Research Article Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Research Article Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid"

Transcript

1 Advances in Mathematical Physics Volume 016, Aticle ID , 19 pages Reseach Aticle Two-Phase Flow in Wie Coating with Heat Tansfe Analysis of an Elastic-Viscous Fluid Zeeshan Khan, 1, Rehan Ali Shah, 3 Saeed Islam, 1 and Bilal Jan 1 Depatment of Mathematics, Abdul Wali Khan Univesity, Madan, Khybe Pakhtunkhwa, Pakistan Sahad Univesity of Science and Infomation Technology, Peshawa, Pakistan 3 Depatment of Mathematics, Univesity of Engineeing and Technology, Peshawa, Khybe Pakhtunkhwa, Pakistan Coespondence should be adessed to Zeeshan Khan; zeeshansuit@gmail.com Received 4 Apil 016; Revised 1 May 016; Accepted 7 June 016 Academic Edito: Alexande Iomin Copyight 016 Zeeshan Khan et al. This is an open access aticle distibuted unde the Ceative Commons Attibution License, which pemits unesticted use, distibution, and epoduction in any medium, povided the oiginal wok is popely cited. This wok consides two-phase flow of an elastic-viscous fluid fo double-laye coating of wie. The wet-on-wet (WOW) coating pocess is used in this study. The analytical solution of the theoetical model is obtained by Optimal Homotopy Asymptotic Method (OHAM). The expession fo the velocity field and tempeatue distibution fo both layes is obtained. The convegence of the obtained seies solution is established. The analytical esults ae veified by Adomian Decomposition Method (ADM). The obtained velocity field is compaed with the existing exact solution of the same flow poblem of second-gade fluid and with analytical solution of a thid-gade fluid. Also, emeging paametes on the solutions ae discussed and appopiate conclusions ae awn. 1. Intoduction The study of non-newtonian fluids has gained deep attention fom eseaches due to its vaious applications in industies like oil, polyme, plastic, and so foth. Vaious models, both analytical and numeical, have been discussed in the study of non-newtonian fluids. Fluids models ae chaacteized by the undelying fluid gades like second gade, thid gade, and so foth genealizing to n-gade fluids. In this study non-newtonian thid-gade fluids have been studied fo thei applicability in optical fibe coating. Thid-gade fluids have been studied by many eseaches. Siddiqui et al. [1] studied the tosion flow of such fluid. The same autho studied heat flux of such fluids in two paallel plates which is discussed in []. Islam et al. [3] studied thid-gade fluid with heat tansfe. Aksoy and Pakdemili [4] investigated the thid-gade fluid flow in paallel plates with a poous medium. Thesubjectoftwoimmisciblefluidsflowswithheattansfe has been biefly studied due to its impotance in nuclea and chemical industies. It can be classified into thee goups, namely, segegated flows, tansitional o mixed flows, and dispesed flows [5]. Siddiqui et al. [6] studied two immiscible fluids in poous media. Batchelo [7] studied two immiscible fluidsinananalogousplate.twoimmisciblefluidshavebeen extensively studied theoetically and expeimentally [8, 9]. Diffeent types of fluids ae used fo wie and fibe optics coating, which depends upon the geomety of die, fluid viscosity, tempeatue of the wie o fibe optics, and the molten polyme. Most elevant woks on the wie and fibe optics coating aethussummaizedinthefollowing. Shah et al. [10] studied the wie coating analysis with linealy vaying tempeatue. Unsteady second-gade fluid with oscillating bounday condition inside the wie coating die was investigated by Shah et al. [11]. Exact solution was obtained fo unsteady second-gade fluid in wie coating analysis [1]. Shah et al. [13] studied thid-gade fluid with heat tansfe in the wie coating analysis. All these attempts wee elated to single laye coating flow. Immiscible fluid flow is used fo many industial and manufactuing pocesses such as oil industy o polyme poduction. Kim et al. [14] examined the theoetical pediction on the double-laye coating in wet-on-wet optical fibe coating pocess. Double-laye coating liquid flows wee used by Kim and Kwak [15] in optical fibe manufactuing. Fo this pupose powe-law fluid model was used. Recently Zeeshan et al. [16] used Phan Thien Tanne fluid in doublelaye optical fibe coating. The same autho [17] investigated

2 Advances in Mathematical Physics Q 1 Pimay coating applicato Seconday Q coating applicato Die cup Die cup Wie in Double coated wie out Figue 1: Manufactuing pocess of wie. Pimay coating esin Seconday coating esin double-laye esin coating of optical fibe glass using wet-onwet coating pocess with constant pessue gadient. Twophase flow of an Oloyd 8-constant fluid was used fo optical fibe coating by Zeeshan et al. [18]. Flow and heat tansfe in double-laye optical fibe coating using wet-on-wet coating pocess wee investigated by Khan et al. [19]. Keeping in view the wide ange of applications, an attempt is made to analyze the flow and heat tansfe in two-phase flow of an elastic-viscous fluid in a pessue type die. In this pape, the task is to find the analytical solutions fo the govening nonlinea equation aising in a coating metallic wie pocess inside a cylinical oll die, to study the fluid flow behavio in paticula, and to examine the effects of the non-newtonian fluid paametes and axial distance fom the cente of the metallic wie. This is ou fist attempt to investigate the double-laye coating flow of an elastic-viscous fluid on the wie using wet-on-wet coating pocess. Apat fom this, no one investigated the double-laye wie coating in wet-on-wet coating pocess using two immiscible elasticviscous fluids in a pessuized coating die. To the best of ouknowledge,nosuchanalysisofthedouble-layecoating flows of two immiscible elastic-viscous fluids on the wie is available in the liteatue. The pesent pape is stuctued as follows. Section isesevedfomodelingofthepoblem.solutionofthe poblem is given in Section 3. Section 4 is eseved fo analysis of esults. Section 5 contains the concluding emaks.. Modeling of the Poblem The geomety of the poblem is shown in Figue 1. The die and wie ae concentic. The coodinate system is taken at the cente of the wie, in which is taken pependicula to the flow diection z. The coating pocess is pefomed in two phases. In the fist phase the uncoveed wie of adius R w is agged with constant velocity V 1 into the pimay coating liquid. In the second phase the wet coating passes though the seconday coating die of adius R d and length L. Inthisway,thewie leaves the system with two layes of coating. The wet layes ae ied up by ultaviolet (UV) lamps. The liquid paametes at each phase ae genealized by coesponding phase numbe denoted by j (j = 1, ). The liquids ae paameteized by tempeatue Θ (j), the fluid density ρ (j),theviscosityμ (j), themal conductivity K (j), themal expansion coefficient β (j), and the specific heat c (j) p.thegasvelocitysuoundingthe polymeatthesufaceofcoatedwieisepesentedbyv as shown in Figue. The govening equations fo the two fluids ae the continuity, momentum, and enegy equations given as follows: u (j) =0, (1) ρ (j) D u (j) Dt = T (j), () c (j) DΘ (j) p =k Dt j Θ (j) + t (T (j) L), (3) whee D/Dt = / t + u (j) isthe substantive acceleation. No-slip bounday conditions ae taken at velocity. The tempeatue conditions Θ (1) and Θ () aetakenatthefibe opticsanddiewall,espectively.atthefluidinteface,we utilize the assumptions that the velocity, the shea stess, the pessue gadient, the tempeatue, and the heat flux ae continuous. The Cauchy stess T (j) given in () is T (j) = pi + S (j). (4) In the above equation p is the pessue and I and S (j) ae the identity and exta stess tenso, espectively. Fo thid-gade fluid S (j) is defined as [1 4, 13] S (j) =μ (j) A (j) 1 +α (j) 1 A(j) +α (j) A(j) 1 +τ (j) 1 A(j) (5) +τ (j) (A (j) 1 A(j) + A (j) A(j) 1 )+τ(j) 3 (t A (j) ) A(j) 1. In which α (j) 1, α(j), τ(j) 1, τ(j),andτ(j) 3 ae constants and A (j) 1, A (j), A(j) 3 ae kinematic tensos defined by A (j) 1 = L (j)t + L (j), A (j) n = A (j) n 1 LT + LA (j) n 1 + DA(j) n 1 Dt, n =,3, whee T stands fo tanspose of a matix. Fo steady and unidiectional flow velocity, tempeatue and stess fields ae defined as u (j) =[0,0,w (j) ()], Θ (j) =Θ (j) (), S (j) =S (j) (). (6) (7)

3 Advances in Mathematical Physics 3 Die =R d =R Fist phase flow Second phase flow =R w z Wie V 1 Figue : Two-phase flow model in wie coating die. In view of (7), (1) is satisfied identically and fom () (6) we have S (j) 3 =(α(j) 1 +α (j) )(dw(j) ), S (j) zz =α(j) ( dw(j) ), S (j) dw (j) 3 z =μ(j) +(τ (j) +τ (j) 3 )(dw(j) ). (8) The petinent bounday conditions on the velocity ae [14 19] w (1) =V 1 at =R w, w () =0 at =R d, w (1) =w (), S (1) z =S() z at =R. (10) (11) The petinent bounday conditions on the tempeatue ae [16 19] Fom (8), () and (3) educe to Θ (1) = Θ (1) at =R w, Θ () = Θ () at =R d, (1) (τ (j) +τ (j) 3 ) d 3 ( (dw(j) ) ) + μ(j) d (dw(j) )=0, K (j) ( d + 1 d )Θ(j) +μ (j) ( dw(j) ) 4 +(τ (j) +τ (j) 3 )(dw(j) ) =0. (9) K (1) dθ (1) Θ (1) =Θ (), =K () dθ () at =R, (13) whee (11) and (13) ae the inteface conditions on velocity and tempeatue, espectively. The volume flow ate at some contol suface is Q (j) =πv 1 (h (j) R w ), (14) whee h (j) is the adius of the coated wie.

4 4 Advances in Mathematical Physics The volume flow ate is [14 19] Q (j) R d = w (j) (). (15) R w Thickness of the coating wie is [14 19] Q(1) h (1) =R w ((1 + πv 1 Rw ) 1), h () =R w ([(1 + h(1) ) + Q() ] R w πv 1 Rw [ ] +(1+ h(1) R w )). 1/ (16) In view of (17), (9) (16) can be educed to the following set of nondimensional equations, espectively: d w j d θ j + dw j +β j (3 d w j (dw j ) +( dw 3 j ) )=0, =0, + 1 w 1 (1) =1, w (δ) =U, w 1 =w, S (1) z =S() z θ 1 (1) =0, θ (δ) =1, θ 1 =θ, dθ j +B j ( dw j ) +B j β j ( dw 4 j ) at =Ω, (18) (19) (0) (1) () = R w, w j = w(j) V 1, θ j = Θ(j) Θ () Θ () Θ (1), τ (j) 0 =τ (j) +τ (j) 3, R d =δ>1, R w R =Ω, R w (17) dθ 1 = K dθ δ Q (j) Q j =Q 1 +Q = πrw V 1 δ + w ()(), Ω h j =h 1 +h = h(j) R w Ω = w 1 ()() 1 at =Ω, Ω 1/ =([1+ w 1 ()() ] 1 δ 1/ 1)+([(1+h 1 ) + w ()() ] Ω (3) (4) (5) V V 1 =U, +(1+h 1 )). λ= μ() μ (1), K= K() K (1), μ (j) V 1 B j =, K (j) ( Θ () Θ (1) ) β j = τ (j) 0 μ (j) (R w /V 1 ). 3. Solution of the Poblem The OHAM is a steadfast method which has been boadly used by the eseaches to solve nonlinea poblems. One special aea of application of this method is to solve equations aising when non-newtonian fluids [0 5] ae studied. To solve (18) coesponding to the bounday conditions given in (0) and (1), we apply OHAM and ADM [6 8]. The details of OHAM and ADM ae given in Appendix. Hee, only the OHAM solution is given.

5 Advances in Mathematical Physics 5 By using OHAM, the zeoth-, fist-, and second-ode solutions fo both layes ae given below: Collectingtheesults,wewitethevelocityfieldobtainedby OHAM up to second-ode appoximation as w (1)0 =σ 1 +σ ln, w ()0 =σ 3 +σ 4 ln, w (1)1 =σ 5 +σ 6 ln k C 1 k ln + 1 k β C 1 k β 1, w ()1 =σ 7 +σ 8 ln k C 3 k ln + 1 k β C 3 k β, w (1) =σ 9 +σ 10 ln ln C 1 k 1 ln C 1 k 1 +k w 1 () =w (1)0 () +w (1)1 (, C 1 )+w (1) (, C 1,C ) +, w () =w ()0 () +w ()1 (, C 1 )+w () (, C 3,C 4 ) +. (7) The seies solution up to second-ode appoximation fo both layes is w 1 =Φ 11 +Φ 1 ln +Φ Φ Γ Φ Φ Φ 18, (8) C 1k 1 C 1 k C 1 k + 1 C 1 k β C 1 k β C 1k β C 1 k β C 1 k β C 1 k β C 1 k β 1 4 C k β 1 + 3C 1 k 1k β 1 + 6C 1k 3 β 1 σ 4 C 1 k4 β 1 C 1 k4 β C 1 k4 β 1 4 3C 1k β 1σ 4 σ 4 ln +C 1 σ 4 ln, w () =σ 11 +σ 1 ln ln C 3 k ln C 3 k 1 +k (6) w =Γ 11 +Γ 1 ln +Γ Γ Γ Γ Γ Γ 18. Inviewof(4)thevolumeflowateineachphaseisobtained as follows: Q 1 = 1 4 +Φ 14 (Ω 1) +Φ 11 (Ω 1) Φ 1 4 Ω + Φ 13 3 (Ω3 1)+( Φ 1 3 Ω +Φ 15 ) ln Ω Φ 16 ( 1 Ω 1) Φ 17 ( 1 Ω 1) C 3k 1 C 1 k C 3 k + 1 C 1 k β C 3 k β 3 3 C 3k β 4 + C 3 k β 10 5 C 3 k β 3 4 C 3 k β C 3 k β 4 C 4k β + 3C 3 k 1k β + 6C 3k 3 β σ 6 C 3 k4 β C 3 k4 β 3 6 3C 3 k4 β 4 3C 3k β σ 6 σ 6 ln +C 3 σ 6 ln. Q Φ 18 3 ( 1 Ω 3 1), = (Ω δ) (( Γ 11 (Ω+δ) + Γ 13 (Ω+δ) +Γ 14 )) +Γ 15 (ln ln ( Ω δ )) ( 1 Ω 1 δ )Γ Γ ( 1 Ω + 1 δ ) + Γ 86 ( 1 Ω + 1 δ ). (9)

6 6 Advances in Mathematical Physics 4. Solution fo the Tempeatue Distibution Now inseting w 1 () and w () fom (8) into (19) and solving with bounday conditions given in () and (3), we obtain the tempeatue fields fo both layes as θ 1 =c 1 +c ln + Ψ 1 + Ψ 1 + Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ 1 + Ψ +Ψ 3 + Ψ 4 +Ψ 5 (ln ), θ =c 3 +c 4 ln + Λ 1 + Λ 1 + Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ 1 + Λ +Λ 3 + Λ 4 +Λ 5 (ln ), (30) whee c 1, c, c 3, c 4, σ 1, σ, σ 3, σ 4, σ 5, σ 6, σ 7, σ 8, σ 9, σ 10, σ 11, σ 1, Ψ 11, Ψ 1, Ψ 13, Ψ 14, Ψ 15, Ψ 16, Ψ 17, Ψ 18, Γ 11, Γ 1, Γ 13, Γ 14, Γ 15, Γ 16, Γ 17, Γ 18, Λ 1, Λ, Λ 3, Λ 4, Λ 5, Λ 6, Λ 7, Λ 8, Λ 9, Λ 10, Λ 11, Λ 1, Λ 13, Λ 14, Λ 15, Λ 16, Λ 17, Λ 18, Λ 19, Λ 0, Λ 1, Λ, Λ 3, and Λ 4 ae all constants containing the convegence-contol paametes C 1,...,C 4, which ae optimally detemined by themethodofleastsquaesandaegiveninappendix. 5. Analysis of the Results Two-phase flow of an elastic-viscous thid-gade fluid is used fo wie coating. Actually, we ae making a platfom fo coating of polyme on the wie using theoetical appoach. The wie needs flexibility; that is why we need two-laye coating of the polyme. The inne coating o pimay coating potectsthewiefombending,whiletheoutecoating o seconday coating potects the pimay coating fom mechanical damage. Fo coating of the double-laye wie the wet-on-wet coating pocess is applied. Axial velocity distibution, flow ate, thickness of the coated wie, and tempeatuedistibutionsfoeachphaseaeobtainedby OHAM. The convegence of the method is also necessay to check the eliability of the methodology. The convegence of the obtained seies is shown in Figues 3 and 4. The cuent computed esults obtained ae also compaed with ADM, and an outstanding coespondence is seen to exist between the two sets of data as evealed in Figues 5 and 6 and Table 1. Futhemoe, the obtained esults ae also compaed with Table 1: Numeical compaison of OHAM and ADM when β 1 = 0.1, β = 0.5, λ = 0.3, δ =, C 1 = , C = , C 3 = , andc 4 = OHAM ADM Absolute eo Table : Compaison of the pesent wok with published wok [1] when β 1 = 0.1, β = 0.5, λ = 0.3, δ=, C 1 = , C = , C 3 = , andc 4 = Pesent wok Published wok [1] Absolute eo Table 3: Compaison of the pesent wok with published wok [13] when β 1 = 1 = β, λ = 0.3, δ =, C 1 = , C = , C 3 = , andc 4 = Pesent wok Published wok [13] Absolute eo peceding published elated liteatue, as a special case of the poblem and admiable ageement is obseved in this case also, as shown in Tables and 3.

7 Advances in Mathematical Physics 7 1.0E E E E E 01.00E 01 w() E Figue 3: Eo gaph (showing convegence of OHAM): OHAM up to second-ode solution when U = 0., β 1 = 0.3, β =1, λ = 0.3, and δ=. 3.50E E E E E E OHAM ADM Figue 5: Velocity compaison between OHAM and ADM esults when U = 0., β 1 = 0.1, β = 0.5, λ = 0.3, C 1 = , C = , C 3 = ,andC 4 = E E θ() Figue 4: Eo gaph (showing convegence of OHAM): OHAM up to second-ode solution when U = 0., β 1 = 0.1, β = 0.3, λ = 0.3, and δ= The vaiation of the non-newtonian paamete β 1,the Binkman numbe B 1, the conductivity atio K,andtheadii atio δ onthevelocity,tempeatue,andthicknessofcoated wie ae elaboated numeically in Tables 4 8. Table 4 shows the effects of the non-newtonian paamete β 1 on the velocity pofile. Hee, we vaied β 1 = 0., 0.3, 0.5, 0.8 and fixed the values of U = 0., λ = 0.1, β = 0.5,andδ=.Itistobenoted that the ise of the non-newtonian paamete deceases the speedoftheflow.theeffectsofthebinkmannumbeb 1 and the conductivity atio K on the tempeatue distibution ae givenintables5and6.intable5wevaiedb 1 = 5, 10, 13, 18 and fixed the values of λ = 0.1, β 1 = 0.1, β = 0.3, and δ=. Table 6 gives the numeical values of the tempeatue distibution by taking diffeent values of the conductivity atio K. We obseve fom these tables that the tempeatue inside the fluid inceases by inceasing the values of the OHAM ADM Figue 6: Tempeatue compaison between OHAM and ADM esults when β 1 = 0.1, β = 0.5, λ = 0.3, B 1 =3, B =5, δ=, C 1 = , C = , C 3 = , and C 4 = conductivity atio. The incease in the Binkman numbe significantly affects the tempeatue distibution as shown in Table 5. Futhemoe, the tempeatue pofile attains its maximum values at the cente of the annula die fo diffeent values of B 1 ; then it deceases to meet the fa field bounday conditions fo fixed paametes. Tables 7 and 8 pesent the impact of enlaging the adii atio δ and the viscosity atio λ on the thickness of the coated wie, espectively. Fom these

8 8 Advances in Mathematical Physics Table 4: Velocity pofile fo vaious values of β 1,whenβ = 0., λ= 0.3, δ =, C 1 = , C = , C 3 = , andc 4 = β 1 = 0. β 1 = 0.3 β 1 = 0.5 β 1 = Table 5: Tempeatue distibutions fo seveal values of B 1,when β 1 = 0.1, β = 0.3, B = 10, K = 0.3, λ = 0.3, δ =, C 1 = , C = , C 3 = , andc 4 = B 1 =5 B 1 =10 B 1 =13 B 1 = Table 6: Tempeatue distibutions fo seveal values of conductivity atio K, whenβ 1 = 0.1, β = 0.3, B 1 = 10, B = 15, λ = 0.3, δ =, C 1 = , C = , C 3 = , andc 4 = K = 0.1 K = 0.3 K = 0.7 K = tables it is obseved that the thickness of coated wie inceases with incease of δ and λ,espectively. Table 7: Thickness of coated wie fo vaious values of δ when β 1 = 0.1, β = 0.3, λ = 0.3, C 1 = , C = , C 3 = , andc 4 = δ = 1. δ = 1.4 δ = 1.8 δ = Table 8: Thickness of coated wie fo vaious values of λ when β 1 = 0.1, β = 0.3, δ =, C 1 = , C = , C 3 = , andc 4 = λ = 0. λ = 0.4 λ = 0.5 λ = Additionally, the thickness of the coated wie can be maintained at a equied level by adjusting these paametes. 6. Conclusions Two-phase flow of an elastic-viscous thid-gade fluid and wet-on-wet coating pocess is applied fo wie coating analysis. The obtained nonlinea equations ae solved fo velocity fields and tempeatue distibution by OHAM. ADM is also used fo claity. The effect of vaious emeging paametes on the velocity pofile, thickness of coated wie, and tempeatue distibution is discussed numeically. It is obseved that, with inceasing β 1,thevelocityofthefluiddeceases. The tempeatue inside the fluid is found to be inceased with inceasing the Binkman numbe B 1 and conductivity atio K. Futhemoe, the thickness of the coated wie also inceases with δ and λ. Appendix A. Analysis of ADM ADM is an analytical technique fo decomposing an unknown function into infinitely many components. Fo bette undestanding we conside the following: w (i) (, t) = n=0 w (i)n (, t), i = 1,. (A.1) To find the components w (i)0, w (i)1, w (i),..., sepaately, decomposition method is used.

9 Advances in Mathematical Physics 9 Conside the following nonlinea diffeential equation: L t w (i) (, t) +L w (i) (, t) +R (i) w (i) (, t) +N (i) w (i) (, t) =g (i) (, t), L w (j) (, t) =g (j) (, t) L t w (j) (, t) R (j) w (j) (, t) N (j) w (j) (, t). (A.) (A.3) Hee L = / and L t = / taelinea opeatos, g (i) (, t) is a souce tem, R (i) w (i) (, t) is a emainde linea opeato, and N (i) u (i) (, t) is a nonlinea tem. Applying L 1 on (A.3) to both side we have L 1 L w (i) (, t) =L 1 g (i) (, t) L 1 L tw (i) (, t) L 1 R (i)w (i) (, t) L 1 N (i)w (i) (, t), w (i) (, t) =f (i) (, t) L 1 L tw (i) (, t) L 1 R (i)w (i) (, t) L 1 N (i)w (i) (, t). (A.4) The function f (j) (, t) is obtained by utilizing the bounday conditions given in (0) and (1). The opeato L 1 = ( ) is used fo second-ode diffeential equations. With the seies solution of w (i) using ADM, we have n=0 w (i) (, t) = n=0 w (i)n (, t), w (i)n (, t) =f (i) (, t) L 1 L 1 N (i) n=0 R (i) n=0 w (i)n (, t) w (i)n (, t) (A.5) In view of Adomian polynomials the nonlinea tem N (i) n=0 w (i)n(, t) can be expessed as N (i) w (i)n (, t) = n=0 n=0 A (i)n, (A.6) whee the components w (i)0, w (i)1, w (i), w (i)3,... ae detemined as w (i)0 +w (i)1 +w (i) +w (i)3 +w (i)4 + Theecusiveelationisdefinedas w (i)0 (, t) =f (i)0 (, t) w (i)1 (, t) = L 1 R (i) [w (i)0 (, t)] L 1 (A (i)0 ), w (i) (, t) = L 1 R (i) [w (i)1 (, t)] L 1 (A (i)1 ), w (i)3 (, t) = L 1 R (i) [w (, t)] L 1 (A (i) ), and so on. B. Analysis of OHAM (A.8) To study the basic idea of OHAM, we conside the following nonlinea diffeential equation: A(w (i) ())+G (i) () =0, Λ, B(w (i), dw (i) )=0, Δ, (B.1) whee A is the diffeential opeato and B is the bounday opeato, w (i) is the unknown function, is the spatial independent vaiable, Δ is the bounday of the domain Λ, and G (i) () is the unknown analytical function. The opeato A can be witten as A=L (i) +N (i), (B.) whee L (i) and N (i) ae the linea and nonlinea opeatos, espectively. Fom (9), we have L (j) [φ (j) (, p)]= d w (j) N (j) [φ (j) (, p)] =β (j) (3 d w (j) G (j) =0, + dw (j), ( dw (j) ) +( dw 3 (j) ) ), (B.3) whee L (j), N (j), and G (j) ae linea opeato, nonlinea opeato, and souce tem, espectively, and p [0,1]is an embedding paamete. We conside a homotopy φ (j) (,p) : Λ [0,1] Rthat satisfies =f (i) (, t) L 1 R (i) (w (i)0 +w (i)1 +w (i) +w (i)3 + ) L 1 N (i) (A (i)0 + A (i)1 + ). (A.7) To detemine the seies components w (i)0, w (i)1, w (i), w (i)3,...,itshouldbenotedthatadmsuggestthatf (j) (, t), in fact descibe the zeoth component w (i)0. [1 p] [L (j) [φ (j) (, p)]+ G (j) ()] H (j) (p) [L (j) [φ (j) (, p)]+ N (j) [φ (j) (, p)]+ G j ()] =0, B(φ (j) (, p), φ (j) (, p) )=0, (B.4)

10 10 Advances in Mathematical Physics with bounday conditions φ 1 (1, p) = 1, φ (δ, p) = U, φ 1 (Ω, p) = φ (Ω, p), S z(1) (Ω, p) = S z() (Ω, p), (B.5) whee H (j) (p) is a nonzeo auxiliay function and φ (j) (, p) is an unknown function. Fo p=0, (11) only ecupeate the linea pat of solution; that is, φ (j) (, p) = w (j)0 (), Fist-ode poblem with bounday conditions is shown as follows: p 1 : d w (1)1 + dw (1)1 dw (1)0 dw (1)0 C 1 β 1 C 1 ( dw 3 (1)0 ) d w (1)0 d w (1)0 C 1 d w (1)0 6β 1 C 1 ( dw (1)0 ) =0, L (j) [φ (j) (, 0)]+G() =0, B(w (j)0, w (j)0 ), (B.6) Fo p = 1, we ecupeate the nonlinea bounday value poblem and the solution conveges to exact solution; that is, φ (j) (, 1) = w (j) (). Thesolutionφ (j) (, p) appoaches fom w (j)0 to w (j) () as p vaies fom 0 to 1. In ode to impove the accuacy of the esults and also in ode to ensue a faste convegence to the exact solution, we use the following genealized auxiliay function involving an inceased numbe of convegence-contol paametes even in the fist ode of appoximation, including also a physical paamete o a function of the physical paamete p 1 : d w ()1 + dw ()1 dw (1)0 dw ()0 C 3 β C 3 ( dw 3 ()0 ) d w ()0 d w ()0 C 3 d w ()0 6β C 3 ( dw ()0 ) =0, w (1)1 (1) =0, w ()1 (δ) =0, w (1)1 (Ω) =w ()1 (Ω), (B.10) H (t; p, C i )=ph 1 (t, C i )+p H (t, C i )+, (B.7) whee H i (t; C j ), i = 1,,..., ae auxiliay functions depending on it (o anothe physical paamete) and unknown convegence-contol paametes C j, j=1,,... Fo appoximate solution, φ (j) (, p) is expanding with espect to p by using Taylo seies φ (j) (, p, C i )=w (j)0 () + k=1 w (j)k (, C i )p k, i=1,,... (B.8) Substituting both (B.7) and (B.8) into (B.4), and equating each coefficient like powe of p and p, we have diffeent ode poblems. Zeoth-ode poblem with bounday conditions is shown as follows: S z(1)1 (Ω) =S z()1 (Ω). Second-ode poblem with bounday conditions is shown as follows: p : d w (1) + dw (1) dw (1)0 C β 1 C ( dw 3 (1)0 ) dw (1)1 d w (1)0 d w (1)0 dw (1)1 C C 1 6β 1 C 1 dw (1)1 ( dw (1)0 ) p 0 : d w (1)0 + dw (1)0 =0, p 0 : d w ()0 + dw ()0 =0, w (1)0 (1) =1, w ()0 (δ) =U, w (1)0 (Ω) =w ()0 (Ω), S z(1)0 (Ω) =S z()0 (Ω). (B.9) d w (1)0 6β 1 C ( dw (1)0 ) d w (1)0 dw (1)0 dw (1)1 1β 1 C 1 d w (1)1 C 1 d w (1)1 6β 1 C 1 d w (1)1 p : d w () + dw () dw ()0 C 4 ( dw (1)0 ) =0,

11 Advances in Mathematical Physics 11 β C 4 ( dw 3 ()0 ) dw ()1 d w ()0 d w ()0 dw ()1 C 4 C 3 6β C 3 dw ()1 ( dw ()0 ) d w ()0 6β C 4 ( dw ()0 ) d w ()0 dw ()0 dw ()1 1β C 3 d w ()1 C 3 d w ()1 6β C 3 d w ()1 w (1) (1) =0, w () (δ) =0, w (1) (Ω) =w () (Ω), S z(1) (Ω) =S z(1) (Ω). ( dw ()0 ) =0, (B.11) The convegence of (B.8) depends upon the auxiliay constant and ode of the poblem. If it conveges at p=1,onehas w (j) (, C 1,C,...,C n ) =w (j)0 () + w (j)n (, C 1,C,...,C n ). n=1 (B.1) Using (B.1) in (B.1), the expession fo the esidual in the following is obtained as R (j) (, C n )=L (j) w(,c n )+G (j) () +N (j) (w (, C n )), n=1,,...,m. (B.13) Many methods such as Ritz Method, Galekin s Method, collocationmethod,andleastsquaemethodaeusedtofind the auxiliay constants. Hee we use the least squae method to find the auxiliay constant: b J(C 1,C,...,C m )= R (j) (, C 1,C,...,C m ), a J = J (B.14) = =0, C 1 C whee a and b (taking fom domain) ae constant that locate the auxiliay constants which minimize the esidual. The above sequence of poblems given in (B.9) (B.11) ae solved using Mathematica softwae (see (6) in Solution of the Poblem): σ 1 =1, σ 3 =U σ 4 ln δ, σ = U 1 ln Ω σ ln δ 4 ( ln Ω 1), σ 4 = p 3p 3 + 1/3 ( p +3p 1p 3 ) 3p 3 ( p 3 +9p 1p p 3 7p3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) ( p 3 +9p 1p p 3 7p 3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ), 3 1/3 p 3 ln δ p 1 =1+( ln Ω 1)(1 6γ 1 Ω (U 1 ln Ω ) ), p = 6γ 1 Ω (U 1 δ )(ln ln Ω ln Ω 1), p 3 = 3 Ω (γ ln δ γ 1 ( ln Ω 1) ), p 4 = U 1 ln Ω,

12 1 Advances in Mathematical Physics σ 5 =k β 1C 1 k 8 + β 1C k, σ 6 = 1 ln Ω Ωk +C 1 k β 1 + λc 1k β 1 Ω +C 3 k ln δ Ωk C 3 k ln Ω σ 8 (ln (Ωδ)), σ 7 = σ 8 ln δ+δk +C 3 k ln δ λc 4k β 8δ 4 + λc 3k β δ, σ 8 = λ (ζ/ω + ln (δω)) [C 1k ln Ω C 1 k β 0 + C 1k β 1 Ω +C 3 k ln δ C 4k β 8δ 4 + C 3k β δ C 3 k ln Ω+ C 4k β 8Ω 4 ] C 3k β Ω Ω ln Ω (ζ/ω + ln (δω)) [k + C 1k Ω + C 1k β 1 Ω 5 C 1k β 1 Ω 3 C 1k β 1 Ω 3 ζ(k + C 3k Ω + C 1k β 1 Ω 5 C 3k β 1 Ω 3 )], σ 9 = k (1 + C 1 ) λc 1k β C 1 k β 1 +C k β 1 3C 1 k β 1 6C 1 k 3 β 1 3 C 1 k3 β C 1 k4 β 1 +σ 4 (1 +k 1 +3C 1 k β 1), σ 10 = λ ln Ω [ σ 9 k (C 1 (1 + C 1 ) C 3 (1 + C 3 ) 3 (σ 4 +σ 6 )) ln Ω k Ω (C3 1 C3 3 +C 1 C 3 )+Ω(C 1 +C 3 ) +( k 10Ω 5 k 3Ω 4 )(β 1C 1 +β C 3 )+( k 3Ω 3 + k 4Ω )(β 1C 1 +β C 3 )+( k 10Ω 5 + k 3Ω 4 )(β 1C 1 +β C 3 ) + k 3Ω 3 (β 1C 1 +β C 3 ) k 4Ω 4 ((β 1C 1 β C 3 )+(β 1C +β C 4 )) ( 3k 1k Ω 3k Ω )(β 1C 1 β C 3 ) + k4 3Ω 6 (β 1C 1 +β C 3 ) k 4Ω (β 1C 1 β C 3 )] + k4 Ω 4 (β 1C 1 +β C 3 )+ 1 Ω (σ 4 +σ 6 )+ 1 Ω (C 1σ 4 +C 3 σ 6 ) + 3k4 Ω (β 1C 1 σ 4 +β C 3 σ 6 )+σ 11 +σ 1 ln Ω, σ 11 = [σ 1 ln Ω + λk 1 (C 3 C 3 ) ln Ω δk + λk δ C 3 δk C 3 + k δ C 3 k 10δ 5 β C 3 + λk 3Ω 4 β C 3 k 3δ 3 β C 3 k 10δ 5 β C 3 k 3δ 4 β C 3 + k 3δ 3 β C 3 + k 4δ β C 3 k δ β C 4 + 3k 1k δ β C 3 + 6k3 δ β C 3 + 3k3 δ 3 β C 3 + k4 3δ 6 β C 3 σ 4 δ σ 4 ln δ+c 1 σ 4 ln δ 3k δ β C 3 σ 4], σ 1 =( λ Ω (ln δ 1))[ k 1 (C 1 C 3 ) ln Ω k 1 (C 3 1 C3 3 ) ln Ω+ k Ω (C 1 +C 3 ) k (C 1 C 3 )+ k Ω (C 1 +C 3 ) + k Ω 6 (β 1C 1 +β C 3 )+ k 8Ω 5 (β 1C 1 +β C 3 )+ k Ω 4 (β 1C 1 +β C 3 )+ k Ω 3 (β 1C 1 +β C 3 )+ k Ω 6 (β 1C 1 +β C 3 ) + k 8Ω 5 (β 1C 1 +β C 3 )+ k Ω 4 (β 1C 1 +β C 3 )+ k Ω 3 (β 1C 1 +β C 3 )+k Ω 3 (β 1C +β C 4 )+3k 1k Ω 3 (β 1 C 1 +β C 3 ) + 6k Ω (β 1C 1 +β C 3 )+ 3k3 Ω 3 (β 1C 1 +β C 3 ) k4 Ω 7 (β 1C 1 +β C 3 ) 6k4 Ω 5 (β 1 C 1 β C 3 ) 1 Ω (σ 4 σ 6 )

13 Advances in Mathematical Physics 13 +(σ 4 +σ 6 ) ln Ω 1 Ω (C 1σ 4 C 3 σ 6 ) (C 1 σ 4 C 3 σ 6 ) ln Ω 6k Ω 3 (β 1C 1 σ 4 β C 3 σ 6 )+ 1 ln Ω σ 9], Φ 11 =1 β 1 C 1k +β 1 σ 5, Γ 11 =1 β C 3k +β σ 7, Φ 1 = U 1 ln δ +β 1σ 6 β 1 C 1 k +β 1 σ 10, Γ 1 = U 1 ln δ +β σ 8 β C 3 k +β σ 1, Φ 13 =β 1 k β 1 k, Γ 13 =β k β k, Φ 14 =β 1 C 1 k +6β 1 C 1 k 3 σ 4 (1 + C 1 )+β 1 C 1k, Γ 14 =β C 3 k +6β C 3 k 3 σ 6 (1 + C 3 )+β C 3k, Φ 15 = 1 C 1k β C 1k β3 1 +3C 1k β 1 σ C 1k β C 1 k β 1 +3C 1 k β3 1 k 1 C k β3 1, Φ 16 = 1 3 C 1k β C 1 k β3 1, Γ 16 = 1 3 C 3k β3 1 3 C 3 k β3, Φ 17 = 1 8 C 1k β C 1k β C 1 k β3 1 1 C 1 k4 β3 1, Φ 18 = 1 10 C 1k β C 1 k β 1, Γ 18 = 1 10 C 3k β C 3 k β, Γ 15 = 1 C 3k β 1 4 C 3k β3 +3C 3k β σ C 3k β + 1 C 3 k β +3C 3 k β3 k 1 C 4 k β3, Γ 17 = 1 8 C 3k β 1 3 C 3k β3 1 3 C 3 k β3 1 C 3 k4 β3, Ψ 1 = 65 4 B 1β 1 Φ 4 18, Ψ = B 1β 1 Φ 17 Φ 3 18, Ψ 3 = 1B 1 β 1 Φ 17 Φ B 1β 1 Φ 16 Φ 3 18, Ψ 4 = 1B 1 β 1 Φ 17 Φ B 1β 1 Φ 16 Φ 3 18, Ψ 5 = B 1β 1 Φ 3 17 Φ B 1β 1 Φ 16 Φ 17 Φ B 1β 1 Φ 15 Φ 3 18, Ψ 6 = B 1β 1 Φ B 1β 1 Φ 16 Φ 17 Φ B 1β 1 Φ 16 Φ B 1β 1 Φ 15 Φ 17 Φ B 1β 1 Φ 14 Φ 3 18, Ψ 8 = 7 4 B 1β 1 Φ 16 Φ 17 4B 1β 1 Φ 15 Φ B 1β 1 Φ 3 16 Φ B 1β 1 Φ 15 Φ 16 Φ 17 Φ B 1β 1 Φ 14 Φ 17 Φ B 1 β 1 Φ 15 Φ B 1β 1 Φ 14 Φ 16 Φ B 1β 1 Φ 1 Φ 17 Φ B 1β 1 Φ 13 Φ 3 18,

14 14 Advances in Mathematical Physics Ψ 9 = 96 5 B 1β 1 Φ 3 16 Φ B 1β 1 Φ 15 Φ 16 Φ B 1β 1 Φ 14 Φ B 1β 1 Φ 15 Φ 16 Φ B 1β 1 Φ 15 Φ 17Φ B 1β 1 Φ 14 Φ 16 Φ 17 Φ B 1β 1 Φ 1 Φ 17 Φ B 1β 1 Φ 14 Φ 15 Φ 18 +8B 1β 1 Φ 1 Φ 16 Φ B 1 β 1 Φ 13 Φ 17 Φ 18, Ψ 10 = B 1β 1 Φ B 1β 1 Φ 15 Φ 16 Φ B 1β 1 Φ 15 Φ B 1β 1 Φ 14 Φ 16 Φ B 1β 1 Φ 1 Φ B 1 β 1 Φ 15 Φ 16Φ B 1β 1 Φ 14 Φ 16 Φ B 1β 1 Φ 14 Φ 15 Φ 17 Φ B 1β 1 Φ 1 Φ 16 Φ 17 Φ B 1 β 1 Φ 13 Φ 17 Φ B 1β 1 Φ 14 Φ B 1β 1 Φ 1 Φ 15 Φ B 1β 1 Φ 13 Φ 16 Φ 18, Ψ 11 = B 1β 1 Φ 15 Φ B 1β 1 Φ 15 Φ 16Φ B 1β 1 Φ 14 Φ 16 Φ B 1β 1 Φ 14 Φ 15 Φ B 1 β 1 Φ 1 Φ 16 Φ B 1β 1 Φ 13 Φ B 1β 1 Φ 3 15 Φ B 1β 1 Φ 14 Φ 15 Φ 16 Φ B 1β 1 Φ 1 Φ 16 Φ B 1β 1 Φ 14 Φ 17Φ B 1β 1 Φ 1 Φ 15 Φ 17 Φ B 1β 1 Φ 13 Φ 16 Φ 17 Φ B 1β 1 Φ 1 Φ 14 Φ B 1 β 1 Φ 13 Φ 15 Φ 18, Ψ 1 = 3B 1 β 1 Φ 15 Φ 16 3 B 1β 1 Φ 14 Φ B 1β 1 Φ 3 15 Φ 17 8B 1 β 1 Φ 14 Φ 15 Φ 16 Φ 17 +6B 1 β 1 Φ 1 Φ 16 Φ B 1 β 1 Φ 14 Φ B 1β 1 Φ 1 Φ 15 Φ 17 +8B 1β 1 Φ 13 Φ 16 Φ B 1β 1 Φ 14 Φ 15 Φ 18 5 B 1β 1 Φ 14 Φ 16Φ B 1 β 1 Φ 1 Φ 15 Φ 16 Φ B 1β 1 Φ 13 Φ 16 Φ B 1β 1 Φ 1 Φ 14 Φ 17 Φ B 1β 1 Φ 13 Φ 15 Φ 17 Φ B 1 β 1 Φ 1 Φ B 1β 1 Φ 13 Φ 14 Φ 18, Ψ 13 = B 1β 1 Φ 3 15 Φ B 1β 1 Φ 14 Φ 15 Φ B 1β 1 Φ 1 Φ B 1β 1 Φ 14 Φ 15 Φ B 1 β 1 Φ 14 Φ 16Φ B 1β 1 Φ 1 Φ 15 Φ 16 Φ B 1β 1 Φ 13 Φ 16 Φ B 1β 1 Φ 1 Φ 14 Φ B 1 β 1 Φ 13 Φ 15 Φ B 1β 1 Φ 14 Φ 15Φ B 1β 1 Φ 1 Φ 15 Φ B 1β 1 Φ 1 Φ 14 Φ 16 Φ B 1 β 1 Φ 13 Φ 15 Φ 16 Φ B 1β 1 Φ 1 Φ 17Φ B 1β 1 Φ 13 Φ 14 Φ 17 Φ B 1β 1 Φ 1 Φ 13 Φ 18, Ψ 14 = 8 5 B 1β 1 Φ B 1β 1 Φ 14 Φ 15 Φ B 1β 1 Φ 14 Φ B 1β 1 Φ 1 Φ 15 Φ B 1β 1 Φ 13 Φ B 1 β 1 Φ 14 Φ 15Φ B 1β 1 Φ 1 Φ 15 Φ B 1β 1 Φ 1 Φ 14 Φ 16 Φ B 1β 1 Φ 13 Φ 15 Φ 16 Φ B 1 β 1 Φ 1 Φ B 1β 1 Φ 13 Φ 14 Φ 17 5 B 1β 1 Φ 3 14 Φ B 1β 1 Φ 1 Φ 14 Φ 15 Φ B 1β 1 Φ 13 Φ 15 Φ B 1 β 1 Φ 1 Φ 16Φ B 1β 1 Φ 13 Φ 14 Φ 16 Φ B 1β 1 Φ 1 Φ 13 Φ 17 Φ B 1Φ 18 3B 1β 1 Φ 13 Φ 18, Ψ 15 = B 1β 1 Φ 14 Φ B 1β 1 Φ 14 Φ 15Φ B 1β 1 Φ 1 Φ 15 Φ B 1β 1 Φ 1 Φ 14 Φ B 1β 1 Φ 13 Φ 15 Φ B 1β 1 Φ 3 14 Φ B 1β 1 Φ 1 Φ 14 Φ 15 Φ B 1β 1 Φ 13 Φ 15 Φ B 1β 1 Φ 1 Φ 16Φ

15 Advances in Mathematical Physics 15 B 1 β 1 Φ 13 Φ 14 Φ 16 Φ B 1β 1 Φ 1 Φ 13 Φ B 1β 1 Φ 1 Φ 14 Φ B 1β 1 Φ 1 Φ 15Φ B 1 β 1 Φ 13 Φ 14 Φ 15 Φ B 1β 1 Φ 1 Φ 13 Φ 16 Φ B 1Φ 17 Φ B 1β 1 Φ 13 Φ 17Φ 18, Ψ 16 = 3 4 B 1β 1 Φ 14 Φ 15 +B 1β 1 Φ 1 Φ B 1β 1 Φ 3 14 Φ B 1β 1 Φ 1 Φ 14 Φ 15 Φ B 1β 1 Φ 13 Φ 15 Φ B 1 β 1 Φ 1 Φ B 1β 1 Φ 13 Φ 14 Φ B 1β 1 Φ 1 Φ 14 Φ 17 3B 1 β 1 Φ 1 Φ 15Φ 17 +6B 1 β 1 Φ 13 Φ 14 Φ 15 Φ 17 9B 1 β 1 Φ 1 Φ 13 Φ 16 Φ B 1Φ 17 3B 1β 1 Φ 13 Φ B 1β 1 Φ 1 Φ 14Φ B 1β 1 Φ 13 Φ 14 Φ B 1 β 1 Φ 1 Φ 13 Φ 15 Φ B 1Φ 16 Φ B 1β 1 Φ 13 Φ 16Φ 18, Ψ 17 = B 1β 1 Φ 3 14 Φ B 1β 1 Φ 1 Φ 14 Φ B 1β 1 Φ 13 Φ B 1β 1 Φ 1 Φ 14 Φ B 1β 1 Φ 1 Φ 15Φ B 1β 1 Φ 13 Φ 14 Φ 15 Φ B 1β 1 Φ 1 Φ 13 Φ B 1β 1 Φ 1 Φ 14Φ B 1β 1 Φ 13 Φ 14 Φ B 1 β 1 Φ 1 Φ 13 Φ 15 Φ B 1Φ 16 Φ B 1β 1 Φ 13 Φ 16Φ B 1β 1 Φ 3 1 Φ B 1β 1 Φ 1 Φ 13 Φ 14 Φ B 1Φ 15 Φ B 1β 1 Φ 13 Φ 15Φ 18, Ψ 18 = 1 18 B 1β 1 Φ B 1β 1 Φ 1 Φ 14 Φ B 1β 1 Φ 1 Φ B 1β 1 Φ 13 Φ 14 Φ 15 B 1β 1 Φ 1 Φ 14Φ 16 +B 1 β 1 Φ 13 Φ 14 Φ 16 8B 1 β 1 Φ 1 Φ 13 Φ 15 Φ B 1Φ 16 3B 1β 1 Φ 13 Φ B 1β 1 Φ 3 1 Φ B 1 β 1 Φ 1 Φ 13 Φ 14 Φ B 1Φ 15 Φ B 1β 1 Φ 13 Φ 15Φ B 1β 1 Φ 1 Φ 13Φ B 1Φ 14 Φ B 1 β 1 Φ 13 Φ 14Φ 18, Ψ 19 = 8 5 B 1β 1 Φ 1 Φ B 1β 1 Φ 1 Φ 14Φ B 1β 1 Φ 13 Φ 14 Φ B 1β 1 Φ 1 Φ 13 Φ B 1β 1 Φ 3 1 Φ B 1β 1 Φ 1 Φ 13 Φ 14 Φ B 1Φ 15 Φ B 1β 1 Φ 13 Φ 15Φ B 1β 1 Φ 1 Φ 13Φ B 1Φ 14 Φ B 1 β 1 Φ 13 Φ 14Φ B 1Φ 1 Φ B 1β 1 Φ 1 Φ 13 Φ 18, Ψ 0 = 3 4 B 1β 1 Φ 1 Φ B 1β 1 Φ 13 Φ B 1β 1 Φ 3 1 Φ 15 6B 1 β 1 Φ 1 Φ 13 Φ 14 Φ B 1Φ 15 3B 1β 1 Φ 13 Φ B 1 β 1 Φ 1 Φ 13Φ B 1Φ 14 Φ 16 9 B 1β 1 Φ 13 Φ 14Φ B 1Φ 1 Φ 17 +6B 1 β 1 Φ 1 Φ 13 Φ B 1Φ 13 Φ B 1 β 1 Φ 3 13 Φ 18, Ψ 1 = 8 9 B 1β 1 Φ 3 1 Φ B 1β 1 Φ 1 Φ 13 Φ B 1β 1 Φ 1 Φ 13Φ B 1Φ 14 Φ B 1β 1 Φ 13 Φ 14Φ B 1 Φ 1 Φ 16 +8B 1 β 1 Φ 1 Φ 13 Φ B 1Φ 13 Φ B 1β 1 Φ 3 13 Φ 17, Ψ = 1 B 1β 1 Φ B 1β 1 Φ 1 Φ 13Φ B 1Φ 14 3B 1β 1 Φ 13 Φ 14 +B 1Φ 1 Φ 15 +1B 1 β 1 Φ 1 Φ 13 Φ B 1 Φ 13 Φ 16 +6B 1 β 1 Φ 3 13 Φ 16,

16 16 Advances in Mathematical Physics Ψ 3 = 8B 1 β 1 Φ 3 1 Φ 13 +B 1 Φ 1 Φ B 1 β 1 Φ 1 Φ 13 Φ 14 +4B 1 Φ 13 Φ B 1 β 1 Φ 3 13 Φ 15, Ψ 4 = B 1 Φ 1 Φ 13 8B 1 β 1 Φ 1 Φ 3 13, Ψ 5 = 1 4 B 1Φ 13 1 B 1β 1 Φ 4 13, Ψ 6 = 1 B 1Φ 1 6B 1β 1 Φ 1 Φ 13 +B 1Φ 13 Φ 14 +4B 1 β 1 Φ 3 13 Φ 14, Λ 1 = 65 4 B β Γ 4 18, Λ = B β Γ 17 Γ 3 18, Λ 3 = 1B β Γ 17 Γ B β Γ 16 Γ 3 18, Λ 4 = 1B β Γ 17 Γ B β Γ 16 Γ 3 18, Λ 5 = B β Γ 3 17 Γ B β Γ 16 Γ 17 Γ B β Γ 15 Γ 3 18, Λ 6 = B β Γ B β Γ 16 Γ 17 Γ B β Γ 16 Γ B β Γ 15 Γ 17 Γ B β Γ 14 Γ 3 18, Λ 7 = B β Γ 16 Γ B β Γ 16 Γ 17Γ B β Γ 15 Γ 17 Γ B β Γ 15 Γ 16 Γ B β Γ 14 Γ 17 Γ B β Γ 1 Γ 3 18, Λ 8 = 7 4 B β Γ 16 Γ 17 4B β Γ 15 Γ B β Γ 3 16 Γ B β Γ 15 Γ 16 Γ 17 Γ B β Γ 14 Γ 17 Γ B β Γ 15 Γ B β Γ 14 Γ 16 Γ B β Γ 1 Γ 17 Γ B β Γ 13 Γ 3 18, Λ 9 = 96 5 B β Γ 3 16 Γ B β Γ 15 Γ 16 Γ B β Γ 14 Γ B β Γ 15 Γ 16 Γ B β Γ 15 Γ 17Γ B β Γ 14 Γ 16 Γ 17 Γ B β Γ 1 Γ 17 Γ B β Γ 14 Γ 15 Γ 18 +8B β Γ 1 Γ 16 Γ B β Γ 13 Γ 17 Γ 18, Λ 10 = B β Γ B β Γ 15 Γ 16 Γ B β Γ 15 Γ B β Γ 14 Γ 16 Γ B β Γ 1 Γ B β Γ 15 Γ 16Γ B β Γ 14 Γ 16 Γ B β Γ 14 Γ 15 Γ 17 Γ B β Γ 1 Γ 16 Γ 17 Γ B β Γ 13 Γ 17 Γ B β Γ 14 Γ B β Γ 1 Γ 15 Γ B β Γ 13 Γ 16 Γ 18, Λ 11 = B β Γ 15 Γ B β Γ 15 Γ 16Γ B β Γ 14 Γ 16 Γ B β Γ 14 Γ 15 Γ B β Γ 1 Γ 16 Γ B β Γ 13 Γ B β Γ 3 15 Γ B β Γ 14 Γ 15 Γ 16 Γ B β Γ 1 Γ 16 Γ B β Γ 14 Γ 17Γ B β Γ 1 Γ 15 Γ 17 Γ B β Γ 13 Γ 16 Γ 17 Γ B β Γ 1 Γ 14 Γ B β Γ 13 Γ 15 Γ 18, Λ 1 = 3B β Γ 15 Γ 16 3 B β Γ 14 Γ B β Γ 3 15 Γ 17 8B β Γ 14 Γ 15 Γ 16 Γ 17 +6B β Γ 1 Γ 16 Γ B β Γ 14 Γ B β Γ 1 Γ 15 Γ 17 +8B β Γ 13 Γ 16 Γ B β Γ 14 Γ 15 Γ 18 5 B β Γ 14 Γ 16Γ B β Γ 1 Γ 15 Γ 16 Γ

17 Advances in Mathematical Physics 17 B β Γ 13 Γ 16 Γ B β Γ 1 Γ 14 Γ 17 Γ B β Γ 13 Γ 15 Γ 17 Γ B β Γ 1 Γ B β Γ 13 Γ 14 Γ 18, Λ 13 = B β Γ 3 15 Γ B β Γ 14 Γ 15 Γ B β Γ 1 Γ B β Γ 14 Γ 15 Γ B β Γ 14 Γ 16Γ B β Γ 1 Γ 15 Γ 16 Γ B β Γ 13 Γ 16 Γ B β Γ 1 Γ 14 Γ B β Γ 13 Γ 15 Γ B β Γ 14 Γ 15Γ B β Γ 1 Γ 15 Γ B β Γ 1 Γ 14 Γ 16 Γ B β Γ 13 Γ 15 Γ 16 Γ B β Γ 1 Γ 17Γ B β Γ 13 Γ 14 Γ 17 Γ B β Γ 1 Γ 13 Γ 18, Λ 14 = 8 5 B β Γ B β Γ 14 Γ 15 Γ B β Γ 14 Γ B β Γ 1 Γ 15 Γ B β Γ 13 Γ B β Γ 14 Γ 15Γ B β Γ 1 Γ 15 Γ B β Γ 1 Γ 14 Γ 16 Γ B β Γ 13 Γ 15 Γ 16 Γ B β Γ 1 Γ B β Γ 13 Γ 14 Γ 17 5 B β Γ 3 14 Γ B β Γ 1 Γ 14 Γ 15 Γ B β Γ 13 Γ 15 Γ B β Γ 1 Γ 16Γ B β Γ 13 Γ 14 Γ 16 Γ B β Γ 1 Γ 13 Γ 17 Γ B Γ 18 3B β Γ 13 Γ 18, Λ 15 = B β Γ 14 Γ B β Γ 14 Γ 15Γ B β Γ 1 Γ 15 Γ B β Γ 1 Γ 14 Γ B β Γ 13 Γ 15 Γ B β Γ 3 14 Γ B β Γ 1 Γ 14 Γ 15 Γ B β Γ 13 Γ 15 Γ B β Γ 1 Γ 16Γ B β Γ 13 Γ 14 Γ 16 Γ B β Γ 1 Γ 13 Γ B β Γ 1 Γ 14 Γ B β Γ 1 Γ 15Γ B β Γ 13 Γ 14 Γ 15 Γ B β Γ 1 Γ 13 Γ 16 Γ B Γ 17 Γ B β Γ 13 Γ 17Γ 18, Λ 16 = 3 4 B β Γ 14 Γ 15 +B β Γ 1 Γ B β Γ 3 14 Γ B β Γ 1 Γ 14 Γ 15 Γ B β Γ 13 Γ 15 Γ B β Γ 1 Γ B β Γ 13 Γ 14 Γ B β Γ 1 Γ 14 Γ 17 3B β Γ 1 Γ 15Γ 17 +6B β Γ 13 Γ 14 Γ 15 Γ 17 9B β Γ 1 Γ 13 Γ 16 Γ B Γ 17 3B β Γ 13 Γ B β Γ 1 Γ 14Γ B β Γ 13 Γ 14 Γ B β Γ 1 Γ 13 Γ 15 Γ B Γ 16 Γ B β Γ 13 Γ 16Γ 18, Λ 17 = B β Γ 3 14 Γ B β Γ 1 Γ 14 Γ B β Γ 13 Γ B β Γ 1 Γ 14 Γ B β Γ 1 Γ 15Γ B β Γ 13 Γ 14 Γ 15 Γ B β Γ 1 Γ 13 Γ B β Γ 1 Γ 14Γ B β Γ 13 Γ 14 Γ B β Γ 1 Γ 13 Γ 15 Γ B Γ 16 Γ B β Γ 13 Γ 16Γ B β Γ 3 1 Γ B β Γ 1 Γ 13 Γ 14 Γ B Γ 15 Γ B β Γ 13 Γ 15Γ 18, Λ 18 = 1 18 B β Γ B β Γ 1 Γ 14 Γ B β Γ 1 Γ B β Γ 13 Γ 14 Γ 15 B β Γ 1 Γ 14Γ 16 +B β Γ 13 Γ 14 Γ 16 8B β Γ 1 Γ 13 Γ 15 Γ B Γ 16 3B β Γ 13 Γ B β Γ 3 1 Γ B β Γ 1 Γ 13 Γ 14 Γ B Γ 15 Γ B β Γ 13 Γ 15Γ B β Γ 1 Γ 13Γ B Γ 14 Γ B β Γ 13 Γ 14Γ 18, Λ 19 = 8 5 B β Γ 1 Γ B β Γ 1 Γ 14Γ B β Γ 13 Γ 14 Γ B β Γ 1 Γ 13 Γ B β Γ 3 1 Γ

18 18 Advances in Mathematical Physics B β Γ 1 Γ 13 Γ 14 Γ B Γ 15 Γ B β Γ 13 Γ 15Γ B β Γ 1 Γ 13Γ B Γ 14 Γ B β Γ 13 Γ 14Γ B Γ 1 Γ B β Γ 1 Γ 13 Γ 18, Λ 0 = 3 4 B β Γ 1 Γ B β Γ 13 Γ B β Γ 3 1 Γ 15 6B β Γ 1 Γ 13 Γ 14 Γ B Γ 15 3B β Γ 13 Γ B β Γ 1 Γ 13Γ B Γ 14 Γ 16 9 B β Γ 13 Γ 14Γ B Γ 1 Γ 17 +6B β Γ 1 Γ 13 Γ B Γ 13 Γ B β Γ 3 13 Γ 18, Λ 1 = 8 9 B β Γ 3 1 Γ B β Γ 1 Γ 13 Γ B β Γ 1 Γ 13Γ B Γ 14 Γ B β Γ 13 Γ 14Γ B Γ 1 Γ 16 +8B β Γ 1 Γ 13 Γ B Γ 13 Γ B β Γ 3 13 Γ 17, Λ = 1 B β Γ B β Γ 1 Γ 13Γ B Γ 14 3B β Γ 13 Γ 14 +B Γ 1 Γ 15 +1B β Γ 1 Γ 13 Γ B Γ 13 Γ 16 +6B β Γ 3 13 Γ 16, Λ 3 = 8B β Γ 3 1 Γ 13 +B Γ 1 Γ 14 +4B β Γ 1 Γ 13 Γ 14 +4B Γ 13 Γ B β Γ 3 13 Γ 15, Λ 4 = B Γ 1 Γ 13 8B β Γ 1 Γ 3 13, Λ 5 = 1 4 B Γ 13 1 B β Γ 4 13, Λ 6 = 1 B Γ 1 6B β Γ 1 Γ 13 +B Γ 13 Γ 14 +4B β Γ 3 13 Γ 14, k 1 = U 1 ln Ω ( p 3p 3 1/3 ( p +3p 1p 3 ) 3p 3 ( p 3 +9p 1p p 3 7p3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) ( p 3 +9p 1p p 3 7p 3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) ln δ + )( 3 1/3 p 3 ln Ω 1), k = p 3p 3 1/3 ( p +3p 1p 3 ) 3p 3 ( p 3 +9p 1p p 3 7p3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) + ( p 3 +9p 1p p 3 7p 3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ). 3 1/3 p 3 (B.15) Competing Inteests The authos declae that they have no competing inteests. Refeences [1] A. M. Siddiqui, T. Haoon, and S. Ium, Tosional flow of thid gade fluid using modified homotopy petubation method, Computes & Mathematics with Applications, vol.58,no.11-1, pp , 009. [] A. M. Siddiqui, A. Zeb, Q. K. Ghoi, and A. Benhabit, Homotopy petubation method fo heat tansfe flow of a thid gade fluid between paallel plates, Chaos, Solitons & Factals,vol.36, no. 1, pp , 008. [3] S.Islam,R.A.Shah,andI.Ali, Optimalhomotopyasymptotic solutions of couette and poiseuille flows of a thid gade fluid

19 Advances in Mathematical Physics 19 with heat tansfe analysis, Intenatioal Jounal of Non-Linea Sciences and Numeical Simulation,vol.11,pp ,010. [4] Y. Aksoy and M. Pakdemili, Appoximate analytical solutions fo flow of a thid-gade fluid though a paallel-plate channel filled with a poous medium, Tanspot in Poous Media, vol. 83,no.,pp ,010. [5] A. M. Siddiqui, R. Mahmood, and Q. K. Ghoi, Thin film flow of a thid gade fluid on a moving belt by He s homotopy petubation method, Intenational Jounal of Nonlinea Sciences and Numeical Simulation,vol.7,no.1,pp.7 14,006. [6] A. M. Siddiqui, R. Mahmood, and Q. K. Ghoi, Homotopy petubation method fo thin film flow of a thid gade fluid down an inclined plane, Chaos, Solitons & Factals,vol.35,no. 1,pp ,008. [7] G. K. Batchelo, An Intoduction to Fluid Dynamics, Cambidge Univesity Pess, Cambidge, UK, [8] M. Ishii, Themo-Fluid Dynamic Theoy of Two-Phase Flow, Eyolles, Pais, Fance, [9] M. Akai, A. Inoue, and S. Aoki, The pediction of statified two-phase flow with a two-equation model of tubulence, Intenational Jounal of Multiphase Flow,vol.7,no.1,pp.1 39, [10] R. A. Shah, S. Islam, A. M. Siddiqui, and T. Haoon, Heat tansfe by lamina flow of an elastico-viscous fluid in postteatment analysis of wie coating with linealy vaying tempeatue along the coated wie, Heat and Mass Tansfe,vol.48,no.6,pp , 01. [11] R. A. Shah, S. Islam, A. M. Siddiqui, and T. Haoon, Optimal homotopy asymptotic method solution of unsteady second gade fluid in wie coating analysis, JounaloftheKoean Society fo Industial and Applied Mathematics,vol.15,no.3,pp. 01, 011. [1] R. A. Shah, S. Islam, and A. M. Siddiqui, Exact solution of a diffeential equation aising in the wie coating analysis of an unsteady second gade fluid, Mathematical and Compute Modelling,vol.57,no.5-6,pp ,013. [13] R. A. Shah, S. Islam, M. Ellahi, T. Haoon, and A. M. Siddiqui, Analytical solutions fo heat tansfe flows of a thid Gade fluid in case of post-teatment of wie coating, Intenational Jounal of the Physical Sciences, vol. 6, pp , 011. [14] K. Kim, H. S. Kwak, S. H. Pak, and Y. S. Lee, Theoetical pediction on double-laye coating in wet-on-wet optical fibe coating pocess, Jounal of Coatings Technology Reseach, vol. 8, no. 1, pp , 011. [15] K. J. Kim and H. S. Kwak, Analytic study of non-newtonian double laye coating liquid flows in optical fibe manufactuing, AppliedMechanicsandMateials, vol. 4, pp , 01. [16] Zeeshan, R. A. Shah, S. Islam, and A. M. Siddique, Doublelaye optical fibe coating using viscoelastic phan thien tanne fluid, New Yok Science Jounal, vol. 6, no.10, pp.66 73, 013. [17] Zeeshan, S. Islam, R. A. Shah, I. Khan, and T. Gul, Exact solution of PTT fluid in optical fibe coating analysis using two-laye coating flow, Jounal of Applied Envionmental and Biological Sciences,vol.5,pp ,015. [18] Zeeshan, R. A. Shah, I. Khan, T. Gul, and P. Gaskel, Doublelaye optical fibe coating analysis by withawal fom a bath of oloyd 8-constant fluid, Jounal of Applied Envionmental and Biological Sciences, vol. 5, pp , 015. [19] Z. Khan, S. Islam, R. A. Shah, and I. Khan, Flow and heat tansfe of two immiscible fluids in double laye optical fibe coating, Jounal of Coatings Technology and Reseach,016. [0]T.Gul,R.A.Shah,S.Islam,andM.Aif, MHDthinfilm flows of a thid gade fluid on a vetical belt with slip bounday conditions, Jounal of Applied Mathematics, vol. 013, Aticle ID70786,14pages,013. [1] V. Mainca, N. Heişanu, and I. Nemeş, Optimal homotopy asymptotic method with application to thin film flow, Cental Euopean Jounal of Physics,vol.6,no.3,pp ,008. [] V. Mainca and N. Heişanu, Application of Optimal Homotopy Asymptotic Method fo solving nonlinea equations aising in heat tansfe, Intenational Communications in Heat and Mass Tansfe,vol.35,no.6,pp ,008. [3] V. Mainca, N. Heisanu, C. Bota, and B. Mainca, An optimal homotopy asymptotic method applied to the steady flow of a fouth-gade fluid past a poous plate, Applied Mathematics Lettes,vol.,no.,pp.45 51,009. [4] N. Heisanu, V. Mainca, and G. Madescu, An analytical appoach to non-linea dynamical model of a pemanent magnet synchonous geneato, Wind Enegy,vol.18,no.9,pp , 015. [5] N. Heişanu and V.Mainca, Optimal homotopy petubation method fo a non-consevative dynamical system of a otating electical machine, Zeitschift fu Natufoschung A,vol.67,no. 8-9, pp , 01. [6] G. Adomian, A eview of the decomposition method and some ecent esults fo nonlinea equations, Mathematical and Compute Modelling,vol.13,no.7,pp.17 43,1990. [7] A.-M. Wazwaz, Adomian decomposition method fo a eliable teatment of the Batu-type equations, Applied Mathematics and Computation,vol.166,no.3,pp ,005. [8] A.-M. Wazwaz, Adomian decomposition method fo a eliable teatment of the Emden-Fowle equation, Applied Mathematics and Computation,vol.161,no.,pp ,005.

20 Advances in Opeations Reseach Advances in Decision Sciences Jounal of Applied Mathematics Algeba Jounal of Pobability and Statistics The Scientific Wold Jounal Intenational Jounal of Diffeential Equations Submit you manuscipts at Intenational Jounal of Advances in Combinatoics Mathematical Physics Jounal of Complex Analysis Intenational Jounal of Mathematics and Mathematical Sciences Mathematical Poblems in Engineeing Jounal of Mathematics Discete Mathematics Jounal of Discete Dynamics in Natue and Society Jounal of Function Spaces Abstact and Applied Analysis Intenational Jounal of Jounal of Stochastic Analysis Optimization

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution

TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution Applied Mathematical Sciences, Vol. 3, 2009, no. 1, 43-52 TL-Moments L-Moments Estimation fo the Genealized Paeto Distibution Ibahim B. Abdul-Moniem Madina Highe Institute fo Management Technology Madina

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

On mixing generalized poison with Generalized Gamma distribution

On mixing generalized poison with Generalized Gamma distribution 34 WALFORD I.E. CHUKWU(*) and DEVENDRA GUPTA (**) On mixing genealized poison with Genealized Gamma distibution CONTENTS: Intoduction Mixtue. Refeences. Summay. Riassunto. Key wods (*) Walfod I.E. Chukwu

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 7a. Elements of Elasticity, Thermal Stresses

Chapter 7a. Elements of Elasticity, Thermal Stresses Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7 Governing Equations and Boundary Conditions for P-Flow .0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ Γ. Α. Κολοκυθάς, Υποψήφιος ιδάκτωρ Α. Α. ήµας, Επίκουρος Καθηγητής Εργαστήριο Υδραυλικής

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Time dependent Convection vs. frozen convection approximations. Plan

Time dependent Convection vs. frozen convection approximations. Plan Time epenent onvection vs. fozen convection appoximations A. Gigahcène, M-A. Dupet an. Gaio oto Nov 006 lan Intouction Fozen onvection Appoximations Time Depenent onvection onclusion Intouction etubation

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2 Theoetical Competition: July Question Page of. Ένα πρόβλημα τριών σωμάτων και το LISA μ M O m EIKONA Ομοεπίπεδες τροχιές των τριών σωμάτων. Δύο μάζες Μ και m κινούνται σε κυκλικές τροχιές με ακτίνες και,

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ ΚΑΙ ΣΕΦΝΟΛΟΓΙΑ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ: ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ ΕΡΓΑΣΗΡΙΟ ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα