1σ ] ɛ, where i the secod iequality we use the fact that e l l e l for sufficietly large whe l logm / 1 Therefore we coclude that ΠFm c Q sup Π A Fm c Q + ΠA c exp D + 1σ ] A A ɛ, ad coditio 4 holds with the same costat D C A geeral theorem for rates of cotractio with wavelet basis fuctios For a give iteger J ad positive real δ > 0, aalogous to, we require that the class of fuctios F J δ satisfies the followig property: F J δ fx = β jk ψ jk x : j/ max β jk β 0jk δ k I j j=0 k I j j=j holds for all J N + ad δ 0, The sieves F =1 are the costructed by takig F = F J δ for carefully chose sequeces J =1 N ad δ =1 0, We provide the correspodig local testig result below for the wavelet series, which is similar to lemma 1 Lemma C1 Let F J δ satisfies 1 The for ay f 1 F J δ with f 1 f 0 > 1, there exists a test fuctio φ : X Y 0, 1] such that 1 E 0 φ exp C f 1 f 0, sup E f 1 φ exp C f 1 f 0 f F J δ: f f 1 ξ f 0 f 1 + exp C f 1 f 0 J f 1 f 0 + δ for some costat C > 0 ad ξ 0, 1 Proof Take ξ = 1/4 Followig the proof of lemma 1, we obtai the followig bouds for the type I ad type II errors: E 0 φ exp C 1 3 f 1 f 0 E f 1 φ exp C 1 3 f 1 f 0 + exp C f 1 f 0 f 1 f 0 + exp 1 4 f 1 f 0 4 /104 g + f 1 f 0 g /3 for ay f F J δ such that f f 1 ξ f 0 f 1, where g = f f 1 f 1 f 0 /16, ad ξ ca be 8

9 take as ξ = 1/4 The rest of the proof proceeds as follows Notice that for f F J δ, oe has f f 0 j=0 J 1 J 1 J 1 j/ max β jk β 0jk j/ max β jk β 0jk + δ k I j k I j j=0 j 1/ J 1 j=0 β jk β 0jk j=0 k I j 1/ j=0 j/ + δ J/ f f 0 + δ Usig this fact ad the fact that f f 1 f 0 f 1, we obtai k Ijβ jk β 0jk 1/ + δ g f 0 f 1 J f 1 f 0 + δ, g J f 0 f 1 + δ The proof is thus completed Similar to lemma 3, a aalogous result for the wavelet series that guaratees a expoetially small lower boud for the margial likelihood expλ f D Πdf i terms of B J, ɛ, ω is also provided below Lemma C Suppose sequeces ɛ =1, ω =1 0, ad j =1 satisfy ɛ, j ɛ = O1, ad ω = O1 The for ay costat C > 0, P 0 expλ Πdf Π B j, ɛ, ω exp C + 1σ ] ɛ 0 Proof of lemma C The proof is quite similar to that of lemma 3 Deote the re-ormalized restrictio of Π o B = B j, ɛ, ω to be Π B, ad the radom variables V i, W i to be V i = f 0 x i fx i Πdf B, W i = 1 fx i f 0 x i Πdf B The by Jese s iequality H c : = 1 σ exp Λ f D Πdf ΠB exp Give the desig poits x i, we have P 0 e i V i Cɛ W i ɛ C + 1σ e i V i Cσ ɛ x 1,, x exp C σ 4 ɛ 4 P Vi, ɛ ] 9

10 Sice over the fuctio class B, we have f f 0 ɛ, j ɛ = O1, ω = O1, ad f f 0 j 1 j=0 j 1 j=0 j 1 j/ max β jk β 0jk + ω k I j j it follows from Fubii s theorem that 1/ j 1 j=0 j/ β jk β 0jk j=0 k I j 1/ k Ijβ jk β 0jk 1/ + ω + ω j/ ɛ + ω = O1, EVi f 0 f Πdf B ɛ, E ] Vi 4 E f 0 x fx 4 Πdf B f f 0 ɛ Hece by the Chebyshev s iequality, P P Vi E Vi > ɛ ɛ 1 ɛ 4 ɛ varv i 1 ɛ 4 ɛ EV i 4 1 ɛ 0 for ay ɛ > 0, ie, P V i = EV i + o P ɛ ɛ 1 + o P 1, ad hece, exp C σ 4 ɛ 4 P Vi = exp C σ 4 ɛ o P 1 i probability Therefore by the domiated covergece theorem the ucoditioal probability goes to 0: P 0 e i V i Cσ ɛ For the secod evet we use the Berstei s iequality Sice E exp C σ 4 ɛ 4 ] P Vi 0 EW i = 1 f f 0 Πdf B 1 ɛ, EWi 1 ] 4 E fx f 0 x 4 Πdf B f f 0 ɛ, the P W i > ɛ exp 1 ɛ 4 /4 4 EWi + ɛ W i / exp Ĉ1ɛ, where the last iequality is due to the fact that W i = 1 sup fx f 0 x Πdf B f f 0 = O1 x 0,1] p Hece, P i W i > ɛ 0, ad we coclude that PH c 0 10

