Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή"

Transcript

1 Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5 Αναπαράσταση και κωδικοποίηση πληροφοριών.6 Παράσταση αρνητικών αριθμών. Παράσταση πραγματικών αριθμών.8 Παράσταση χαρακτήρων.9 Ασκήσεις εφαρμογές Εισαγωγή Στο Κεφάλαιο αυτό θα δούμε πώς αναπαριστούμε πληροφορίες στον υπολογιστή. Οι πληροφορίες αναπαρίστανται στο δυαδικό σύστημα. Θα εξετάσουμε το δυαδικό σύστημα, καθώς και το δεκαεξαδικό σύστημα αρίθμησης, που δίνει ένα συμπαγή τρόπο αναπαράστασης, ενώ παράλληλα η μετατροπή από το σύτημα αυτό στο δυαδικό είναι άμεση. Επιπλέον, θα παρουσιάσουμε τον τρόπο εκτέλεση των πράξεων στα δύο αυτά συστήματα. Στη συνέχεια, να αναφερθούμε στον τρόπο αναπαράστασης αρνητικών καθώς και πραγματικών αριθμών, καθώς επίσης και μη αριθμητικών πληροφοριών (χαρακτήρων) στον υπολογιστή.. Αριθμητικά Συστήματα Ένα αριθμητικό σύστημα αποτελείται από ένα σύνολο ψηφίων και κανόνες εκτέλεσης των πράξεων ανάμεσα στους αριθμούς με βάση τα ψηφία αυτά. Βάση (base) ενός αριθμητικού συστήματος είναι ένας αριθμός b ο οποίος χαρακτηρίζει το σύστημα και ο οποίος έχει τις ακόλουθες ιδιότητες. οι πράξεις γίνονται με υπόλοιπο ως προς αυτό τον αριθμό το πλήθος των διαφορετικών ψηφίων του συστήματος είναι b

2 4 Υλικό, Λογισμικό και Επικοινωνίες Υπολογιστών Τα πιο συχνά χρησιμοποιούμενα συστήματα είναι το δεκαδικό (με βάση το ) το οποίο χρησιμοποιούμε στην καθημερινή ζωή, το δυαδικό (με βάση το ), το οκταδικό (με βάση το 8) και το δεκαεξαδικό (με βάση το 6). Η γνώση του δυαδικού συστήματος είναι ιδιαίτερα χρήσιμη στην κατανόηση των αρχών λειτουργίας των υπολογιστικών συστημάτων, διότι η απεικόνιση της πληροφορίας και οι πράξεις στους υπολογιστές γίνονται στο δυαδικό σύστημα αρίθμησης. Το δεκαεξαδικό σύστημα από την άλλη μεριά έχει το πλεονέκτημα ότι υπάρχει ένας εύκολος τρόπος μετατροπής των αριθμών από το δυαδικό στο δεκαεξαδικό σύστημα και αντίστροφα, ενώ το πλήθος των ψηφίων ενός αριθμού στο δεκαεξαδικό σύστημα είναι πολύ μικρότερο από το πλήθος των ψηφίων του ίδιου αριθμού στο δυαδικό σύστημα. Έτσι, στους υπολογιστές συχνά, αντί να αναφέρουμε τη δυαδική αναπαράσταση ενός αριθμού χρησιμοποιούμε για πρακτικούς λόγους τη δεκαεξαδική αναπαράσταση. Στον επόμενο πίνακα φαίνονται τα ψηφία τα οποία χρησιμοποιούνται σε κάθε ένα από τα συστήματα αυτά. Δυαδικό σύστημα Οκταδικό σύστημα Δεκαδικό σύστημα Δεκαεξαδικό σύστημα A B C D E F Τα ψηφία A, B, C, D, E, F χρησιμοποιούνται στο δεκαεξαδικό σύστημα για να εκφράσουν τους αριθμούς,,, 3, 4, 5 για τους οποίους δεν υπάρχουν αντίστοιχα ψηφία στο δεκαδικό σύστημα. Η γενική μορφή παράστασης ενός αριθμού σε ένα αριθμητικό σύστημα είναι η ακόλουθη: Ν=a m- b m- + a m- b m- + a b +a b + a - b - + a - b - + a -n b -n Τα ψηφία a m- b m- + a m- b m- + a b +a b είναι το ακέραιο μέρος του αριθμού, ενώ τα a - b - + a - b - + a -n b -n είναι το κλασματικό του μέρος. Ένας αριθμός Χ μπορεί να εκφραστεί σε οποιοδήποτε αριθμητικό σύστημα με βάση β, και συμβολίζουμε (Χ) β. Έτσι, είναι δυνατό να επιβεβαιώσει κανείς ότι ο ίδιος αριθμός (8 στο δεκαδικό σύστημα) εκφράζεται στα συστήματα που αναφέρθηκαν, όπως φαίνεται στη συνέχεια. (8) = x + 8x (8) 8 = =(34) 8 (8) = x6 + x6 = (C) 6 (8) = x 4 + x 3 + x + x + x = () Αντίστροφα, η ίδια ακολουθία ψηφίων μπορεί να συμβολίζει διαφορετικούς αριθμούς σε διαφορετικά συστήματα, για παράδειγμα,

3 Κεφ. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας 5 () 6 = 5x6 + 5x6 = = (85) () = x + x = () () = x + x = + = (3). Μετατροπή αριθμών από ένα σύστημα αρίθμησης σε άλλο Στην παράγραφο αυτή θα αναφερθούμε στις διαδικασίες μετατροπής ενός αριθμού από ένα σύστημα αρίθμησης σε κάποιο άλλο. Πιο συγκεκριμένα, θα παρουσιάσουμε τις διαδικασίες μετατροπής αριθμών από (α) το δυαδικό ή το δεκαεξαδικό στο δεκαδικό, (β) το δεκαδικό στο δυαδικό ή δεκαεξαδικό και (γ) το δυαδικό στο δεκαεξαδικό και αντίστροφα. α. Μετατροπή από δυαδικό, οκταδικό ή δεκαεξαδικό σε δεκαδικό Για να μετατρέψουμε έναν αριθμό από το δυαδικό ή το δεκαεξαδικό στο δεκαδικό σύστημα αρίθμησης υπολογίζουμε την τιμή της παράστασης a m- b m- + a m- b m- + a b +a b όπου με b συμβολίζουμε τη βάση του συστήματος, η οποία είναι το ή το 6. Για παράδειγμα, για να μετατρέψουμε τον αριθμό () στο δεκαδικό σύστημα, υπολογίζουμε την τιμή της παράστασης x 4 +x 3 +x +x +x =6+8+=5 β. Μετατροπή από το δεκαδικό στο δυαδικό, οκταδικό ή το δεκαεξαδικό Η μετατροπή αυτή γίνεται γενικά σε δυο φάσεις. Στην πρώτη φάση μετατρέπεται το ακέραιο μέρος του αριθμού, ενώ στη δεύτερη μετατρέπεται το κλασματικό μέρος. Στη συνέχεια θα αναφερθούμε μόνο στη μετατροπή του ακεραίου μέρους του αριθμού. Για την περιγραφή της διαδικασίας μετατροπής του κλασματικού μέρους, μπορεί κανείς να ανατρέξει στη βιβλιογραφία. Μετατροπή ακεραίου μέρους Για να μετατρέψουμε το ακέραιο μέρος του αριθμού, το διαιρούμε με τη βάση του συστήματος ( ή 6) και παίρνουμε ένα υπόλοιπο (Υ) και ένα πηλίκο (Π). Το πηλίκο διαιρείται και πάλι με τo β και παίρνουμε ένα νέο πηλίκο Π και υπόλοιπο Υ. Η διαδικασία αυτή επαναλαμβάνεται μέχρι το πηλίκο Π να γίνει. Η ζητούμενη αναπαράσταση είναι τα υπόλοιπα (Υ), με την αντίστροφη σειρά από εκείνη που τα βρήκαμε. Για παράδειγμα, στο επόμενο Σχήμα φαίνεται η διαδικασία μετατροπής του αριθμού 8 στο δυαδικό και το δεκαεξαδικό σύστημα αντίστοιχα. Οι αναπαραστάσεις του δεκαδικού αριθμού 8 στα δύο συστήματα είναι () και (C) (8) =(C) 6 (8) =() Σχήμα.: Μετατροπή του αριθμού (8) στο δυαδικό και το δεκαεξαδικό σύστημα αρίθμησης Μετατροπή κλασματικού μέρους Για τη μετατροπή του κλασματικού μέρους ενός δεκαδικού αριθμού στο δυαδικό σύστημα εργαζόμαστε ως εξής: πολλαπλασιάζουμε τον αριθμό επί δύο. Παίρνουμε το ακέραιο μέρος του αποτελέσματος και με το κλασματικό μέρος επαναλαμβάνουμε την προηγούμενη διαδικασία. Η διαδικασία συνεχίζε-

4 6 Υλικό, Λογισμικό και Επικοινωνίες Υπολογιστών ται έως ότου βρούμε στο κλασματικό μέρος του αριθμού το, ή (αν αυτό δε γίνει) μέχρι να φτάσουμε στην επιθυμητή ακρίβεια (π.χ. 3 κλασματικά δυαδικά ψηφία). Για το αποτέλεσμα παίρνουμε τα ψηφία που βρήκαμε στο ακέραιο μέρος κάθε πράξης. Παράδειγμα: Να μετατραπεί ο αριθμός (,35) στο δυαδικό σύστημα αρίθμησης. Η διαδικασία φαίνεται στον ακόλουθο πίνακα. αριθμός πολλαπλασιασμός επί αποτέλεσμα ακέραιο μέρος κλασματικό μέρος,35,5,5,5,5,5,5 Με βάση τον παραπάνω πίνακα, φτάσαμε σε αποτέλεσμα με κλασματικό μέρος. Επομένως η διαδικασία ολοκληρώθηκε, και το αποτέλεσμα είναι (,35) = (,). Παράδειγμα: Να μετατραπεί ο αριθμός (,46) στο δυαδικό σύστημα. Αν χρειαστεί, να γίνει στρογγυλοποίηση στο 5 ο κλασματικό ψηφίο. Η διαδικασία φαίνεται στον ακόλουθο πίνακα. αριθμός πολλαπλασιασμός επί αποτέλεσμα ακέραιο μέρος κλασματικό μέρος,46,855,855,855,4,4,4,48,48,48,846,846,846,683,683 Στο σημείο αυτό δεν έχουμε φτάσει σε αποτέλεσμα με στο κλασματικό μέρος, επομένως προβαίνουμε σε στρογγυλοποίηση το αριθμού και μπορούμε να απαντήσουμε ότι (,46) = (,). Αξίζει να σημειωθεί ότι, στην πραγματικότητα, ο αριθμός που βρήκαμε είναι διαφορετικός από τον αρχικό. Πιο συγκεκριμένα, ο αριθμός που βρήκαμε είναι στο δεκαδικό σύστημα: = =,5 +,5 +,35 = (,465) Η διαφορά αυτή (από το,46 στο,465) οφείλεται στο λάθος στρογγυλοποίησης και είναι τόσο μικρότερη όσο πιο πολλά δυαδικά ψηφία χρησιμοποιήσουμε. γ. Μετατροπή από δυαδικό σε δεκαεξαδικό και αντίστροφα Υπάρχουν δύο τρόποι για να μετατρέψουμε έναν αριθμό από το δυαδικό στο δεκαεξαδικό σύστημα αρίθμησης και αντίστροφα. Ο πρώτος τρόπος είναι να χρησιμοποιήσουμε ως ενδιάμεσο το δεκαδικό σύστημα. Στον τρόπο αυτό μετατρέπουμε από το ένα σύστημα στο δεκαδικό και στη συνέχεια από το δεκαδικό στο άλλο όπως περιγράψαμε προηγουμένως. Στο δεύτερο τρόπο μετατρέπουμε απευθείας από το ένα σύστημα στο άλλο. Οι δύο αυτοί τρόποι περιγράφονται στη συνέχεια. Μετατροπή μέσω του δεκαδικού Για να μετατρέψουμε το δεκαεξαδικό αριθμό F στο δυαδικό σύστημα μπορούμε να τον μετατρέψουμε πρώτα στο δεκαδικό αριθμό x6 + x6 + 5x6 = (99) Στη συνέχεια μετατρέπουμε το δεκαδικό αριθμό στον αντίστοιχο δυαδικό αριθμό όπως φαίνεται στη συνέχεια.

5 Κεφ. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας (99) =() Σχήμα.: Μετατροπή του αριθμού (99) στο δυαδικό σύστημα αρίθμησης Επομένως, η δυαδική παράσταση του αριθμού (F) 6 είναι η (). Αντίστροφα, για τη δεκαεξαδική παράσταση του αριθμού () βρίσκουμε πρώτα τη δεκαδική αναπαράσταση που είναι =99 Στη συνέχεια η μετατροπή στο δεκαεξαδικό σύστημα θα δώσει (Β) (99) =(F) 6 Σχήμα.3: Μετατροπή του αριθμού (99) στο δεκαεξαδικό σύστημα αρίθμησης Απευθείας μετατροπή Η απευθείας μετατροπή αριθμών από το δυαδικό στο δεκαεξαδικό σύστημα και αντίστροφα στηρίζεται στο γεγονός ότι 6= 4, επομένως ένα ψηφίο στο δεκαεξαδικό σύστημα αντιστοιχεί σε τέσσερα ακριβώς ψηφία στο δυαδικό σύστημα. Με βάση την παρατήρηση αυτή μπορούμε να ακολουθήσουμε τη διαδικασία που περιγράφουμε στη συνέχεια. Για την απευθείας μετατροπή ενός δεκαεξαδικού αριθμού στο δυαδικό σύστημα αντικαθιστούμε κάθε ψηφίο του αριθμού με ένα τετραψήφιο δυαδικό αριθμό σύμφωνα με τον ακόλουθο πίνακα. δεκαεξαδικό ψηφίο δυαδικά ψηφία

6 8 Υλικό, Λογισμικό και Επικοινωνίες Υπολογιστών 8 9 A B C D E F Μπορεί κανείς να παρατηρήσει ότι ο δυαδικός αριθμός (π.χ. ) είναι η έκφραση του δεκαεξαδικού ψηφίου στο δυαδικό σύστημα (π.χ. C). Έτσι, για παράδειγμα, ο δεκαεξαδικός αριθμός F αντιστοιχεί στο δυαδικό αριθμό όπως φαίνεται στη συνέχεια. F Αντίστροφα, για να μετατρέψουμε έναν αριθμό από το δυαδικό σύστημα στο δεκαεξαδικό, χωρίζουμε τα ψηφία του σε τετράδες προσθέτοντας, αν χρειαστεί, μηδενικά στην αρχή και στο τέλος του αριθμού (μετά την υποδιαστολή) και αντιστοιχούμε σε κάθε τετράδα το αντίστοιχο δεκαεξαδικό ψηφίο. Έτσι, ο δυαδικός αριθμός αντιστοιχεί στο δεκαεξαδικό αριθμό AD όπως φαίνεται στη συνέχεια (με πλάγια γράμματα φαίνονται τα μηδενικά που προσθέσαμε στην αρχή του αριθμού προκειμένου να συμπληρωθούν τετράδες ψηφίων). A D Μπορεί κανείς να διαπιστώσει ότι η απευθείας μετατροπή είναι πολύ πιο εύκολη και γρήγορη από ότι η μετατροπή χρησιμοποιώντας το δεκαδικό σύστημα. Μετατροπή από το οκταδικό στο δυαδικό και αντίστροφα Η μετατροπή αυτή μπορεί να γίνει μέσω του δεκαδικού ή απευθείας. Για την απευθείας μετατροπή αριθμών από το δυαδικό στο οκταδικό και αντίστροφα στηριζόμαστε στο γεγονός ότι, παρόμοια με το δεκαεξαδικό, σύστημα, ισχύει ότι 8= 3, επομένως ένα ψηφίο στο δεκαεξαδικό σύστημα αντιστοιχεί σε τρία ακριβώς ψηφία στο δυαδικό σύστημα. Με βάση την παρατήρηση αυτή μπορούμε να ακολουθήσουμε τη διαδικασία που περιγράφουμε στη συνέχεια. Για την απευθείας μετατροπή ενός οκταδικού αριθμού στο δυαδικό σύστημα αντικαθιστούμε κάθε ψηφίο του αριθμού με ένα τριψήφιο δυαδικό αριθμό σύμφωνα με τον ακόλουθο πίνακα. δεκαεξαδικό ψηφίο δυαδικά ψηφία

7 Κεφ. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας 9 Μπορεί κανείς να παρατηρήσει ότι ο δυαδικός αριθμός (π.χ. ) είναι η έκφραση του οκταδικού ψηφίου στο δυαδικό σύστημα (π.χ. 4). Έτσι, για παράδειγμα, ο οκταδικός αριθμός 3 αντιστοιχεί στο δυαδικό αριθμό όπως φαίνεται στη συνέχεια. 3 Αντίστροφα, για να μετατρέψουμε έναν αριθμό από το δυαδικό σύστημα στο δεκαεξαδικό, χωρίζουμε τα ψηφία του σε τριάδες προσθέτοντας, αν χρειαστεί, μηδενικά στην αρχή και στο τέλος του αριθμού (μετά την υποδιαστολή) και αντιστοιχούμε σε κάθε τριάδα το αντίστοιχο οκταδικό ψηφίο. Έτσι, ο δυαδικός αριθμός αντιστοιχεί στον οκταδικό αριθμό 55 όπως φαίνεται στη συνέχεια (με πλάγια γράμματα φαίνονται τα μηδενικά που προσθέσαμε στην αρχή του αριθμού προκειμένου να συμπληρωθούν τριάδες ψηφίων). 5 5 Μετατροπή από το δεκαεξαδικό στο οκταδικό σύστημα μέσω του δυαδικού Για να μετατρέψουμε ένα αριθμό από το δεκαεξαδικό σύστημα στο οκταδικό μετατρέπουμε τον αριθμό στον αντίστοιχο δυαδικό και στη συνέχεια το δυαδικό αριθμό στο οκταδικό σύμφωνα με τα παραπάνω. Για παράδειγμα, η διαδικασία μετατροπής του δεκαεξαδικού αριθμού 3FA στο οκταδικό σύστημα, φαίνεται στον ακόλουθο πίνακα. 3 F A Επομένως, η οκταδική αναπαράσταση του δεκαεξαδικού αριθμού (3FA) 6 είναι ο οκταδικός αριθμός () 8..3 Πράξεις στο δυαδικό σύστημα Στην παράγραφο αυτή θα περιγράψουμε τον τρόπο εκτέλεσης των τεσσάρων βασικών πράξεων (πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση) στο δυαδικό σύστημα. Το να γνωρίζουμε τον τρόπο εκτέλεσης των πράξεων στο δυαδικό σύστημα, θα μας βοηθήσει να καταλάβουμε τον τρόπο με τον οποίο πραγματοποιείται η εκτέλεση των πράξεων στο υπολογιστικό σύστημα..3. Πρόσθεση Στην πρόσθεση ξεκινάμε από δεξιά και προσθέτουμε τα αντίστοιχα ψηφία των αριθμών, κάθε φορά προσθέτοντας το κρατούμενο που δημιουργείται στα υψηλότερης τάξης ψηφία. Για την κατανόηση της εκτέλεσης της πρόσθεσης στο δυαδικό σύστημα θα μας βοηθήσει ο επόμενος πίνακας, που δίνει για τα δυνατά ζεύγη των προσθετέων ψηφίων (α, β) και του κρατουμένου (c in ), το αποτέλεσμα (S) και το κρατούμενο προς την επόμενη βαθμίδα (c out ).

8 Υλικό, Λογισμικό και Επικοινωνίες Υπολογιστών α β c in s c out Στο επόμενο Σχήμα φαίνεται η διαδικασία πρόσθεσης των αριθμών () και () που δίνει αποτέλεσμα (). Η αντίστοιχη πρόσθεση στο δεκαδικό σύστημα δίνει αποτέλεσμα 4+=4. Η διαδικασία της πρόσθεσης παρουσιάζεται από τα δεξιά προς τα αριστερά όπως δείχνει η αρίθμηση των βημάτων α= β= c in = s= c out = α= β= c in = s= c out = α= β= c in = s= c out = α= β= c in = s= c out = α= β= c in = s= c out = Αφαίρεση Σχήμα.4: Πρόσθεση στο δυαδικό σύστημα Στην αφαίρεση ξεκινάμε επίσης από δεξιά αφαιρώντας τα αντίστοιχα ψηφία των αριθμών. Σε κάθε βαθμίδα δημιουργείται ένα δανεικό (borrow) ψηφίο, το οποίο προστίθεται στο ψηφίο του αφαιρέτη της επόμενης βαθμίδας. Ο πίνακας που ακολουθεί δίνει για τα ζεύγη των ψηφίων του αφαιρέτη, του αφαιρετέου και του δανεικού, το αποτέλεσμα και το δανεικό προς την επόμενη βαθμίδα. α β b in s b out

9 Κεφ. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Για παράδειγμα, η διαδικασία αφαίρεσης των αριθμών () και () φαίνεται στο επόμενο Σχήμα α= β= b in = d= b out = α= β= b in = d= b out = α= β= b in = d= b out = α= β= b in = d= b out = Σχήμα.5: Αφαίρεση στο δυαδικό σύστημα Η αντίστοιχη αφαίρεση στο δεκαδικό σύστημα θα έδινε αποτέλεσμα -=..3.3 Πολλαπλασιασμός Ο πολλαπλασιασμός στο δυαδικό σύστημα αρίθμησης γίνεται, όπως και στο δεκαδικό, με διαδοχικές προσθέσεις. Κάθε ψηφίο του πολλαπλασιαστή πολλαπλασιάζεται με όλα τα ψηφία του πολλαπλασιαστέου και σχηματίζει ένα μερικό γινόμενο. Κάθε μερικό γινόμενο γράφεται κάτω από το προηγούμενο ολισθημένο κατά μία θέση προς τα αριστερά. Στη συνέχεια, προσθέτουμε ανά δύο τα μερικά γινόμενα. Στο επόμενο Σχήμα φαίνεται ο δυαδικός πολλαπλασιασμός των αριθμών () και (). Ο πολλαπλασιασμός στο δεκαδικό σύστημα θα έδινε 4x6=84=(). x μερικό γινόμενο x μερικό γινόμενο.3.4 Διαίρεση x μερικό γινόμενο 3 x + μερικό άθροισμα Σχήμα.6: Πολλαπλασιασμός στο δυαδικό σύστημα x + Η διαίρεση στο δυαδικό σύστημα πραγματοποιείται με διαδοχικές αφαιρέσεις του διαιρέτη από το διαιρετέο. Στο επόμενο Σχήμα φαίνεται η διαδικασία διαίρεσης των αριθμών () δια () που δίνει πηλίκο () και υπόλοιπο (). Η αντίστοιχη πράξη στο δεκαδικό σύστημα (5 : 5) θα έδινε πηλίκο 5 και υπόλοιπο. Σχήμα.: Διαίρεση στο δυαδικό σύστημα

10 Υλικό, Λογισμικό και Επικοινωνίες Υπολογιστών.4 Πράξεις στο δεκαεξαδικό σύστημα Η εκτέλεση των πράξεων στο δεκαεξαδικό σύστημα είναι πιο πολύπλοκη από ότι στο δυαδικό. Ο λόγος που μαθαίνουμε πράξεις στο σύστημα αυτό είναι ότι πολλές φορές χρησιμοποιούμε το δεκαεξαδικό σύστημα αντί του δυαδικού, επειδή το πλήθος των ψηφίων ενός αριθμού είναι πολύ μικρότερο από ότι στο δυαδικό σύστημα..4. Πρόσθεση Η πρόσθεση στο δεκαεξαδικό σύστημα γίνεται όπως στο δεκαδικό, ξεκινώντας από τα δεξιά και προσθέτοντας ανά δύο τα ψηφία, προσθέτοντας ακόμη το κρατούμενο της προηγούμενης βαθμίδας (αν υπάρχει). Για να προσθέσουμε δύο ψηφία στο δεκαεξαδικό σύστημα υπολογίζουμε την αριθμητική τους τιμή (αν κάποιο από αυτά είναι μεταξύ του A και του F ), προσθέτουμε τις αριθμητικές τους τιμές και διαιρούμε το αποτέλεσμα με το 6. Το υπόλοιπο της διαίρεσης είναι το ψηφίο του αποτελέσματος της άθροισης, ενώ το υπόλοιπο είναι το κρατούμενο προς την επόμενη βαθμίδα. Έτσι, η πρόσθεση δίνει αποτέλεσμα (8) επομένως δίνει αποτέλεσμα (8 mod 6) και κρατούμενο (8 div 6). Για παράδειγμα, στο επόμενο Σχήμα φαίνεται η διαδικασία πρόσθεσης των αριθμών (AD9) 6 και (D) 6. A D 9 + D 3 A F 6 α= β= c in = s=3 c out = A D 9 + D A F 6 α=a β= c in = s=a c out = A D 9 + D F 6 α=d β= c in = s=f c out = A D 9 + D 6 α=9 β=d c in = s=6 c out = Σχήμα.8: Πρόσθεση στο δεκαεξαδικό σύστημα Η αντίστοιχη πράξη στο δεκαδικό σύστημα ( ) δίνει αποτέλεσμα 594 = (3AF6) Αφαίρεση Η αφαίρεση στο δεκαεξαδικό σύστημα γίνεται όπως στο δεκαδικό, ξεκινώντας από τα αριστερά και αφαιρώντας το ψηφίο του αφαιρέτη από το ψηφίο του αφαιρετέου. Αν υπάρχει δανεικό από προηγούμενη βαθμίδα, προστίθεται στο ψηφίο του αφαιρέτη. Στην περίπτωση που το ψηφίο του αφαιρέτη είναι μεγαλύτερο από το ψηφίο του αφαιρετέου, δε δανειζόμαστε από την επόμενη βαθμίδα όπως στο δεκαδικό σύστημα αρίθμησης), αλλά 6 (που είναι η βάση του συστήματος). Για παράδειγμα, η διαδικασία της αφαίρεσης των αριθμών (4) = (AD9) 6 και (833) =(D) 6 που δίνει αποτέλεσμα (3444) = (EBC) 6 φαίνεται στο επόμενο Σχήμα.

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα 2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

Αριθµητική υπολογιστών

Αριθµητική υπολογιστών Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 4: Συστήματα Αρίθμησης

Εισαγωγή στους Η/Υ. Ενότητα 4: Συστήματα Αρίθμησης Εισαγωγή στους Η/Υ Ενότητα 4: Μανώλης Τζαγκαράκης, Βικτωρία Δασκάλου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Να παρουσιάσει τη θεωρία των συστημάτων αρίθμησης

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1)

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1) Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν τα κύρια αριθμητικά συστήματα, οι αλγόριθμοι μετατροπής μεταξύ των συστημάτων για την κάθε μια περίπτωση, ο τρόπος εκτέλεσης των τεσσάρων βασικών πράξεων

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Τέλος, στη δημιουργία των αριθμητικών συστημάτων:

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Μάθημα 2: Παράσταση της Πληροφορίας

Μάθημα 2: Παράσταση της Πληροφορίας Μάθημα 2: Παράσταση της Πληροφορίας 2.1 Παράσταση δεδομένων Κάθε υπολογιστική μηχανή αποτελείται από ηλεκτρονικά κυκλώματα που η λειτουργία τους βασίζεται στην αρχή ανοιχτό-κλειστό. Η συμπεριφορά τους

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα οµή Η/Υ: Αναπαράσταση εδοµένων Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα Περιεχόµενα Κωδικοποίηση δεδοµένων Κώδικας ASCII Άλλοι κώδικες Παραδείγµατα Συστήµατα Αρίθµησης Τα συνηθέστερα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΉ. Μάθημα 7

ΠΛΗΡΟΦΟΡΙΚΉ. Μάθημα 7 ΠΛΗΡΟΦΟΡΙΚΉ Μάθημα 7 Μηχανισμός Οπτικών Δίσκων CD ROM (compact disk read only memory) Μεγάλη αποθηκευτική ικανότητα (650ΜΒ ή 700ΜΒ) Γρήγορη προσπέλαση στα δεδομένα Χαμηλή τιμή (CD) Μέσο μεταφοράς και διανομής

Διαβάστε περισσότερα

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο Γιώργος Δημητρίου Μάθημα 11 ο και 12 ο Μονάδες ράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις ρόσθεση/αφαίρεση Λογικές πράξεις Μονάδες πολύπλοκων αριθμητικών πράξεων σταθερής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ & Εφαρμογές

Εισαγωγή στους Η/Υ & Εφαρμογές Τμήμα Οικονομικών Επιστημών Εισαγωγή στους Η/Υ & Εφαρμογές Διάλεξη #2: Υπολογιστές και συστήματα αρίθμησης Β. Δασκάλου, daskalu@upatras.gr Υπολογιστής Τα κύρια συστατικά ενός υπολογιστή Πληροφορίες εισόδου

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία

0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) Για να λύνετε εύκολα ασκήσεις στα συστήματα αρίθμησης θα πρέπει να απομνημονεύσετε τα πρώτα 17 βάρη του δυαδικού συστήματος από 2 0 μέχρι 2

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 2 η Τύποι Δεδομένων Δήλωση Μεταβλητών Έξοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης

Διαβάστε περισσότερα

3 η Multimedia Διάλεξη με θέμα Ip address Classes and Subnetting

3 η Multimedia Διάλεξη με θέμα Ip address Classes and Subnetting 3 η Multimedia Διάλεξη με θέμα Ip address Classes and Subnetting Περιέχει: Συστήματα αρίθμησης (Δεκαδικό, Δυαδικό, Οκταδικό, Δεκαεξαδικό, Παραδείγματα) Φυσικές διευθύνσεις (Mac addresses, BIA) Λογικές

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 4 ο ΜΣ Εφαρμοσμένη ληροφορική ΜΟΝΑΔΑ ΕΕΞΕΡΓΑΣΙΑΣ ΔΕΔΟΜΕΝΩΝ Υπομονάδες πράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις Λογικές

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 3 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων

Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 3 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Γιώργος ηµητρίου Μάθηµα 3 ο Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Μονάδα Επεξεργασίας εδοµένων Υποµονάδες πράξεων n Αριθµητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθµητικές

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ. Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής. Αναπαράσταση Δεδομένων

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ. Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής. Αναπαράσταση Δεδομένων ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Αναπαράσταση Δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 Επικοινωνία Εφαρμογές

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

Μαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα

Μαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα Παίζω, Σκέφτοµαι, Μαθαίνω Φύλλα εργασίας Μαθηµατικά Τεύχος Α Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα 116 σελίδες Περιεχόµενα 1η ενότητα:

Διαβάστε περισσότερα