Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή"

Transcript

1 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή

2 Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα

3 Επιλογή Αναπαράστασης Αριθμών Τα είδη των αριθμών που θα πρέπει να μπορούν να παρασταθούν, π.χ. ακέραιοι ή και πραγματικοί αριθμοί Τα μεγέθη των αριθμών που θα μπορούν να παρασταθούν Η ακρίβεια με την οποία θα μπορούν να παρασταθούν οι αριθμοί Το κόστος υλοποίησης αυτών των παραστάσεων

4 Αναπαράσταση Αριθμών στον Υπολογιστή Αναπαράσταση σταθερής υποδιαστολής (fixed point representation) ti Αναπαράσταση κινητής ηήςυποδιαστολής (floating point representation)

5 Αναπαράσταση σταθερής υποδιαστολής Θετικός αριθμός σε παράσταση σταθερής υποδιαστολής οδασ ο και σε σύστημα αρίθμησης με βάση το β : α ν-1 α ν-2 α 1 α 0, με α ν-1, α ν-2,,α 0 < β Που είναι η υποδιαστολή;

6 Ακέραιοι αριθμοί α ν-1 α ν-2 α 1 α 0 Υποδιαστολή δεξιά του λιγότερο σημαντικού ψηφίου α 0 Ελάχιστος αριθμός: 0 Μικρότερος μη μηδενικός: 1 Παράσταση μέγιστου μγ αριθμού: (β-1)β ν (β-1)β 1 + (β-1)β 0 Ποιος είναι ο μέγιστος αριθμός;

7 Ακέραιοι αριθμοί (β-1)β ν-1 + +(β-1)β 1 + (β-1)β 0 άθροισμα των ν πρώτων όρων γεωμετρικής προόδου Σ = (α ν ω α 1 )/(ω-1) με ω =β, α =(β-1)β ν και α ν = (β-1)β 1 μέγιστος αριθμός: β ν -1 Οι αριθμοί που μπορούν να παρασταθούν είναι ακέραιοι και βρίσκονται στην περιοχή: 0 Ν β ν -1

8 Κλασματικοί αριθμοί α ν-11 α ν-2 2 α 1 α 0 Υποδιαστολή πριν το πιο σημαντικό ψηφίο, α ν-1 : Οι αριθμοί που μπορούν να παρασταθούν είναι κλασματικοί

9 Κλασματικοί αριθμοί α ν-11 α ν-2 2 α 1 α 0 Υποδιαστολή πριν το πιο σημαντικό ψηφίο, α ν-1 : Ελάχιστος αριθμός: 0 Μικρότερος μη μηδενικός αριθμός: Παράσταση μγ μέγιστου αριθμού: β -ν (β-1)β -1 + (β-1)β (β-1)β -ν Ποιος είναι ο μέγιστος αριθμός;

10 Κλασματικοί αριθμοί (β-1)β -1 +(β-1)β (β-1)β -ν άθροισμα των ν πρώτων όρων γεωμετρικής προόδου Σ = (α ν ω α 1 )/ ω-1 με ω =1/β, α =(β-1) -1 -ν 1 β και α ν = (β-1) β ν μέγιστος αριθμός: 1-β -ν Οι αριθμοί που μπορούν να παρασταθούν είναι κλασματικοί και βρίσκονται στην περιοχή: 0 Ν 1-β -ν

11 Ακέραιο και κλασματικό μέρος α ν-11 α ν-2 2 α λ+1 α λ α 1 α 0 Δεκαδικό σημείο αριστερά του ψηφίου α λ, με 0 λ ν-1 1 Οι αριθμοί που μπορούν να παρασταθούν βρίσκονται στην περιοχή: 0 Ν β ν-(λ+1) -β -(λ+1) Ελάχιστος μη μηδενικός αριθμός: β -(λ+1)

12 Αναπαράσταση σταθερής υποδιαστολής Επίδραση της θέσης της υποδιαστολής Αναπαράσταση μέγιστης τιμής Ακέραιοι αριθμοί Αριθμοί με 3 ακέραια Αριθμοί με 2 ακέραια των 4 δυαδικά ψηφία δυαδικά ψηφία δυαδικών και 1 και 2 ψηφίων κλασματικό κλασματικά Κλασματικοί αριθμοί των 4 δυαδικών ψηφίων ,1 11,11 0,1111 Μέγιστη τιμή , ,75 0,9375 στο δεκαδικό αναπαράσταση του μικρότερου μη μηδενικού αριθμού τιμή του μικρότερου μη μηδενικού αριθμού στο δεκαδικό ,1 00,01 0, ,5 0,25 0,0625

13 Αναπαράσταση σταθερής υποδιαστολής Οι αριθμοί που μπορούν να παρασταθούν είναι ομοιόμορφα κατανεμημένοι στην περιοχή των αριθμών που μπορούν να παρασταθούν

14 Αναπαράσταση Αριθμών στον Υπολογιστή Είναι δυνατόν όλοι οι αριθμοί να παρασταθούν ακριβώς εντός του υπολογιστή;

15 Περικοπή και στρογγυλοποίηση Περικοπή (truncation)» Σφάλματα περικοπής Στρογγυλοποίηση (rounding)» Σφάλματα στρογγυλοποίησης (round-off errors)

16 Περικοπή και στρογγυλοποίηση Έχει νόημα η περικοπή και η στρογγυλοποίηση στην περίπτωση ακέραιων αριθμών;

17 Σφάλματα στρογγυλοποίησης Αριθμητική πολλαπλής λή ακρίβειας

18 Δύο θέματα προς συζήτηση η Μη δυαδικό αριθμητικό σύστημα Αναπαράσταση αρνητικών αριθμών

19 Αριθμητικά Συστήματα Δυαδικό αριθμητικό σύστημα Οκταδικό αριθμητικό σύστημα Δεκαεξαδικό αριθμητικό σύστημα Δεκαδικό αριθμητικό σύστημα

20 Δεκαδικοί αριθμοί Κωδικοποίηση μέσω του δυαδικού Δυαδικά κωδικοποιημένοι δεκαδικοί αριθμοί (Binary Coded Decimal, BCD)

21 Δυαδική αναπαράσταση των δεκαδικών ψηφίων από 0 έως και 9 Δεκαδικό ψηφίο Δυαδική παράσταση

22 Δυαδικά κωδικοποιημένοι δεκαδικοί αριθμοί, BCD Πλεονεκτήματα Εύκολη μετατροπή από το δεκαδικό σε BCD και αντίστροφα Μειονεκτήματα απαιτούνται: περισσότερα δυαδικά ψηφία για την αναπαράσταση του ίδιου πλήθους αριθμών ειδικά κυκλώματα εκτέλεσης πράξεων ή διόρθωση αποτελεσμάτων με εκτέλεση εντολών

23 Πράξεις μεταξύ αριθμών σε BCD μορφή εντολές μετατροπής από BCD σε δυαδικό εντολές για επεξεργασία δεδομένων σε BCD μορφή Υλοποίηση με ειδικά κυκλώματα Υλοποίηση με κυκλώματα για δυαδικούς δ αριθμούς

24 Προσθέτοντας BCD αριθμούς ως δυαδικούς ; BCD

25 Πρόσθεση BCD αριθμών ως δυαδικών και διόρθωση αποτελέσματος πρόσθ ; BCD διόρθ

26 Αναπαράσταση θετικών και αρνητικών αριθμών Προσημασμένοι αριθμοί

27 Αναπαράσταση με Πόλωση Προσημασμένοι αριθμοί Αναπαράσταση με πόλωση

28 Αναπαράσταση με Πόλωση Βάση αριθμητικού συστήματος β=2 τ Χρησιμοποιούμε μ ν δυαδικά ψηφία Πόλωση Π=β ν-1-1 το πιο σημαντικό δυαδικό ψηφίο της παράστασης δηλώνει το πρόσημο του αριθμού 1: θετικός αριθμός 0: αρνητικός αριθμός

29 Αναπαράσταση με Πόλωση Πρόσθεση Αφαίρεση Πολλαπλασιασμού Διαίρεσης

30 Αναπαράσταση θετικών και αρνητικών αριθμών Αναπαράσταση προσημασμένου μεγέθους (signmagnitude representation) Αναπαράσταση συμπληρώματος ως προς μειωμένη βάση ή αναπαράσταση συμπληρώματος ως προς β-1 (diminished - radix complement representation) Αναπαράσταση συμπληρώματος ως προς βάση ή αναπαράσταση συμπληρώματος ως προς β (radix complement representation)

31 Αναπαράσταση θετικών και αρνητικών αριθμών Αναγνώριση θετικών και αρνητικών αριθμών

32 Αναπαράσταση θετικών και αρνητικών αριθμών Ν (β) = α ν-1 α ν-2 α ν-3 α 1 α 0, α ν-1 < β/2 θετικός αριθμός α ν-1 β/2 αρνητικός αριθμός

33 Αναπαράσταση θετικών και αρνητικών αριθμών Βάση αριθμητικού συστήματος β=2 τ α ν-1 =0 θετικός αριθμός α ν-1 =1 αρνητικός αριθμός

34 Αναπαράσταση θετικών και αρνητικών αριθμών Ι Αναπαράσταση προσημασμένου μεγέθους (signmagnitude representation) Ν (β) = α ν-1 α ν-2 α ν-3 α 1 α 0, α ν-1 < β/2 θετικός αριθμός α ν-1 β/2 αρνητικός αριθμός Ν (β) =α ν-1 α ν-2 α ν-3 α 1 α 0 -(β/2)00 0

35 Αναπαράσταση θετικών και αρνητικών αριθμών Ι Η πρόσθεση αριθμών σε παράσταση προσημασμένου μεγέθους απαιτεί: τη σύγκριση των προσήμων,, εάν έχουν διαφορετικά πρόσημα: Σύγκριση μεγεθών

36 Αναπαράσταση θετικών και αρνητικών αριθμών ΙΙ Αναπαράσταση συμπληρώματος ως προς μειωμένη βάση ή αναπαράσταση συμπληρώματος ως προς β-1 (diminished - radix complement representation) Ν (β) = α ν-11 α ν-22 α ν-3 3 α 1 α 0, α ν-11 β/2 αρνητικός αριθμός Ν (β) = αν 1 αν 2 αν 3 αα 1 0, α λ όπου = (β-1) - α λ για 0 λ ν-1

37 Αναπαράσταση θετικών και αρνητικών αριθμών Αναπαράσταση συμπληρώματος ως προς βάση ή αναπαράσταση συμπληρώματος ως προς β (radix complement representation) Ν (β) = α ν-1 1 α ν-2 2 α ν-3 3 α 1α 0, α ν-1 β/2 αρνητικός αριθμός Ν (β) = αν 1αν 2α ν 3 αα 1 0+ [1] όπου α λ = (β-1) - α λ για 0 λ ν-1

38 Αναπαράσταση θετικών και αρνητικών αριθμών Αν σας δώσω ένα δεκαδικό αριθμό με πρόσημο και σας ζητήσω να τον γράψετε στο δυαδικό σε αναπαράσταση προσημασμένου μεγέθους αναπαράσταση συμπληρώματος ως προς 1 και αναπαράσταση συμπληρώματος ως προς 2 όλες οι παραστάσεις θα είναι οι ίδιες ;

39 Αναπαράσταση θετικών και αρνητικών αριθμών Σύγκριση αθροιστών για αριθμούς σε αναπαράσταση συμπληρώματος ως προς 1 και αναπαράσταση συμπληρώματος ως προς 2

40 Περιοχές ακεραίων και αναπαραστάσεις του μηδενός για δυαδική αριθμητική Σύστημα Αναπαράστασης Προσημασμένων Αριθμών Περιοχή Ακεραίων Παραστάσεις Μηδενός Προσημασμένου -(2 ν-1 1) Α 2 ν και μεγέθους Α Συμπληρώματος ως -(2 ν-1 1 1) Α 2 ν και προς Α Συμπληρώματος ως προς 2-2 ν-1 Α 2 ν Α

41 Αριθμός Ακέραιοι αριθμοί των 10 δυαδικών ψηφίων σε διάφορες αναπαραστάσεις Δυαδικό αριθμητικό σύστημα Δεκαδικό αριθμητικό σύστημα προσημα- συμπλη- συμπληρώ με πόλωση προσημα συμπλη- συμπλη- με σμένου ρώματος ως -ματος ως το 511 σμένου μεγέθους προς 1 προς 2 μεγέθους ρώματος ως προς 9 ρώματος ως προς πόλωση το 500

42 Σφάλμα αναπαράστασης Αναπαράσταση σταθερής υποδιαστολής Οι αριθμοί είναι ισοκατανεμημένοι στην περιοχή των αριθμών που μπορούν να παρασταθούν Μέγιστο σφάλμα αναπαράστασης λόγω περικοπής σταθερό: β -λ, όπου λ το πλήθος των ψηφίων δεξιά της υποδιαστολής Σχετικό σφάλμα αναπαράστασης = σφάλμα αναπαράστασης/τιμή / αριθμού

43 Σφάλμα αναπαράστασης Χ= Υ= ΣΦ(Χ)= 2-8 /(9 2-8 ) 1/9 ΣΦ(Υ)= 2-8 /(9 2 4 ) 1/( )

44 Αναπαράσταση πολύ μεγάλων και πολύ μικρών αριθμών Χ= Υ= Χ 2 = ( ) 2 = Υ 2 =(9 2 4 ) 2 =

45 Δυναμική περιοχή Λόγος μεταξύ μεγαλύτερου και μικρότερου, μη μηδενικού αριθμού, που μπορεί να παρασταθεί θί Μεγάλη δυναμική περιοχή σημαίνει ότι μπορούμε να παραστήσουμε πολύ μεγάλους και πολύ μικρούς αριθμούς

46 Δυναμική περιοχή Αναπαράσταση σταθερής υποδιαστολής ν+1 δυαδικών ψηφίων 1 δυαδικό ψηφίο για το πρόσημο λ δυαδικά δ ψηφία δξά δεξιά της υποδιαστολής ν λ (2 1) 2 ΔΠ = = 2 ν 1 Σϒ 1 2 λ

47 Αναπαράσταση Κινητής Υποδιαστολής Απαίτηση Μικρό σχετικό σφάλμα αναπαράστασης για όλους τους αριθμούς που μπορούν να παρασταθούν Μεγάλη δυναμική περιοχή Αναπαράσταση κινητής ηήςυποδιαστολής

48 Αναπαράσταση Κινητής Υποδιαστολής Μορφή : α ν-1 α ν-2 α 1 α 0 Ερμηνεία Τρεις συνιστώσες: πρόσημο π συντελεστής Σ εκθέτης Ε τιμή: Ζ = (-1) π x Σ x Β Ε, όπου Β μία προκαθορισμένη ρ βάση

49 Δυναμική περιοχή Αναπαράσταση ν+1 δυαδικών ψηφίων 1 δυαδικό ψηφίο για το πρόσημο μ δυαδικά ψηφία για το μέγεθος του συντελεστή, κ αριστερά και λ δεξιά της υποδιαστολής ν-μ δυαδικά ψηφία για τον εκθέτη μγιστη έ τιμ ή εκθ έτη ( μ έ γιστητιμ ή συντελεστ ή ) B ΔΠ Κϒ = = ελάχιστη τιμή εκθ έτη ( ελάχιστητιμήσυντελεστή) B ν μ μ λ 2 1 (2 1) 2 2 μ = = (2 1) 2 λ ν μ 2 1

50 Δυναμική περιοχή Αναπαράσταση ν+1 δυαδικών ψηφίων 1 δυαδικό ψηφίο για το πρόσημο μ δυαδικά ψηφία για το μέγεθος του συντελεστή, κ αριστερά και λ δεξιά της υποδιαστολής ν-μ δυαδικά ψηφία για τον εκθέτη ΔΠ = (2 μ 1) 2 ν μ Κϒ 2 1 Επίδραση της θέσης της υποδιαστολής; Επίδραση του πλήθους των ψηφίων του εκθέτη;

51 Δυναμική περιοχή ν ΔΠ = 2 1 Σϒ ΔΠ = (2 μ 1) 2 ν μ ΔΠ Κϒ 2 1 ΔΠ ΣΥ =(2 32-1) 4,3 x 10 9 ΔΠ ΚΥ =(2 24-1) ,7 x 10 83

52 Περισσότερες ρ από μία παραστάσεις Ένας αριθμός μπορεί να έχει περισσότερες από μία παραστάσεις στο ίδιο αριθμητικό σύστημα σε παράσταση κινητής υποδιαστολής Παράδειγμα x 10 3, x x 10-2

53 Κανονικοποιημένη (normilized) παράσταση Εάν θεωρήσουμε ότι ο συντελεστής είναι σε αναπαράσταση προσημασμένου μεγέθους τότε ο αριθμός είναι σε κανονικοποιημένη μορφή εάν το πιο σημαντικό ψηφίο του μεγέθους του συντελεστή είναι διάφορο του μηδενός (εκτός βέβαια της περίπτωσης της αναπαράστασης του αριθμού 0)

54 Παράδειγμα x 10 3, x x 10-2

55 Κανονικοποιημένοι αριθμοί Μικρότερη τιμή του συντελεστή: κ 10 0, 00 0 = β κ-1 /2 λ = β κ-λ-1 λ και η μικρότερη τιμή του αριθμού κινητής υποδιαστολής θα είναι: β κ-λ-1 1 x Β (ελάχιστη τιμή εκθέτη) )

56 Περιοχές στην αναπαράσταση κινητής υποδιαστολής Α Β β γ Γ 0 Δ - άπειρο + άπειρο [Α, Β] αρνητικοί αριθμοί κινητής υποδιαστολής κανονικοποιημένοι [Γ, Δ] θετικοί αριθμοί κινητής υποδιαστολής κανονικοποιημένοι (Β, β] και [γ, Γ) μη κανονικοποιημένοι αριθμοί κινητής υποδιαστολής <Α ή > Δ υπερχείλιση (β, 0) ή (0, γ) υπερχείλιση

57 Διερεύνηση της επίδρασης του μεγέθους των πεδίων Σταθερό πλήθος δυαδικών ψηφίων Επίδραση: της τιμής της βάσης πλήθος δυαδικών ψηφίων του συντελεστή πλήθος δυαδικών ψηφίων του εκθέτη

58 Διερεύνηση της επίδρασης της τιμής της βάσης Θεωρούμε συντελεστής: 4 κλασματικά ψηφία εκθέτης: 2δυαδικά ψηφία σε παράσταση με πόλωση πόλωση = =1 οπότε εκθέτης = - 1, 0, 1 ή 2

59 Αναπαραστάσεις κινητής υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 4 κλασματικά ψηφία, εκθέτης 2 ψηφία, Β=2) αναπαράσταση 1/ συντελεστή 0, , /32 1/16 1/8 1/4 0,0010 2/32 2/16=1/8 2/8=1/4 2/4 0,0011 3/32 3/16 3/8 3/4 0, /32 4/16=2/8=1/4 /8 / 4/8 4/4=1 0,0101 5/32 5/16 5/8 5/4 0,0110 6/32 6/16 6/8 6/4 0, /32 7/16 7/8 7/4 0, /32 8/16=4/8=2/4 8/8=1 8/4 0,1001 9/32 9/16 9/8 9/4 0, /32 10/16 10/8 10/4 0, /32 11/16 11/8 11/4 0, /32 12/16 12/8 12/4 0, /32 13/16 13/8 13/4 0, /32 14/16 14/8 14/4 0, /32 15/16 15/8 15/4 2 Ε

60 Αναπαραστάσεις κινητής υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 4 κλασματικά ψηφία, εκθέτης 2 ψηφία, Β=4) παράσταση 1/ συντελεστή 0, , /64 1/16 1/4 1 0,0010 2/64 2/16 2/4 2 0,0011 3/64 3/16 3/4 3 0,0100 4/64 4/16=1/4 4/4=1 4 0,0101 5/64 5/16 5/4 5 0,0110 6/64 6/16 6/4 6 0,0111 7/64 7/16 7/4 7 0, /64 8/16=2/4=1/2 8/4=2 8 0,1001 9/64 9/16 9/4 9 0, /64 10/16 10/4 10 0, /64 11/16 11/4 11 0, /64 12/16 12/4=3 12 0, /64 13/16 13/4 13 0, /64 14/16 14/4 14 0, /64 15/16 15/ Ε

61 Αναπαραστάσεις κινητής υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 4 κλασματικά ψηφία, εκθέτης 2 ψηφία, Β=8) παράσταση 1/ συντελεστή 0, , /128 1/16 1/2 4 0,0010 2/128 2/16 2/2 8 0,0011 3/128 3/16 3/2 12 0, /128 4/16 4/2 16 0,0101 5/128 5/16 5/2 20 0,0110 6/128 6/16 6/2 24 0, /128 7/16 7/2 28 0, /128 8/16=1/2 8/2 32 0,1001 9/128 9/16 9/2 36 0, /128 10/16 10/2 40 0, /128 11/16 11/2 44 0, /128 12/16 12/2 48 0, /128 13/16 13/2 52 0, /128 14/16 14/2 56 0, /128 15/16 15/ Ε

62 Διερεύνηση της επίδρασης του πλήθους δυαδικών ψηφίων του συντελεστή Θεωρούμε συντελεστής: 3 κλασματικά ψηφία εκθέτης: 3δυαδικά ψηφία σε παράσταση με πόλωση πόλωση = =3 οπότε εκθέτης = - 3, -2, -1, 0, 1, 2, 3 και 4

63 Αναπαραστάσεις κινητής υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 3 κλασματικά ψηφία,, εκθέτης 3 ψηφία,, Β=2) ) 2 Ε αναπαράσταση συντελεστή 1/8 (Ε = -3) 1/4 (Ε = -2) 1/2 (Ε = -1) 1 (Ε = 0) 2 (Ε = 1) 4 (Ε = 2) 8 (Ε = 3) 16 (Ε = 4) 0, , 001 1/64 1/32 1/16 1/8 1/4 1/ , 010 2/64= 1/32 2/32= 1/16 2/16= 1/8 2/8= 1/4 2/4= 1/2 2/2= , 011 3/64 3/32 3/16 3/8 3/4 3/ , 100 4/64= 4/32= 4/16= 4/8= 4/4= 4/2= /32 2/16 2/8 2/4 1 0, 101 5/64 5/32 5/16 5/8 5/4 5/ , 110 6/64= 3/32 6/32= 3/16 6/16= 3/8 6/8= 3/4 6/4= 3/2 6/2= , 111 7/64 7/32 7/16 7/8 7/4 7/2 7 14

64 Παραστάσεις Κινητής Υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 4 κλασματικά ψηφία, εκθέτης 2 ψηφία, Β=2) παράσταση 1/ συντελεστή 0, , /32 1/16 1/8 1/4 0,0010 2/32 2/16=1/8 2/8=1/4 2/4 0,0011 3/32 3/16 3/8 3/4 0,0100 4/32 4/16=2/8=1/4 4/8 4/4=1 0,0101 5/32 5/16 5/8 5/4 0,0110 6/32 6/16 6/8 6/4 0,0111 7/32 7/16 7/8 7/4 0, /32 8/16=4/8=2/4 8/8=1 8/4 0,1001 9/32 9/16 9/8 9/4 0, /32 10/16 10/8 10/4 0, /32 11/16 11/8 11/4 0, /32 12/16 12/8 12/4 0, /32 13/16 13/8 13/4 0, /32 14/16 14/8 14/4 0, /32 15/16 15/8 15/4 2 Ε

65 Παραστάσεις Κινητής Υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 4 κλασματικά ψηφία, εκθέτης 2 ψηφία, Β=2) Συντελεστής: 4 κλασματικά δυαδικά ψηφία εκθέτης: 2δυαδικά ψηφία Β=2 Συντελεστής: 3 κλασματικά δυαδικά ψηφία εκθέτης: 3δυαδικά ψηφία Β=2 Περιοχή αριθμών Πλήθος αριθμών Τιμή του εκθέτη Περιοχή αριθμών Πλήθος αριθμών Τιμή του εκθέτη /32 Χ < 1/ /64 Χ <1 / /16 Χ < 1/ /8 Χ < 1/ /4 Χ < 1/ /4 Χ < 1/ /2 Χ < /2 Χ < Χ < Χ < Χ < Χ < Χ < Χ =14 4 4

66 Αναπαραστάσεις κινητής υποδιαστολής, μόνο οι θετικοί αριθμοί (συντελεστής 3 κλασματικά ψηφία,, εκθέτης 3 ψηφία,, Β=2) ) 2 Ε αναπαράσταση συντελεστή 1/8 (Ε = -3) 1/4 (Ε = -2) 1/2 (Ε = -1) 1 (Ε = 0) 2 (Ε = 1) 4 (Ε = 2) 8 (Ε = 3) 16 (Ε = 4) 0, , 001 1/64 1/32 1/16 1/8 1/4 1/ , 010 2/64= 1/32 2/32= 1/16 2/16= 1/8 2/8= 1/4 2/4= 1/2 2/2= , 011 3/64 3/32 3/16 3/8 3/4 3/ , 100 4/64= 4/32= 4/16= 4/8= 4/4= 4/2= /32 2/16 2/8 2/4 1 0, 101 5/64 5/32 5/16 5/8 5/4 5/ , 110 6/64= 3/32 6/32= 3/16 6/16= 3/8 6/8= 3/4 6/4= 3/2 6/2= , 111 7/64 7/32 7/16 7/8 7/4 7/ ,5: δεν μπορεί να παρασταθεί

67 Πρότυπο κινητής υποδιαστολής IEEE 754 περισσότερο σημαντικό δυαδικό ψηφίο λιγότερο σημαντικό δυαδικό ψηφίο π εκθέτης Σ Κ (κλασματικό μέρος του συντελεστή) 8 δυαδικά ψηφία 23 δυαδικά ψηφία ένα δυαδικό ψηφίο για το πρόσημο του αριθμού Δυαδικό σύστημα αρίθμησης Β = 2

68 Πρότυπο κινητής υποδιαστολής IEEE 754 περισσότερο σημαντικό δυαδικό ψηφίο λιγότερο σημαντικό δυαδικό ψηφίο π εκθέτης Σ Κ (κλασματικό μέρος του συντελεστή) 8 δυαδικά ψηφία 23 δυαδικά ψηφία ένα δυαδικό ψηφίο για το πρόσημο του αριθμού Συντελεστής 24 δυαδικών ψηφίων

69 Πρότυπο κινητής υποδιαστολής IEEE 754 περισσότερο σημαντικό δυαδικό ψηφίο λιγότερο σημαντικό δυαδικό ψηφίο π εκθέτης Σ Κ (κλασματικό μέρος του συντελεστή) 8 δυαδικά ψηφία 23 δυαδικά ψηφία ένα δυαδικό ψηφίο για το πρόσημο του αριθμού Αναπαράσταση του 0;

70 Σύγκριση αριθμών κινητής υποδιαστολής περισσότερο σημαντικό δυαδικό ψηφίο λιγότερο σημαντικό δυαδικό ψηφίο π εκθέτης Σ Κ (κλασματικό μέρος του συντελεστή) 8 δυαδικά ψηφία 23 δυαδικά ψηφία ένα δυαδικό ψηφίο για το πρόσημο του αριθμού Αρνητικοί εκθέτες;

71 Εκθέτης σε μορφή συμπληρώματος ως προς δύο; Παράδειγμα Τότε οι αριθμοί 1.0 x 2-1 και 1.0 x 2 +1 θα είχαν αντίστοιχα τις ακόλουθες δύο παραστάσεις :

72 Πόλωση εκθέτη Προσθέτουμε στην τιμή του εκθέτη το 127 και μετά λαμβάνουμε την αναπαράστασή του

73 Παράδειγμα Θεωρούμε τους αριθμούς 1.0 x 2-1 και 1.0 x Για να πάρουμε την παράσταση κάθε εκθέτη προσθέτουμε στο 1 και στο +1 τον αριθμό 127 οπότε παίρνουμε αντίστοιχα τους αριθμούς 126 (10) = (2) και 128 (10) = (2). Επομένως η παράσταση των αριθμών 1.0 x 2-1 και 1.0 x 2 +1 σύμφωνα με το στάνταρτ είναι :

74 Στάνταρτ κινητής υποδιαστολής IEEE 754 Ν = (-1) Π 2 E-127 (1. Σ Κ ) 0 < Ε < 255 (κανονικ.), Ν = (-1) Π (0. Σ Κ ) εάν Ε = 0 και Σ Κ 0 (μη καν.), Ν = NaN εάν Ε = 255 και Σ Κ 0, Ν = (-1) Π εάν Ε = 255 και Σ Κ = 0, Ν = (-1) Π 0 εάν Ε = 0 και Σ Κ = 0 (διπλή αναπαράσταση του μηδενός).

75 Αριθμητική κινητής υποδιαστολής διπλής ακρίβειας π 11 bit εκθέτης 20 bit κλασμ. συντελεστής 32 bit συντελεστής συνεχίζεται πόλωση = 1023

76 Στάνταρτ κινητής υποδιαστολής IEEE 754 διπλής ακρίβειας Ν = NaN εάν Ε = 2047 και Σ Κ 0, Ν = (-1) Π εάν Ε = 2047 και Σ Κ = 0, Ν = (-1) Π 2 E-1023 (1. Σ Κ ) 0<Ε Ε < 2047 (κανονικ.), Ν = (-1) Π (0. Σ Κ ) εάν Ε = 0 και Σ Κ 0 (μη καν.), Ν = (-1) Π 0 εάν Ε = 0 και Σ Κ = 0 (διπλή αναπαράσταση του μηδενός).

77 Αλφαριθμητικά σύμβολα Αριθμοί Γράμματα του αλφάβητου Σημεία στίξης Ειδικά σύμβολα

78 ASCII κώδικας

79 Αναπαράσταση ψηφιακής εικόνας ψηφίδες, εικονοστοιχεία, pixels

80 Αναπαράσταση ψηφιακής εικόνας

81 Ευκρίνεια (resolution) ψηφίδες ανά τετραγωνικό εκατοστό

82 Ευκρίνεια ψηφιακής εικόνας κανονικό μέγεθος μεγέθυνση

83 Ασπρόμαυρες και Έγχρωμες ψηφιακές εικόνες Ασπρόμαυρες 2-8 bit /pixel (bit depth=2-8) Έγχρωμες 8-24 bit /pixel κόκκινο - πράσινο - μπλέ (16,7 εκατομμύρια χρώματα) RGB(Red, Green, Blue) CMYK(Cyan, Mangenta, Yellow, black)

84 Μέγεθος αρχείου εικόνας για μία φωτογραφία των x ψηφίδων που για τη δήλωση του χρώματος κάθε ψηφίδας χρησιμοποιούνται 24 δυαδικά ψηφία απαιτούνται (24 x x 3.072)/8 = ψηφιολέξεις = 18 ΜΒ τεχνικές συμπίεσης: (ITU-T.6 T 6(lossless l scheme) JPEG (lossy scheme) κλπ.) )

85 Βίντεο Σύγχρονα φιλμς: 24 frames / second

86 Ήχος

87 Δειγματοληψία αναλογικού σήματος , 4, 5, 2, 3, 3, 0, -4, -5, -3, 1, 4, 2

88 Δειγματοληψία αναλογικού σήματος

89 Δειγματοληψία αναλογικού σήματος Η ακρίβεια του σήματος που αναπαράγεται σε σχέση με το αρχικό εξαρτάται από δύο παραμέτρους: τη συχνότητα της δειγματοληψίας, δηλαδή πόσο συχνά δειγματοληπτούμε την ακρίβεια της τιμής που καταγράφουμε

90 Δειγματοληψία αναλογικού σήματος

91 Δειγματοληψία αναλογικού σήματος Θεώρημα δειγματοληψίας του Nyquist

92 Δειγματοληψία αναλογικού σήματος Το ανθρώπινο αυτί ακούει από 20 Hz έως και 22 KHz συχνότητα δειγματοληψίας 44 KHz (δηλαδή δείγματα το δευτερόλεπτο) Η μουσική ποιότητας CD παράγεται με συχνότητα δειγματοληψίας 44,1 KHz.

93 Μέγεθος αρχείου ήχου Το πλήθος των δυαδικών ψηφίων που αποθηκεύονται για κάθε δευτερόλεπτο (bit rate) εξαρτάται από: το ρυθμό, συχνότητα δειγματοληψίας το πλήθος των δυαδικών ψηφίων που χρησιμοποιούνται για την αναπαράσταση κάθε δειγματοληπτούμενης τιμής (bit resolution) CD-ποιότητα 16 δυαδικά ψηφία ανά δείγμα

94 Μέγεθος αρχείου ήχου 1 δευτερόλεπτο CD-ποιότητας απαιτεί: δείγματα ανά δευτερόλεπτο 16 δυαδικά ψηφία ανά δείγμα = δυαδικά ψηφία ή /8 ψηφιολέξεις = ψηφιολέξεις = 86,1 KB.

95 Μέγεθος αρχείου ήχου Στερεοφωνική μουσική (2 κανάλια): Για ένα δευτερόλεπτο : 86,1 KB x 2 =172,2 KB. Μία ώρα CD-ποιότητας στερεοφωνικής μουσικής απαιτεί : 172,2 KB x 3600 δευτερόλεπτα = KB περίπου 620 MB τεχνικές συμπίεσης της πληροφορίας (RealAudio, MP3 κλπ.)

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Δεδομένα και Εντολές ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ πληροφορία Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον δεδομένα εντολές Υπολογιστή αριθμητικά δεδομένα κείμενο εικόνα Αρχιτεκτονική Υπολογιστών,

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1 Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Πηγές σφαλμάτων ανακριβής θεωρία ανακριβείς μετρήσεις παραμέτρων μεταβλητότητα παραμέτρων ανακριβής μέθοδος υπολογισμού (σφάλματα

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Τέλος, στη δημιουργία των αριθμητικών συστημάτων:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Γκόγκος Χρήστος Τύποι δεδομένων ιάφοροι τύποι δεδοµένων εδοµένα Κείµενο Αριθµοί Εικόνες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας

Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Μονάδα Επεξεργασίας Δεδομένων Μονάδα

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΉ. Μάθημα 7

ΠΛΗΡΟΦΟΡΙΚΉ. Μάθημα 7 ΠΛΗΡΟΦΟΡΙΚΉ Μάθημα 7 Μηχανισμός Οπτικών Δίσκων CD ROM (compact disk read only memory) Μεγάλη αποθηκευτική ικανότητα (650ΜΒ ή 700ΜΒ) Γρήγορη προσπέλαση στα δεδομένα Χαμηλή τιμή (CD) Μέσο μεταφοράς και διανομής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ακαδημαϊκό Έτος 2010-2011 Επιμέλεια Ξενοφών Βασιλάκος Περιεχόμενα Φροντιστηρίου 1. Κωδικοποίηση και Δυαδική Αναπαράσταση 2. Κωδικοποίηση ASCII Κωδικοποίηση Unicode Εισαγωγή

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 4 ο Μάθημα Λεωνίδας λεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενο μάθημα Συστήματα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών

Προγραμματισμός Υπολογιστών Προγραμματισμός Υπολογιστών Αναπαράσταση Πληροφορίας Κ. Βασιλάκης, ΣΤΕΦ, ΤΕΙ Κρήτης Δεδομένα και πληροφορία Δεδομένα είναι ένα σύνολο διακριτών στοιχείων σχετικά με ένα συμβάν ή μια διαδικασία χωρίς κάποια

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (4 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ

Διαβάστε περισσότερα

Αριθμητική Υπολογιστών (Κεφάλαιο 3)

Αριθμητική Υπολογιστών (Κεφάλαιο 3) ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Αναπαράσταση δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Τύποι δεδομένων 2 Τα δεδομένα

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 2 : Ψηφιακή Αναπαράσταση Δεδομένων. Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 2 : Ψηφιακή Αναπαράσταση Δεδομένων. Δρ. 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πληροφορική Ι Ενότητα 2 : Ψηφιακή Αναπαράσταση Δεδομένων Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Αναπαράσταση εδοµένων σε Επεξεργαστές Ψ.Ε.Σ

Αναπαράσταση εδοµένων σε Επεξεργαστές Ψ.Ε.Σ ΕΣ 8 Επεξεργαστές Ψηφιακών Σηµάτων Αναπαράσταση εδοµένων σε Επεξεργαστές Ψ.Ε.Σ Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Οι Συνέπειας του Πεπερασµένου Βιβλιογραφία Ενότητας

Διαβάστε περισσότερα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα οµή Η/Υ: Αναπαράσταση εδοµένων Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα Περιεχόµενα Κωδικοποίηση δεδοµένων Κώδικας ASCII Άλλοι κώδικες Παραδείγµατα Συστήµατα Αρίθµησης Τα συνηθέστερα

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ & Εφαρμογές

Εισαγωγή στους Η/Υ & Εφαρμογές Τμήμα Οικονομικών Επιστημών Εισαγωγή στους Η/Υ & Εφαρμογές Διάλεξη #2: Υπολογιστές και συστήματα αρίθμησης Β. Δασκάλου, daskalu@upatras.gr Υπολογιστής Τα κύρια συστατικά ενός υπολογιστή Πληροφορίες εισόδου

Διαβάστε περισσότερα

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 2

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 2 Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 2 Κεφάλαιο 2 Παράσταση και Επεξεργασία Πληροφοριών Σκοπός του κεφαλαίου αυτού είναι να εξηγήσει πώς παριστάνονται οι πληροφορίες από

Διαβάστε περισσότερα

Αναπαράσταση Μη Αριθμητικών Δεδομένων

Αναπαράσταση Μη Αριθμητικών Δεδομένων Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

! Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1

! Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 5-6 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης

Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης Μοντέλο Αριθμητικής και Σφάλματα υπολογισμού Απώλεια πληροφορίας λόγω: Μαθηματικής μοντελοποίησης και αποστεύσεων Διακριτοποίηση Σφάλματα στρογγύλευσης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά Τμήμα Τεχνολογίας Αεροσκαφών ΤΕ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Χειμερινό Εξάμηνο 2013-14 Δρ. Β. Σγαρδώνη ΚΕΦΑΛΑΙΑ 1. Εισαγωγή 2. Σφάλματα, αριθμητική μηχανής και αλγόριθμοι 3. Επίλυση συστήματος

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Εισαγωγή Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. ΑΝΔΡΕΑΣ Δ. ΤΣΙΓΚΟΠΟΥΛΟΣ Δρ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ EΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΣΝΔ

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. ΑΝΔΡΕΑΣ Δ. ΤΣΙΓΚΟΠΟΥΛΟΣ Δρ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ EΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΣΝΔ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΝΔΡΕΑΣ Δ. ΤΣΙΓΚΟΠΟΥΛΟΣ Δρ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ EΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΣΝΔ ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΠΕΙΡΑΙΑΣ 2014 - 2 - - 3 - ΠΕΡΙΕΧΟΜΕΝΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ...5 ΠΡΟΛΟΓΟΣ...5 1. ΕΙΣΑΓΩΓΗ...7

Διαβάστε περισσότερα

Κεφάλαιο 3. Αριθμητική για υπολογιστές

Κεφάλαιο 3. Αριθμητική για υπολογιστές Κεφάλαιο 3 Αριθμητική για υπολογιστές Αριθμητική για υπολογιστές Λειτουργίες (πράξεις) σε ακεραίους Πρόσθεση και αφαίρεση Πολλαπλασιασμός και διαίρεση Χειρισμός της υπερχείλισης Πραγματικοί αριθμοί κινητής

Διαβάστε περισσότερα

Κεφάλαιο Κωδικοποίηση των ψηφίων του δεκαδικού συστήματος

Κεφάλαιο Κωδικοποίηση των ψηφίων του δεκαδικού συστήματος Κεφάλαιο 2 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστεί αναλυτικά η κωδικοποίηση των αριθμών μέσω του δυαδικού συστήματος αρίθμησης. Αρχικά περιλαμβάνονται τα ψηφία του δεκαδικού συστήματος κωδικοποιημένα

Διαβάστε περισσότερα

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1)

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1) Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν τα κύρια αριθμητικά συστήματα, οι αλγόριθμοι μετατροπής μεταξύ των συστημάτων για την κάθε μια περίπτωση, ο τρόπος εκτέλεσης των τεσσάρων βασικών πράξεων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ 1... 11 ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ... 11 ΣΗΜΕΡΑ... 11 1.1 Ιστορική αναδρομή... 13 1.1.1 Υπολογιστικές μηχανές στην αρχαιότητα... 13 1.1.2 17ο έως τον 19ο... 14 1.1.3

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κί Κείμενο, Εικόνα, Ήχος, Video, Animation. Στα υπερμέσα η πρόσπέλαση της πληροφορίας γίνεται

Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κί Κείμενο, Εικόνα, Ήχος, Video, Animation. Στα υπερμέσα η πρόσπέλαση της πληροφορίας γίνεται Τι είναι Πολυμέσα και τι Υπερμέσα Εφαρμογές που συνδυάζουν ταυτόχρονα πολλαπλά μέσα : Κί Κείμενο, Εικόνα, Ήχος, Video, Animation Στα πολυμέσα η προσπέλαση της πληροφορίας γίνεται με γραμμικό τρόπο (προκαθορισμένη

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Εισαγωγή Αναλογικό σήμα (analog signal): συνεχής συνάρτηση στην οποία η ανεξάρτητη μεταβλητή και η εξαρτημένη μεταβλητή (π.χ.

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο Γιώργος Δημητρίου Μάθημα 11 ο και 12 ο Μονάδες ράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις ρόσθεση/αφαίρεση Λογικές πράξεις Μονάδες πολύπλοκων αριθμητικών πράξεων σταθερής

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή

Διαβάστε περισσότερα