11 The followig geeric rate of cotractio theorem ca be proved followig the exact same lies of that for theorem 1 For ay J N + ad ɛ, ω 0,, defie BJ, ɛ, ω = f = j=0 k I j β jk ψ jk : f f 0 < ɛ, j/ max β jk β 0jk ω k I j Theorem C1 Geeric Cotractio, Wavelet Series Let ɛ =1 ad ɛ =1 be sequeces such that miɛ, ɛ as with 0 ɛ ɛ 0 Assume that the sieve F J δ =1 satisfies 1 ad J ɛ 0 ad for some costat δ > 0 I additio, assume that there exist aother two sequeces j =1 N +, ω =1 0, such that j ɛ = O1 Suppose the coditios 3, 4, ad j=j ΠBj, ɛ, ω exp Dɛ hold for some costat ω, D > 0 ad sufficietly large ad M, with F J δ i replace of F m δ, ad Bj, ɛ, ω as is defied i Lemma C The E 0 Π f f 0 > Mɛ D ] 0 D Proof of Theorem 33 Defie j = 1 4 α α log 4 α 1 8Q + 1 α + 1 log Clearly oe has j ɛ 0 as sice α > 1/ Lemma D1 For j defied above, ɛ = 1/α+1, ad f 0 B,Q α with α > 1/, Π β j β 0j ɛ, j/ β j β 0j Q 1 j=j j=j holds for sufficietly large Proof The proof is similar to Lemma B1 ad is icluded here for the sake of completeess First write by the uio boud Π β j β 0j ɛ, j/ β j β 0j Q j=j j=j Π β j β 0j ɛ + Π j/ β j β 0j Q 1 j=j j=j = Π β j β 0j ɛ Π j/ β j β 0j > Q j=j j=j By lemma G4 i Gao ad Zhou 016b, we kow that the fist term o the right-had side of the proceedig 11

12 display is 1 o1 Hece it suffices to show that the secod term o the right-had side is o1 Write Π j/ β j β 0j > Q 1 j/ E Π β j β 0j 1 j/ E Π β j + β 0j 1/ Q Q j=j j=j j=j j/ E Π β j Q + j/ β 0j Q j=j j=j 1/ j/ E Π β j Q + 1 αj αj β 0j Q j=j j=j j=j = E Π β j Q + o1, j=j j/ where the last iequality is due to the fact that f 0 B α,q with α > 1/ We are ow left with showig j j j/ E Π β j = o1: j=j j/ E Π β j where the last iequality is due to 33 j=j j E Π A j j=j j/ cj / = o1, The followig Lemma is the wavelet couterpart of Lemma B The proof is icluded for completeess Lemma D For the block prior Π for the wavelet series defied i sectio 3 with f 0 H α Q for some α > 1/ ad Q > 0, there exists some costat D > 0 such that Π B j, ɛ, Q exp Dɛ, where ɛ = α/α+1 ad Proof By lemma D1 we have j=0 j = 1 4 α α log 4 α 1 8Q + 1 α + 1 log ΠB k, ɛ, Q = Π β j β 0j ɛ, j/ β j β 0j Q j=0 j=j Π β j β 0j ɛ, j 1 j/ β j β 0j Q Π β j β 0j ɛ j=j j=j j=0 1 j 1 Π β j β 0j ɛ Exploitig the proof of 6 i theorem 1 i Gao ad Zhou 016a ad together with lemma G ad lemma G3 i Gao ad Zhou 016b, we see that j 1 Π β j β 0j ɛ exp D ɛ j=0 1/ 1

13 for some costat D > 0, ad thus the proof is completed Proof of Theorem 33 The proof of Theorem 33 is very similar to that of Theorem 3 ad is icluded here for completeess We use basically the same setup as that i the proof of theorem 3 Set ɛ = ɛ = α/α+1, δ = ω = Q, j defied as i lemma D, ad J = log κ 1 /α + 1, where κ is a costat determied later Clearly, J log κ 1 /α log κ 1 1/α+1 ], ad hece J ɛ κ 1 1/α+1 α/α+1 0, j ɛ = O1, ad δ = ω = O1, sice α > 1/ By assumptio f 0 B α,q, ad hece yields the followig series expasio f 0 x = β 0jk ψ jk x, j=0 k I j where αj β0jk Q k I j j=0 Deote λ = j + k for each j, k-pair, ad write β j +k = β jk, β 0, j +k = β 0jk, ψ λ x = ψ jk x Sice I j = 0, 1,, j 1, j, k λ = j + k is oe-to-oe ad hece the two idex otatios are equivalet Thus we shall use the two idexes iterchageably For coditio, by lemma D we see that it holds for some costat D > 0 with j ɛ = O1 ad ω = Q = O1 For coditio 3 ad 4, We use a slightly differet sieve F J Q tha that i the proof of theorem 3 as follows: F J Q = fx = β jk ψ jk x : j=0 k I j j=j αj β k β 0k Q k I j We first argue that F J Q satisfies 1 I fact, for sufficietly large, j=j 1 αj 1, ad hece j=j j/ max k I j β jk β 0jk j=j j/ αj Namely, F J Q satisfies the property 1 j=j 1 αj αj jk β 0jk k Ijβ 1/ j=j αj 1/ β jk β 0jk k I j We ext verify coditio 3 Similar to the proof of theorem 35, we have N j N ξjɛ, β 1,, β J 1 : N ξjɛ, β J,, : J 1 j=j αj 1/ β λ β 0λ j + 1 ɛ, λ=1 β jk β 0jk Q, k I j We ow boud the two coverig umber separately For the first coverig umber, lemma 41 i Pollard Q 13

14 1990 yields N ξjɛ, β 1,, β J 1 : J 1 λ=1 For the secod coverig umber, we first observe that λ= J λ α β λ β 0λ = j=j = α β λ β 0λ j + 1 ɛ, exp J log 4 ξ k I j j + k α β jk β 0jk j=j αj j=j k I j β jk β 0jk α Q, ad the apply lemma 64 i Belitser ad Ghosal 003 to obtai N ξjɛ, β J, : N j=j αj ξjɛ, β J, : k I j αj+1 β jk β 0jk β k β 0k Q, k I j λ α β λ β 0λ α Q, exp log4e α α 1/α 6Q ] ξjɛ λ= J We coclude that N j expd 1 ɛ for some costat D 1 > 0 by applyig the fact that ɛ 1/α J ɛ = 1/α+1, ad hece, N j exp Dj ɛ expd 1 ɛ j=m j=m expd 1 ɛ exp j exp Dɛ x dx expd 1 ɛ exp Dɛ x dx j 1 M 1 1 ] DM 1 ɛ 0 as log as M is sufficietly large Hece coditio 3 holds We are ow left to verify coditio 4 with the same costat D Set κ = mi 4 D + 1 ] α+1 3 log σ, D Q + 1σ ] α+1, deote Π A = Π A for ay sequece A j j=0, ad defie the set A = A j exp j log for all j J It follows that ΠF c J Q = ΠF c J Q A A ΠA + ΠF c J Q A A c ΠA c sup A A Π A F c J Q + ΠA c 14

15 Usig a similar argumet as that i page 340 i Gao ad Zhou 016a, for sufficietly large we have ΠA c j J Π exp Aj > exp j log log ] 4 κ 1/α+1 1/α+1 j J exp exp j log exp 1 J log D + 1σ ] ɛ, where we use the fact that J log κ 1 1/α+1 ] 1 ad J κ 1 1/α+1 / for sufficietly large For ay A A ad sufficietly large, the followig holds: Π A Fm c Q Π j=j αj k I j β jk + j=j αj sice for sufficietly large, j=j αj k I j β 0jk < Q /4 Write j=j αj β0jk > Q Π k I j j=j αj βjk > Q, 4 k I j βjk > Q 4 = αj β j > Q 4 αj β j > Q j k I j j=j j=j j=j j αj β j > Q = j αj A j χ j j > Q, j=j j=j sice for sufficietly large, j=j j < 1/4, ad χ j j are idepedet χ j -radom variables We proceed to compute Π A F c J Q j=j Π j=j Π j αj A j χ j j > Q exp j χ j j > Q j=j Π exp log j + αj log j log χ j j > Q for sufficietly large By the Cheroff boud for χ -radom variables, we obtai for sufficietly large Π A F c J Q j=j exp exp j Q 16 J 4 j log Q e j / + j log Q e j / ] exp Q 1/α+1 κ 1/α+1 ] exp 3 exp Q 4 ej j=j / D + 1σ ɛ where we use the fact that J κ 1 1/α+1 / for sufficietly large whe j J Therefore we coclude that ΠFm c Q sup Π A Fm c Q + ΠA c exp D + 1σ ] A A ɛ, ad coditio 4 holds with the same costat D ], 15

16 E Proof of Theorem 34 The proof of Theorem 34 is immediate by combiig the proof of Theorem 1, Lemma E1, Lemma E, Lemma E3, ad Lemma E4 The proofs of these lemmas are similar to their couterparts i the mauscript, ad are preseted here for completeess The followig lemma is the key igrediet i bridgig the gap betwee the empirical L -distace ad the itegrated L -distace Lemma E1 Suppose the desig poits x i are fixed ad satisfy 35 Let F m δ be defied by 36 with a sequece m =1 such that m ad m / 0 Suppose f ad f 1 F m δ for all sufficietly large The for all sufficietly large, P f f 1 f f 1 Cm P f 0 f 1 f 0 f 1 Cm hold for some uiversal costat C > 0 idepedet of f 0, f 1, ad f f f 1 + Cδ f f 1, f 0 f 1 + Cδ f 0 f 1 Proof of lemma E1 Observe that for ay f = k β kψ k F m δ, the term-by-term dffieretiatio operatio is permitted, sice sup x 0,1] k=m+1 d dx β kψ k x k=m+1 k β k ψ k k=m+1 k α β 0k + k=m+1 β k β 0k k α As m, the first term o the right-had side of the preceedig display coverges to 0 by the defiitio of C α Q, ad the secod term also coverges to 0 by the defiitio of F m Q Hece the series k dβ kψ k x]/dx coverges uiformly over x 0, 1] Now suppose fx = β kψ k x permits term-by-term differetiatio We proceed to compute ad hece, d dx fx = d β k+1 dx ψ d k+1x + β k dx ψ kx = 1 0 fx d dx fx dx β k 1/ Sice the desig poits satisfy 35, lemma 71 i Yoo et al 017 yields P f f 1 = f x i 1 0 π f xdx 1 πkβ k+1 ψ k x + πkβ k ψ k x, 1/ 1/ k βk 1 + k βk f k βk 1 0 fx d dx fx dx 1 1/ f k βk 16

17 Observig that f, f 0, ad f 1 are all term-by-term differetiable, we obtai ad similarly, P f f 1 f f 1 1 f f 1 m β k β 1k + m 1 f f 1 m f f 1 + P f 0 f 1 f 0 f 1 1 f 0 f 1 1 f f 1 m f f 1 + m m β 0k β 1k + 1 f 0 f 1 m f 0 f f 0 f 1 m f 0 f 1 + By the defiitio of F m δ ad the fact that α > 1, we have ad hece, k β k β 1k = k β k β 0k + β 0k β 1k k β k β 0k + k β k β 0k + k β k β 1k ] 1/ k β k β 1k ] 1/ ] 1/ k β k β 1k, k β 0k β 1k ] 1/ k β 0k β 1k ] 1/ ] 1/ k β 0k β 1k k β 1k β 0k k β 1k β 0k 4δ, P f f 1 f f 1 Cm f f 1 + Cδ f f 1, P f 0 f 1 f 0 f 1 Cm f 0 f 1 + Cδ f 0 f 1 for some uiversal costat C > 0 The proof is completed by observig that m / = o1 Lemma E Suppose the desig poits x i are fixed ad satisfy 35 Let F m δ be defied as 36 with m, m / 0, ad δ is some costat The for ay f 1 F m δ with f 1 f 0 > 1, there 17

18 exists a test fuctio φ : Y 0, 1] such that E 0 φ exp C f 1 f 0, sup E f 1 φ exp C f 1 f 0 f F m δ: f f 1 ξ f 0 f 1 for some costat C > 0 ad ξ i 0, 1 Proof of lemma E Take ξ = 1/8 Sice f 0 f 1 > 1/, we obtai from lemma E1 that P f 0 f 1 f 0 f 1 Cm f 0 f 1 + Cδ f 1 f f 1 f 0 whe is sufficietly large, implyig that 3/4 f 1 f 0 P f 0 f 1 5/4 f 1 f 0 O the other had, P f f f f 1 + Cδ f f f 0 f 1 + Cξδ f 0 f 1 0/3 56 P f 0 f 1 + Cξδ f 0 f P f 0 f 1 + Cξδ f 0 f P f 1 f 0 Defie the test fuctio to be φ = 1T > 0, where T = y i f 1 x i f 0 x i 1 P f1 f0 We first cosider the type I error probability Uder P 0, we have y i = f 0 x i + e i, where e i s are iid Gaussia errors with Ee i = 0 ad Vare i = σ Namely, there exists a costat C 1 > 0 such that P 0 e i > t exp 4C 1 t for all t > 0 The for a sequece a i R, Cheroff boud yields P 0 a i e i t exp 4C 1t a i Now we set a i = f 1 x i f 0 x i ad t = P f 1 f 0 / The uder P 0, we have E 0 φ = P 0 T > 0 exp C 1 P f 0 f 1 exp C 1 16 f 0 f 1 We ext cosider the type II error probability Uder P f, we have y i = fx i + e i with e i s beig iid mea-zero sub-gaussia Sice P f f 1 P f 1 f 0 /16, we obtai T = e i f 1 x i f 0 x i ] + P f f 1 f 1 f P f 1 f 0 e i f 1 x i f 0 x i ] + 1 P f 1 f 0 P f f 1 P f 1 f 0 e i f 1 x i f 0 x i ] P f 1 f 0 18

19 Hece we use the sub-gaussia tail boud to obtai P f T < 0 P e i f 1 x i f 0 x i ] 1 4 P f 1 f 0 exp C 1 4 f 1 f 0 Hece we obtai the followig expoetial boud for type I ad type II error probabilities: E 0 φ exp C f 1 f 0, E f 1 φ exp C f 1 f 0 for some costat C > 0 for ay f f F m δ : f f 1 f 1 f 0 /64 The proof is completed by takig the supremum over f F m δ : f f 1 f 1 f 0 /64 Lemma E3 Suppose the desig poits x i are fixed ad satisfy 35 Let the sieve F mδ be defied by 36 Let ɛ =1 be a sequece with ɛ The there exists a sequece of test fuctios φ =1 such that E 0 φ j=m N j exp Cj ɛ, sup E f 1 φ exp CM ɛ, f F mδ: f f 0 >Mɛ where N j = N ξjɛ, S j ɛ,, S j ɛ = f F m δ : jɛ < f f 0 j + 1ɛ, M ca be sufficietly large, ad C is some positive costat Proof The proof is exactly the same as that of Lemma ad is omitted here Lemma E4 Suppose the desig poits x i are fixed Deote Λ f D = log p f y i ; x i p 0 y i ; x i to be the log-likelihood ratio, where p f y; x = φ σ y fx, ad p 0 = p f0 If ɛ the for ay costat C > 0, P 0 expλ Πdf Π f f 0 < ɛ exp C + 1σ ] ɛ 0 Proof Deote the re-ormalized restrictio of Π o B = f f 0 < ɛ to be Π B The by Jese s iequality H c : = exp Λ f D Πdf ΠB exp C + 1σ ] ɛ exp Λ f D Πdf B exp C + 1σ ] ɛ 1 ] σ e i f 0 x i fx i Πdf B C + 1 σ ɛ, 19

20 where we have used the fact that o the evet B, f f 0 ɛ, which implies, fx i f 0 x i Πdf B f f 0 Πdf B < ɛ Now we use the tail boud for sub-gaussia radom variables to obtai P 0 H c exp C + 1 ] 1 σ σ 4 ɛ 4 P f 0 fπdf B exp C + 1 ] 1 σ σ 4 ɛ 4 P f f 0 Πdf B exp C + 1 σ σ 4 ɛ 4 ] 1 f f 0 Πdf B exp C + 1 σ σ 4 ɛ ] 0 F Proof of Theorem 35 Proof of lemma 3 For a metric space X, d, deote the packig umber Dɛ, X, d to be the maximum umber of poits i X that are at least ɛ away from each other It is proved that Dɛ, X, d N ɛ, X, d Ghosal ad Va Der Vaart 001, ad therefore it suffices to work with the packig umber The proof here is similar to that of lemma 64 i Belitser ad Ghosal 003 Let ΘQ = β 1, β, l : k βk exp Q c Suppose β 1,, β m ΘQ are such that β i β j = ɛ wheever i j It suffices to cosider ɛ to be small eough, sice for large values of ɛ, Dɛ, ΘQ, = 1 Fixed a iteger N ad deote Θ N Q = β 1,, β N, 0, R N : N k βk exp Q c For ay β = β 1, β, ΘQ, deote β = β 1,, β N, 0, Θ N Q Now set N = c log8q /ɛ Clearly, It follows that β β = k=n+1 ] βk N + 1 exp k βk exp ɛ c c 8 k=n+1 ɛ = β i β j = β i β j + β i β i β j β j β i β j + β i β i + β j β j β i β j + ɛ, 0

21 implyig that β i β j ɛ/ For ay β i ad t = t 1,, t N, 0, Bβ i, ɛ/ R N, oe has N k t N k k exp βk exp + c c N k t k β k N exp Q ɛ + exp c c 8 4Q, ad thus m j=1 B β i, ɛ Θ N Q Sice Bβ i, ɛ/ s overlap o each other oly o a set of volume 0, the by deotig V N the volume of the uit ball i R N we obtai ɛ N/ N m V N Q N V N exp k, 8 c implyig that m exp N log 4 Q 1 6c N 3 + N log 1 ] ɛ Sice the maximum umber of m is the packig umber, the proof is completed by oticig that N log1/ɛ] 1/ Lemma F1 Suppose f Π = GP0, K where K is the squared-expoetial covariace fuctio, ad f 0 A 4 Q The for sufficietly small ɛ > 0 it holds that log Π f f 0 < ɛ log 1 ɛ Proof Deote H to be the reproducig kerel Hilbert space RKHS associated with K Defie the cocetratio fuctio φ f0 ɛ = 1 if f H log Π f < ɛ f H: f f 0 <ɛ By lemma 53 i va der Vaart ad va Zate 008, it holds that log Π f f 0 < ɛ φ f0 ɛ/ By theorem 41 i va der Vaart ad va Zate 008, H is the set of fuctios fx = β kψ k x such that β k /λ k < Sice λ k e k /4, there exists some costats λ, λ > 0 such that λe k /4 λ k λe k /4 Usig the fact that f 0 A 4 Q, we obtai β 0k λ k β0k k λ exp 1 4 λ Q < Therefore f 0 H, ad the first term i φ f0 ɛ is upper bouded by f 0 H / = O1 Furthermore, by lemma 46 i va der Vaart ad va Zate 009, the secod term i φ f0 ɛ is upper bouded by a costat multiple of log1/ɛ] The proof is thus completed Proof of theorem 35 Set ɛ = ɛ = 1/ log, δ = Q, ad m = log Clearly, m ɛ 0 ad 1

22 δ = O1 By assumptio f 0 A 4 Q, ad hece yields the followig series expasio f 0 x = β 0k ψ k x, where k β0k exp Q 4 Still let costats λ, λ be such that λe k /8 λ k λe k /8 Defie the sieve F m Q to be F m Q = fx = β k ψ k x : k β k β 0k exp Q 8 Clearly, F m Q satisfies the property 36 I fact, for ay f = k β kψ k F m Q, we directly compute by Cauchy-Schwartz iequality 1/ ] 1/ β k β 0k β k β 0k e /8] k 1 Q e k /8 k>m k>m k>m I light of Theorem 34, it suffices to verify the coditios 3, 4, ad Π f f 0 < ɛ e Dɛ some costat D > 0 By lemma F1, it holds for some costat D > 0 ad all sufficietly small ɛ > 0 that Π f f 0 < ɛ exp D log 1 ] ɛ for Usig the fact that ɛ log1/ɛ ] log, it follows that there exists some costat D > 0, such that Π f f 0 < ɛ exp Dɛ We ext verify coditio 3 with the same costat D > 0 Observe that N j N ξjɛ, F m δ f f 0 j + 1ɛ,, it suffices to boud the right-had side of the preceedig display Write m F m δ f f 0 j + 1ɛ fx = β k ψ k x : β k β 0k j + 1 ɛ k fx = β k ψ k x : β k β 0k exp Q 8 It follows that N ξjɛ, F m δ f f 0 j + 1ɛ, ξjɛ N, m β 1,, β m : β k β 0k j + 1 ɛ,

23 N ξjɛ, β m+1,, : β k β 0k e k /8 Q, k>m We ow boud the two coverig umbers separately For the first factor, computatio of coverig umber i Euclidea space due to lemma 41 i Pollard 1990 yields ξjɛ N, m β 1,, β m : β k β 0k j + 1 ɛ, For the secod coverig umber, lemma 3 yields N ξjɛ, β m+1,, : m 6j + 1ɛ exp m log 4 ξjɛ / ξ ] k β k β 0k 3/ exp Q 1, exp D 1 log 8 ξjɛ for some costat D 1 > 0 We coclude that N j expd 1 ɛ for some costat D 1 > 0 by applyig the fact that log1/ɛ ] 3/ + m ɛ log, ad hece, N j exp Dj ɛ expd 1 ɛ j=m j=m expd 1 ɛ exp j exp Dɛ x dx expd 1 ɛ exp Dɛ x dx j 1 M 1 1 ] DM 1 ɛ 0 as log as M is sufficietly large Hece coditio 3 holds Fially we verify coditio 4 with the same costat D By defiitio ΠF c m Q Π For sufficietly large, we have k β0k exp 8 k βk exp + 8 k β0k exp > Q 8 k β0k exp < Q /4 4 This is because by defiitio f 0 H α Q ad β 0k expk /4 Q Hece the preceedig display reduces to k ΠFm c Q Π βk exp > Q, 8 4 ad it suffices to boud the right-had side that Π k βk exp > Q Q exp By the Markov s iequality, it holds for sufficietly large k 8 Eβ k 4 Q k λ k exp 8 3

24 4 Q 4λ Q m exp λ exp k 4λ Q 8 x dx exp 8 m 16 k k 1 exp x dx 8 Sice m log 4 D + 1/σ log = D + 1/σ ɛ whe is sufficietly large, it follows that 4 is satisfied with the same costat D G Proof of Theorem 41 The proof of Theorem 41 follows exactly the same lies of that of Theorem 1 with the assist of Lemmas 1, G, ad G3 below that are variatios of Lemmas 1, G, ad 3, respectively Lemma G1 Let Gmδ A satisfies 4 The for ay f 1 Gmδ A with f 1 f 0 > 1, there exists a test fuctio φ : X Y 0, 1] such that E 0 φ exp C f 1 f 0, sup E f 1 φ exp C f 1 f 0 f Gm A δ: f f1 ξ f 0 f 1 + exp C f 1 f 0 A m f 1 f 0 + δ for some costat C > 0 ad ξ 0, 1 Proof We first observe the followig fact: for ay fx = j z j k β jkψ k x j G A mδ, the followig holds: f f 0 A m f f 0 + δ 3 I fact, by the Cauchy-Schwartz iequality, p f f 0 µ µ 0 + z j β jk β 0jk j=1 µ µ 0 + µ µ 0 + j j:z j=1 j 1,,j q j j:z j=1 j 1,,j q m z j β jk β 0jk + z j β jk β 0jk m fj f 0j + qδ, j j:z j=1 j 1,,j q k=m+1 ad hece, p p f f 0 µ µ 0 + A m z j f j f 0j + δ A mµ µ 0 + A m z j f j f 0j j=1 j=1 p p = A m µ + z j f j µ 0 + f 0j + δ = A m f f 0 + δ j=1 j=1 + δ 4

25 The rest of the proof is similar to that of Lemma 1 ad we oly sketch the proof Let us take ξ = 1/4 Defie the test fuctio to be φ = 1 T > 0, where T = y i f 1 x i f 0 x i 1 P f1 f0 8 f 1 f 0 P f 1 f 0 We first cosider the type I error probability Followig the proof of Lemma 1, it is immediate that E 0 φ exp C 1 3 f 1 f 0 We ext cosider the type II error probability For ay f with f f 1 f 0 f 1 /4 f 0 f 1 /4, followig the proof of Lemma G1, we have E f 1 φ exp C 1 + P + P 3 f 1 f 0 P f f 1 > 1 16 P f 1 f 0 G f 1 f 0 < f 1 f 0 Usig Berstei s iequality, we obtai the tail probability of the empirical process G f 1 f 0 P G f 1 f 0 < f 1 f 0 exp C f 1 f 0 A m f 1 f 0 +, δ for some costat C > 0, where we use the relatio 3 O the other had, whe P f f 1 > P f 1 f 0 /16, we agai use Berstei s iequality ad the fact that f f G A mδ : f f 1 5 f 0 f 1 to compute P P f f 1 > 116 P f 1 f 0 exp 1 4 where g = f f 1 f 1 f 0 /16 We further compute g f 1 f 0 4 /104 g + f 1 f 0 g /3 f f f 1 f 0 f f 1 f f f 1 f 0 f 1 f 0 f f 1 f f 1 + f 1 f 0 f 1 f 0 A m f 1 f 0 + δ f 0 f 1,, where we use 3, the fact that f f 1 f 0 f 1, ad that f f 1 f f 0 + f 0 f 1 A m f 1 f 0 + δ Similarly, we obtai o the other had, g = f f f 1 f 0 A m f 0 f 1 + δ 5

26 Therefore, we ed up with P P f f 1 > 1 16 P C f 1 f 0 f 1 f 0 exp A m f 1 f 0 +, δ where C > 0 is some costat Assemblig all the pieces obtaied above, we obtai the followig expoetial boud for type I ad type II error probabilities: E 0 φ exp C f 1 f 0, E1 φ exp C f 1 f 0 + exp C f 1 f 0 A m f 1 f 0 + δ for some costat C > 0 wheever f f 1 f 1 f 0 /3 Takig the supremum of the type II error over f f G m δ : f f 1 f 1 f 0 /3 completes the proof Exploitig the proof of Lemma, we obtai the followig lemma for the sparse additive models immediately by combiig Lemma G1 Lemma G Let m N + be a positive iteger, ad δ, A > 0 be positive Suppose that G A mδ satisfies 4 Let ɛ =1 be a sequece with ɛ The there exists a sequece of test fuctios φ =1 such that E 0 φ Nj A exp Cj ɛ, j=m sup E f 1 φ exp CM ɛ + exp CM ɛ f Gm A δ: f f0 >Mɛ A mm ɛ + δ, where N A j = N ξjɛ, S A j ɛ, is the coverig umber of S A jɛ = f G A mδ : jɛ < f f 0 j + 1ɛ, ad C is some positive costat The followig lemma for the sparse additive models is immediate by exploitig the proof of Lemma 3 ad observig the fact that f f 0 = O1 for ay f Bk, ɛ, ω give that k ɛ = O1 Lemma G3 Let Bm, ɛ, ω be defied as Theorem 41 Suppose sequeces ɛ =1 ad k =1 satisfy ɛ 0, ɛ, k ɛ = O1, ad ω is some costat The for ay costat C > 0, P 0 expλ Πdf Π Bk, ɛ, ω z 1 q exp C + 1σ ] ɛ 0 H Proof of Theorem 4 Lemma H1 Let m be a positive iteger, δ, A > 0, ad ξ 0, 1 is some absolute costat Assume that f 0j C α Q for some α > 1/ ad some Q > 0, j j 1,, j q Take G A mqq = z: z 1 Aq G mqq, z for 6

27 some positive iteger A, where p 1 G m qq, z = fx = µ + z j β jk ψ k x j, β j1 = β jk ψ k x j dx j, N = m 4 j=1 k= 0 The log N ξjɛ, S A jɛ, log 1 p Aqm + log, ξ Aq where S A j ɛ = f G A mqq : jɛ < f f 0 j + 1ɛ Proof of Lemma H1 Observe that Nj A N ξjɛ, GmqQ A f f 0 j + 1ɛ, N ξjɛ, G m qq, z f f 0 j + 1ɛ,, z 0,1 p : z 1 Aq ad that p f f 0 = µ µ 0 + z j β jk β 0jk, j=1 due to the fact that 1 0 f jx j dx j = 1 0 f 0jx j dx j = 0, j = 1,, p Write It follows that G m qq, z f f 0 j + 1ɛ p fx = µ + z j β jk ψ k x j : µ µ 0 + j=1 j:z j=1 m β jk β 0jk j + 1 ɛ, N ξjɛ, G m qq, z f f 0 j + 1ɛ, N ξjɛ, µ, β jk : z j = 1, k = 1,, m : µ µ 0 + Aqm+1 6j + 1ɛ exp Aqm + 1 log 1 ] ξjɛ ξ Therefore, N ξjɛ, S A jɛ, j:z j=1 p exp log 1 Aqm Aq ξ The proof is completed by takig the logarithm of the precedig display m β jk β 0jk j + 1 ɛ, Proof of Theorem 4 The proof is based o the proof of Theorem 41, alog with several modificatios We begi by defiig the followig quatity: ɛ = 3 t α, δ = α α + 1 α ɛ, ζ = α α ɛ 7

28 It follows from simple algebra that t > δ + 1 > ζ > αδ ad ζ > 1 ζ/α Without loss of geerality we may also assume that ɛ is small so that ζ < 1, sice cotractio for smaller t implies cotractio for larger t Set m = 1/4α+ log δ, A = 1/4α+ log, ɛ = α/α+1 log t, ɛ = α+1/4/α+1 log ζ ad deote f m x = µ + p j=1 give that N = m, ie, β jk = 0 for al k > m, j = 1,, p m ξ j β jk ψ k x j We first verify coditio 45 with ω = 1 ad k = 1/4α+ log ζ/α Clearly, k ɛ = O1 Observe that 1 0 ψ kx j dx j k 1, it follows from the Cauchy-Schwarz iequality that f f 0 = µ µ 0 + µ µ 0 + µ µ 0 + p z j β jk β 0jk j=1 j=1 k= k= 1 0 k= ψ k x j dx j ] + p ] ] β jk β 0jk 1 k + p j=1 k= z j β jk β 0jk p j=1 k= p j=1 k= β jk β 0jk β jk β 0jk Namely, f f 0 C 1 ψ µ µ 0 + p j=1 k= z jβ jk β 0jk ] for some costat C ψ > 0 For sufficietly large, write p p fx = µ + ξ j β jk ψ k x j : f f 0 < ɛ, z j β jk β 0jk 1 z 1 q j=1 j=1 k=k +1 f k x : µ µ 0 + k β jk β 0jk C ψ ɛ, N = k, z jr = 1, r = 1,, q, z 1 = q µ µ 0 < ɛ j:z j=1 k= k j:z j=1 k= β jk : β jk β 0jk A 1/ k ɛ j j 1,,j q z j = 1 j / j 1,,j q z j = 0 for some sequece A k such that A 1 k C ψ /q We pick A k = c k γ for some costat c > 0 Set c m = mi 1 k m mi kγ β k β 0k 1 gk γ β k Followig the calculatio i the proof of Theorem 31, we have mi k γ β k β 0k 1 gkγ β k exp τ Q τ ] Therefore c m c 0 for some costat c 0 > 0 for all m N + Hece for sufficietly large, Π Bk, ɛ, δ z 1 q Π µ µ 0 < ɛ N = k k j:z j=1 k= Π β jk : k γ β jk β 0jk kγ ɛ A 1/ k N = k q p q p p 8

29 Therefore ] ɛ mi πµ k Π β jk : k γ β jk β 0jk cɛ N = k exp q log p loge] µ µ 0 1 j:z j=1 k= ɛ k k γ β 0k +cɛ gk γ β k dk γ β k exp q log p loge] j:z j=1 k= k j:z j=1 k= k γ β 0k cɛ cɛ mi β k :k γ β k β 0k 1 gkγ β k ɛ 3 exp q log p exp 4qk log 1 Π Bk, ɛ, δ z 1 q ɛ ] q log p Π Bk, ɛ, δ z 1 = q N = k π N k exp 4q 1/4α+ log ζ/α log 1 ] q log p ɛ ] exp b 0 1/4α+ log ζ/α log 1/4α+ log ζ/α exp D 1/4α+ log 1 ζ/α] exp Dɛ for some costat D > 0 Now set δ = qq ad costruct the sieve Gm A qq = z G 1 A q m qq, z, where G m qq, z is give as i 4 Clearly, for ay fx = p m j=1 z jβ jk ψ k x j G m qq, z, p j=1 z j β jk β 0jk = p j=1 β 0jk p j=1 β 0jk k α qq Therefore G A m qq satisfies 4 Furthermore, A m ɛ = 1 α/α+1 log t+δ+1 0 Next we verify coditio 43 Ivokig Lemma H1, we see that N A j ] exp D 1 1/α+1 log δ+1 + A log p exp D 1 1/α+1 log t] = expd 1 ɛ for some costat D 1 > 0, ad hece Nj A exp Dj ɛ expd 1 ɛ j=m j=m expd 1 ɛ exp j exp Dɛ x dx exp D 1 ɛ exp Dɛ x dx j 1 M 1 1 ] DM 1 ɛ 0 for sufficietly large by takig M 1 + 4D 1 /D, ad hece, coditio 43 holds We are ow left to show that G A m qq satisfies 44 Followig the proof of Theorem 31, write G A m qq c z : z 1 A q m=m +1 N = m 9

30 A versio of the Cheroff s iequality for biomial distributio is of the form Therefore, It follows that PX > ap a ] p 1 exp a if X Biomial p, 1 ap p ad a 1/p Aq/p ] p 1 A q Π z : z 1 A q exp = exp A q A q loga q] A q p ΠG A m qq c m=m +1 π N m + Πz : z 1 A q exp b 1 m log m + exp A qlog A 1 A q log q] exp D mi 1/4α+ log δ+1, 1/4α+ log ] exp D + 1σ ] 1/4α+ log ζ = exp D + 1σ ] ɛ for some costat D > 0 whe is sufficietly large Hece coditio 4 holds with the same costat D Refereces Belitser, E ad Ghosal, S 003 Adaptive Bayesia iferece o the mea of a ifiite-dimesioal ormal distributio The Aals of Statistics, 31: Gao, C ad Zhou, H H 016a Rate exact Bayesia adaptatio with modified block priors The Aals of Statistics, 441: Gao, C ad Zhou, H H 016b priors Supplemet to rate exact bayesia adaptatio with modified block Ghosal, S ad Va Der Vaart, A W 001 Etropies ad rates of covergece for maximum likelihood ad Bayes estimatio for mixtures of ormal desities The Aals of Statistics, 95: Pollard, D 1990 Empirical processes: theory ad applicatios I NSF-CBMS regioal coferece series i probability ad statistics, pages i 86 JSTOR va der Vaart, A W ad va Zate, J H 008 Reproducig kerel Hilbert spaces of Gaussia priors I Pushig the limits of cotemporary statistics: cotributios i hoor of Jayata K Ghosh, pages 00 Istitute of Mathematical Statistics va der Vaart, A W ad va Zate, J H 009 Adaptive Bayesia estimatio usig a Gaussia radom field with iverse Gamma badwidth The Aals of Statistics, pages

31 Yoo, W W, Rousseau, J, ad Rivoirard, V 017 Adaptive supremum orm posterior cotractio: Spike-ad-slab priors ad aisotropic besov spaces arxiv preprit arxiv:

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Adaptive Covariance Estimation with model selection

Adaptive Covariance Estimation with model selection Adaptive Covariace Estimatio with model selectio Rolado Biscay, Hélèe Lescorel ad Jea-Michel Loubes arxiv:03007v [mathst Mar 0 Abstract We provide i this paper a fully adaptive pealized procedure to select

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability Supplemetal Material to Compariso of iferetial methods i partially idetified models i terms of error i coverage probability Federico A. Bugi Departmet of Ecoomics Duke Uiversity federico.bugi@duke.edu.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα