GEL ELEKTROFOREZA. Seminar pri predmetu Molekularna Biofizika. Avtorica: Tjaša Parkelj

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "GEL ELEKTROFOREZA. Seminar pri predmetu Molekularna Biofizika. Avtorica: Tjaša Parkelj"

Transcript

1 GEL ELEKTROFOREZA Seminar pri predmetu Molekularna Biofizika Avtorica: Tjaša Parkelj Povzetek: V tem seminarju bom predstavila fizikalno ozadje elektroforeze. Začela bom z opisom gibanja nabitega delca v električnem polju, nato bom govorila o električnem dvojnem sloju, ki se ustvari okoli delca v raztopini. Opisala bom podoben pojav v primeru DNK molekule v raztopini, ki ga imenujemo Manningova kondenzacija. Nato bom prešla na gibanje takšnega sistema v prosti raztopini. Pokazala bom, da je takšno gibanje neodvisno od velikosti delcev. V sistem bom uvedla gel in predstavila reptacijski model, ki opisuje gibanje polimerov skozi gel pod vplivom električnega polja. Za konec bom opisala še sam postopek gel elektroforeze in predstavila nekaj rezultatov. 1

2 1. Kazalo 2. UVOD ELEKTROFOREZA Električni dvojni sloj Maningova kondenzacija Elektroforeza v prosti raztopini Gel elektroforeza Reptacijski model Konformacija DNK ob gibanju skozi gel v odvisnosti od velikosti polja POSTOPEK GEL ELEKTROFOREZE ZAKLJUČEK VIRI

3 2. UVOD Deoksiribonukleinska kislina (DNK) je molekula, ki je noslika genetske informacije v vseh živih bitjih. Je nerazvejan polimer, katerega osnovna enota je nukleotid. Nukleotid v DNK je sestavljen iz sladkorja (deoksiriidoza), dušikove baze (adenin, citazin, gvanin, timin) in fosfatne skupine. DNK ima obliko dvojne vijačnice, pri čemer se dve molekuli DNK ovijeta ena okrog druge. Pri tem so dušikove baze znotraj vijačnice in se medsebojno vežejo. Vezava nukleotidov je selektivna; adenin se vedno veže s timinom, citazin pa vedno z gvaninom (Watson-Crickovo pravilo baznih parov). Štirje različni nukleotidi tako tvorijo genetsko abecedo življenja na Zemlji. Njihovo zaporedje namreč določa pomen genetske informacije DNK molekule [1,2]. Zaporedje nukleotidov lahko ugotovimo s sekvenciranjem DNK molekule. Prvi postopek sekvenciranja DNK, ki je še danes v uporabi, je leta 1977 razvil Frederic Sangar in se imenuje metoda zaključene verige (Chain Termination Method) [3]. Za začetek potrebujemo raztopino z enojnimi verigami DNK. Raztopini dodamo še DNKpolimerazo, oligonukleotidni začetnik in nukleotide z različnimi dušikovimi bazami. DNK-polimeraza je encim, ki omogoča sestavljanje posameznih monomernih enot (nukleotidov) v polimerno verigo. Kateri nukleotid (adenin, gvanin, citazin, timin) se bo vključil v verigo je odvisno od zaporedja komplementarnih nukleotidov na primarni verigi. Da lahko DNK-polimeraza začne podvajati verigo, se mora na en konec primarne DNK verige najprej vezati oligonukleotidni začetnik ali pobudnik (angl. primer). Ta oligonukleotid, z znanim zaporedjem nukleotidov, ima prost konec z OH skupino, ki omogoča nadaljno vezavo nukleotidov ob prisotnosti DNK-polimeraze. Zgoraj opisano mešanico nato razdelimo na štiri dele, vsakemu pa dodamo po eno vrsto nukleotidov, ki so označeni s fluorescentnimi markerji. Značilnost teh nukleotidov je tudi, da jim manjka OH skupina, na katero bi se lahko vezal naslednji nukleotid, zato se ob njihovi vezavi podvajanje zaključi. Vsaka veriga ima torej na koncu en označen nukleotid [1]. 3

4 Slika 1: Dvojna vijačnica se s segrevanjem loči na dve enojni vijačnici. Na primarno enojno vijačnico se najprej veže pobudnik z znanim zaporedjem nukleotidov, nato se pod vplivom DNK polimeraze vežejo posamezni nukleotidi, ki so komplementarni tistim na primarni verigi. Proces poteka dokler se ne veže označevalni nukleotid. Vzorce z različnimi označevalnimi nukleotidi vstavimo v gel poleg znane lestvice in poženemo električni tok. Po nekem času tok prekinemo. V tem času se fragmenti razporedijo po velikosti. Zdaj lahko razberemo zaporedje nukleotidov, tako da pogledamo v katerem stolpcu je fragment z določeno dolžino. To zaporedje je ravno komplementarno zaporedju nukleotidov primarne DNK verige [4]. Eden izmed postopkov, ki nam omogoča razvrščanje DNK molekul po velikosti je gel elektroforeza [1,5]. Elektroforeza je premikanje nabitih delcev v raztopini pod vplivom električnega polja [6]. Tudi molekula DNK v raztopini disociira in je pravzaprav ena izmed najbolj nabitih molekul v naravi. Hitrost potovanja DNK molekul pod vplivom električnega polja v prosti raztopini je neodvisna od njene velikosti in oblike, zato je za ločevanje molekul po velikosti ključna uporaba gela. Razmrežen gel namreč ovira gibanje teh polielektrolitov, daljše molekule v enakem času prepotujejo krajšo pot skozi gel kot krajše molekule. Gel elektroforeza nam da razporeditev DNK po velikosti in po vrsti zadnjega označenega nukleotida. Tako lahko razberemo zaporedje nukleotidov, ki je ravno komplementarno zaporedju nukleotidov primarne verige. Sekvenciranje DNK molekul je danes avtomatiziran postopek, ki s prepoznavanjem označenih nukleotidov sestavi elektroforetski diagram z zaporedjem nukleotidov (Slika 1). 4

5 3. ELEKTROFOREZA Elektroforeza je gibanje nabitih delcev v tekočini pod vplivom električnega polja. Za začetek si poglejmo poenostavljen model delca z nabojem Q v zunanjem električnem polju E med dvema elektrodama (Slika 2). Predpostavimo, da se delec lahko giba le vzdolž smeri električnega polja. Električna sila na delec je podana z enačbo [6]: F e = QE = QU L, (1) kjer je U napetost, L pa razdalja med elektrodama. Ker se delec giblje skozi tekočino z viskoznostjo η, nanj v nasprotni smeri gibanja deluje sila upora: F u = 6πηRv, (2) pri čemer je R radij nabitega delca. Ker je takšno gibanje tipično močno dušeno, lahko sili izenačimo in izrazimo elektroforetsko hitrost delca: v = EQ 6πηR. (3) Slika 2: Elektroforeza različno nabitih ionov v homogenem električnem polju. Negativno nabit ion se bo gibal proti pozitivno nabiti elektrodi in obratno [6]. Za opis gibanja delca pri elektroforezi uvedemo novo količino - elektroforetsko mobilnost, ki je definirana kot: μ v E = Q 6πηR (4) Določanje elektroforetske mobilnosti molekul in polielektrolitov, kot je na primer molekula DNK, ni tako enostavno, saj molekule v raztopini disociirajo, okoli njih pa se ustvari nekakšna ionska atmosfera električni dvojni sloj. 5

6 3.1 Električni dvojni sloj Nevtralna molekula v raztopini disociira in s tem vpliva na razporeditev okoliških ionov. Molekula privlači nasprotno nabite ione, ki se adsorbirajo na njeno površino in tvorijo plast protiionov, tako imenovani Sternov sloj. Sternov sloj obdaja difuzni sloj, ki vsebuje tako pozitivno kot negativno nabite ione. Ioni v tem sloju so mobilni, na nijhovo porazdelitev po eni strani vpliva elektrostatski privlak, po drugi strani pa difuzija. Zaradi elektrostatskega privlaka površine se želijo protiioni urediti v njeni bližini, zaradi difuzije pa so ioni z oddaljenostjo od površine vse bolj enakomerno razporejeni. Oba sloja skupaj tvorita električni dvojni sloj (Slika 3). Meja med slojema ni natančno določena in je odvisna tudi od časovne skale. Približno jo podaja Bjerrumova dolžina: l B = e 2 4πε 0 ε b k B T, (5) kjer je ε b dielektričnost raztopine. Bjerummova dolžina je reda velikosti nm, v vodi je pri sobni temperaturi 0.7 nm [1]. Slika 3: Shema električnega dvojnega sloja predstavlja negativno nabit delec, ki ga obdaja plast pozitivno nabitih ionov imenovana Sternov sloj in zunanji difuzni sloj. Shemi je priložen graf, s katerega je razvidno, da električni potencial pojema eksponentno z razdaljo od površine delca. V teoriji povprečnega polja je ravnovesna porazdelitev mobilnih ionov podana z Poisson-Boltzmannovo enačbo. Za našo obravnavo je dovolj, če vzamemo njeno linearizirano obliko znotraj Debye-Huckelove teorije. Ta velja za difuzno plast in pravi, da so zunanja 6

7 električna polja v elekrolitu senčena s potencialom V, ki eksponentno pada z razdaljo r od vrednosti V 0 na meji: V = V 0 e κr (6) pri čemer definiramo karakteristično razdaljo senčenja, ki jo imenujemo Debyeva dolžina, in je podana z enačbo: kjer je ρ številska gostota ionov z nabojem e. κ 1 = ε bε 0 k B T ρe 2 (7) Naboj nabite molekule v raztopini je torej senčen. V primer DNK namesto dvojnega električnega sloja DNK govorimo o Manningovi kondenzaciji [5]. 3.2 Maningova kondenzacija Molekula DNK v vodni raztopini disociira, tako da se H + ioni ločijo od fosfatnih skupin. S tem molekula pridobi negativni naboj. V prvem približku je skupni naboj fragmenta dvojne DNK verige enak Q = 2eN b, (8) kjer je e osnovni elektronski naboj, N b pa število baznih parov. Podobno kot v primeru nabite molekule v raztopini, se tudi okoli molekule DNK tvori sloj adsorbiranih protiionov debeline l b (Bjerrumova dolžina), ki senči naboj molekule. Temu pravimo Manningova kondenzacija. Zaradi tega pojava je skupni naboj DNK manjši, kot bi pričakovali, če bi upoštevali samo disociacijo fosfatnih skupin in znaša približno -2e 0 na en bazni par [5]. 3.3 Elektroforeza v prosti raztopini Zunanja električna sila deluje tako na nabit delec, kot na ionski oblak okoli njega. Pod njenim vplivom se molekula giblje v eno smer, ionski oblak pa v nasprotno smer, gibanje obeh pa zavira viskozni upor (Slika 4) [6]. 7

8 Slika 4: Električna sila deluje na gibanje nabitega delca v eni smeri in na gibanje ionskega oblaka okoli njega v drugi smeri. [6] Natančen račun tega hidrodinamskega gibanja presega okvir tega seminarja [7], zato si oglejmo le dva limitna primera. V primeru debelega Debyevega sloja (κ 1 R) so protiioni enakomerno porazdeljeni in ne vplivajo na gibanje delca, zato lahko ločeno izračunamo električno silo in viskozni upor. Mobilnost je odvisna tudi od oblike in je za okrogel delec radija R kar enaka enačbi (4). Mobilnost je v tem primeru med drugim odvisna od velikosti delca. V primeru tankega Debyevega sloja (κ 1 R), je strig omejen na plast κ 1 okoli delca. Potrebno je rešiti Navier- Stokesovo enačbo: η 2 V p = ρe (9) kjer je ρ rešitev Debye-Huckelovega modela znotraj Debyeve plasti ter nič zunaj. Delec se v tej limiti giblje v nasprotni smeri glede na raztopino z mobilnostjo [1,6]: μ = ε 0ε b ζ η, (10) kjer je ζ zeta potencial. To je fenomenološki parameter, ki ga definiramo kot potencial na razdalji od površine delca, pri kateri se pojavi strig. Opazimo, da je v tem primeru mobilnost delcev neodvisna od njihove velikosti. Delci se v prosti tekočini v limiti tankega Debyevega sloja gibajo z enako hitrostjo ne glede na njihovo velikost. Tudi v primeru DNK v raztopini je Debyeva plast tanka, kar pomeni da elektroforeza DNK v prosti raztopini ne omogoča ločevanja molekul po velikosti. To lahko rešimo, če med elektrodi dodamo gel. 8

9 3.4 Gel elektroforeza Gel elektroforeza se od elektroforeze v prosti raztopini razlikuje po tem, da med elektrodi vstavimo gel, po katerem potujejo molekule in omogoča njihovo ločevanje po velikosti. 3.5 Reptacijski model Mobilnost DNK verige v gelu pod vplivom električnega polja dobro opiše reptacijski model. Mrežo gela lahko obravnavamo kot statično omrežje ovir, ki tvori cev znotraj katere se premika naša veriga. Znotraj te cevi se polimer v smeri električnega polja plazi kot kača, zato se modelu reče reptacijski model (Slika 5) [1,6]. DNK je fleksibilni polielektrolit, ki ga lahko obravnavamo kot polimer z N segmentov dolžine l, tako da je skupna dolžina verige enaka L = Nl. Električna sila, ki deluje na posamezen segment je odvisna od njegovega naboja na enoto dolžine q in njegove orientacije glede na smer električnega polja. Projekcijo dolžine enega segmenta na smer električnega polja je enaka s x (Slika 6). Slika 5: (a) Zamrežen gel okoli DNK verige. (b) Gibanje verige je omejeno na cev, ki jo tvorijo okoliška vlakna gela. (c) Ko se veriga splazi skozi eno dolžino cevi nadaljuje v naslednjo cev. Slika 6: DNK veriga dolžine L, skupna projekcija dolžine enega segmenta na smer električnega polja, projekcija na smer električnega polja hx [mikroflu]. Skupna električna sila na verigo je enaka vsoti sil po posameznih segmentih: F e = (qe)s x (11) Kot lahko vidimo na Sliki 6 je skupna projekcija verige enaka: h x = s x (12) 9

10 Tako lahko skupno električno silo na verigo napišemo kot: F e = QE h x L, (13) kjer je Q enak skupnemu naboju verige. Gibanju vzdolž cevi pod vplivom električne sile nasprotuje sila trenja: F t = ξ c v c, (14) pri čemer je ξ c koeficient trenja ob gibanju vzdolž cevi s hitrostjo v c. Če izenačimo sili lahko izpostavimo hitrost gibanja po cevi, ki je enaka: v c = QEh x ξ c L (15) Čas, ki ga molekula potrebuje, da se preplazi skozi cev dolžine L je enak: t = L v c (16) v tem času se molekula dejansko premakne le za h x glede na smer električnega polja. To pomeni, da je njena hitrost v smeri električnega polja enaka: v x = h x L v c = Q E ( h x 2 ξ c 2) (17) Hitrost gibanja verige je torej odvisna od razmerja med njeno dolžino in projekcijo na električno polje, od koeficienta trenja, njenega naboja in velikosti električnega polja. Ko se molekula dolžine L priplazi skozi eno cev dolžine L s projekcijo h x vstopi v novo cev, z novo projekcijo. Na svoji poti skozi gel veriga prepotuje več takšnih cevi, eno za drugo. Elektroforetsko mobilnost verige definiramo kot povprečno mobilnost skozi vsako posamezno cev: L μ = v x = μ h 2 x E 0, (18) L 2 kjer je μ 0 mobilnost verige v prosti raztopini, pa povprečje po več ceveh. 10

11 3.6 Konformacija DNK ob gibanju skozi gel v odvisnosti od velikosti polja Konformacija DNK ob gibanju skozi gel je odvisna od velikosti električnega polja in njene dolžine. V primeru šibkega električnega polja ali kratkih dolžin, veriga ni močno deformirana in ohrani Gaussovsko konformacijo (takšno konformacijo zavzame DNK v gelu brez prisotnosti električnega polja). V tej konformaciji je njena velikost proporcionalna L. Reptacijska cev ima v tem primeru povprečno iztegnjenost [6]: Mobilnost takšnih verig je odvisna od dolžine molekule. h x 2 ~L (19) μ = μ 0 L (20) V primeru močnih polj ali velikih dolžin pa se veriga ob gibanju močno raztegne: h x 2 ~L 2 (21) V tem primeru mobilnost ni odvisna od molekulske teže in je kar enaka mobilnosti v prosti raztopini: μ = μ 0 (22) Slika 6: V primeru kratkih verig in šibkih električnih polj DNK obdrži svojo konformacijo. Velikost njene projekcije na smer električnega polja je reda velikosti L za verigo dolžine L (rdeča). V primeru dolgih verig ali močnih polj se veriga iztegne in orientera v smeri električnega polja. Projekcija verige na smer električnega polja je takrat reda velikosti dolžine verige L (modra) [mikroflu]. Z uporabo močnega električnega polja ali v primeru dolgih molekul izgubimo ločljivost verig po velikosti, saj se bodo vse gibale z enako hitrostjo. Ločevanje dolgih DNK molekul je ena izmed večjih omejitev in izziv gel elektroforeze. 11

12 4. POSTOPEK GEL ELEKTROFOREZE Gel elektroforeza je danes dobro uveljavljen in standardiziran laboratorijski postopek za analizo DNK. Postopek se med drugim uporablja v genetiki in medicini za sekvenciranje genomov, za identifikacijo patogenov in genetskih napak [5]. Gel elektroforeza je tudi del forenzičnega postopka iskanja prstnih odtisov DNK (angleško Genetic fingerprinting ali DNA testing). Ta tehnika omogoča identificiranje posameznikov in ugotavljanje sorodstvenih vezi med njimi izključno na podlagi zaporedja njihove DNK [8]. Za začetek moramo priprviti gel. Običajo se uporablja agoraza ali poliakrilamidni gel. Med pomembnimi parametri pri izbiri gelov so kompatibilnost z molekulami, ki jih bomo ločevali, ponovljivost in enostavnost priprave ter velikost por. Agaroza je polisaharid, ki je topen v vroči vodi in tvori gel, ko se shladi. Uporablja se za ločevanje relativno dolgih DNK molekul. Tipična velikost njegovih por je nm. Poliakrilamid je fleksibilni nevtralni polimer, ki omogoča visoko ločljivost kratkih molekul DNK (od 5 do 500 bp [9]) in je primeren za sekvenciranje DNK, saj s to metodo lahko dosežemo zelo veliko ločljivost fragmentov in ločimo celo molekuli, ki se razlikujeta za 1 bazni par. Velikosti por akrilamidnega gela segajo od 5 do 100 nm. [1] Gelu dodamo barvilo etidijev bromid, ki se veže na fragmente DNK. To barvilo pod UV svetlobo fluorescira in omogoča vizualizacijo fragmentov DNK. Vsak pas, ki vsebuje več kot 20 ng DNK postane jasno viden [10]. Drugi primeri barvil so še SYBR Green, SYBR Safe in Gel Red. Pripravljen gel agaroze z barvilom vstavimo v plastično posodo, ki ima na vsaki strani po eno elektrodo, vse skupaj pa zalijemo s pufrom. DNK vzorce nanesemo v jamice v gelu, ki smo jih prej oblikovali s posebnim glavnikom (Slika 8a). Poleg vzorcev v eno jamico nanesemo še standard; lestvico DNK fragmentov z znanimi dolžinami. Ko poženemo električni tok, začnejo DNK segmenti potovati proti pozitivno nabiti elektrodi. Daljše molekule potujejo dlje časa, saj se soočajo z večjo silo trenja, ko potujejo skozi gel. In ker velikost molekul vpliva na njihovo mobilnost, manjši fragmenti pripotujejo bliže anodi kot daljši v danem časovnem intervalu. Po določenem času električni tok prekinemo in analiziramo ločene fragmente DNK. Gel osvetlimo z UV svetlobo in ga fotografiramo (Slika 8b). Z etidijevim bromidom obarvana DNK fluorescira rdeče-oranžo. Na gelu vidimo različne pasove, ki predstavljajo različne skupine molekul z različnimi molekulskimi masami. S pomočjo standarda na koncu lahko razberemo kako dolge segmenta DNK smo imeli v vzorcu. Velikost fragmentov se običajno podaja v»nukleotidih«,»baznih parih«ali»kb«-jih (tisoč baznih parov). 12

13 Slika 7: Oprema za Agarozna gel elektroforeza je standardiziran laboratorijski postopek za analizo DNK. (a) Standardna laboratorijska oprema za izvajanje gel elektroforeze. Črno-bela fotografija gela obarvanega z ethidijevim bromidom [ref]. Geli so običajno vliti v obliki»plošče«, poznamo pa tudi kapilarno elektroforezo, ki postaja vedno bolj pomembna pri aplikacijah, kakršna je sekveniranje DNK [5]. 5. ZAKLJUČEK Gel elektroforeza je analitski postopek, ki omogoča ločevanje molekul po njihovi velikosti. Ta postopek se med drugim uporablja tudi za sevenciranje DNK molekul. Pri elektroforezi v prosti raztopini nabiti delci potujejo pod vplivom električnega polja proti nasprotno nabiti elektrodi. Okoli nabitega delca se v raztopini ustvari električni dvojni sloj. Tudi molekula DNK v raztopini disociira, a je zaradi Manningove kondenzacije njen naboj močno senčen. Električno polje deluje tako na gibanje delca, kot na gibanje ionskega oblaka okoli njega. V primeru tankega Debyevega sloja je gibanje delcev v prosti raztopini neodvisno od njihove velikosti, zato za ločevanje DNK po velikosti med elektrodi dodamo gel. Gibanje molekul DNK v gelu opišemo z reptacijskim modelom. Mobilnost je v primeru krajših molekul in šibkega električnega polja odvisna od dolžine DNK molekul. Postopek gel elektroforeze je danes standardiziran način analize molekul DNK. 13

14 6. VIRI [1] J.L. Viovy, Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev Mod Phys (2000). [2] ( ). [3] ( ). [4] ( ). [5] S.Makovets, DNA Electrophoresis (Springer, New York, 2013). [6] Li Dongqing, Encyclopedia of Microfluidics and Nanofluidics (Springer, New York, 2008). [7] W.B. Russel,Brownian-Motion of small particles suspended in liquids, Ann Rev Fluid Mech, 13, 425 (1981). [8] ( ). [9] ( ). [10] ( ). 14

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja.

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja. 6. ONOVE ELEKTROMAGNETIZMA Nosilci naboja so: elektroni, protoni, ioni Osnoni naboj: e 0 = 1,6.10-19 As, naboj elektrona je -e 0, naboj protona e 0, naboj iona je (pozitini ali negatini) ečkratnik osnonega

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko. Seminar za 4. letnik. Elektrika iz vode. Povzetek

Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko. Seminar za 4. letnik. Elektrika iz vode. Povzetek Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar za 4. letnik Elektrika iz vode Avtor: Domen Mlakar Mentor: Prof. Dr. Rudolf Podgornik Bled, 13. maj 2008 Povzetek Pri toku

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004 Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

vaja Izolacija kromosomske DNA iz vranice in hiperkromni efekt. DNA RNA Protein. ime deoksirbonukleinska kislina ribonukleinska kislina

vaja Izolacija kromosomske DNA iz vranice in hiperkromni efekt. DNA RNA Protein. ime deoksirbonukleinska kislina ribonukleinska kislina transkripcija translacija Protein 12. vaja Izolacija kromosomske iz vranice in hiperkromni efekt sladkorji deoksiriboza riboza glavna funkcija dolgoročno shranjevanje genetskih informacij prenos informacij

Διαβάστε περισσότερα

Nukleinske kisline. Nukleotidi. DNA je nosilka dednih genetskih informacij.

Nukleinske kisline. Nukleotidi. DNA je nosilka dednih genetskih informacij. Nukleinske kisline DNA je nosilka dednih genetskih informacij. RNA je posrednik, ki omogoča sintezo proteinov na osnovi zapisa na DNA. Nukleotidi Nukleinske kisline so polimeri nukleotidov. OH... RNA ribonukleinska

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Dinamika kapilarnega pomika

Dinamika kapilarnega pomika UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Goran Bezjak SEMINARSKA NALOGA Dinamika kapilarnega pomika Mentor: izr. prof. dr. Gorazd Planinšič Ljubljana, december 2007 1 Povzetek

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo kulon) ali As (1 C = 1 As). 1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

13. Vaja: Reakcije oksidacije in redukcije

13. Vaja: Reakcije oksidacije in redukcije 1. Vaja: Reakcije oksidacije in redukcije a) Osnove: Oksidacija je reakcija pri kateri posamezen element (reducent) oddaja elektrone in se pri tem oksidira (oksidacijsko število se zviša). Redukcija pa

Διαβάστε περισσότερα

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA 2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno FIZIKA 3. poglavje: Elektrika in magnetizem - B. Borštnik 1 ELEKTRIKA IN MAGNETIZEM Elektrostatika Snov je sestavljena iz atomov in molekul. Atome si lahko predstavljamo kot kroglice s premerom nekaj desetink

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα