Perinatalne bolesti : 1) Bolesti fetusa 2) Bolesti nastale u tijeku poroda 3) Postnatalne bolesti
|
|
- Ευρυβία Ἀστάρτη Ιωαννίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Bolesti mladunčadi Prof.dr.sc. Marijan Cergolj
2 Perinatalne bolesti : 1) Bolesti fetusa 2) Bolesti nastale u tijeku poroda 3) Postnatalne bolesti
3 1) Bolesti fetusa Bolesti fetusa tijekom i/uterinog života Produljene gravidnosti Intrauterine infekcije Abortuse Embrionalne smrti s resorpcijom, mumifikacijom ili maceracijom ploda
4 2) Bolesti nastale u tijeku poroda: Pretežno bolesti nastale kao posljedica DISTOKIJE koja je uzrokovala : - cerebralnu anoksiju (fetalna hipoksemija) ij posljedice: Od ozljeda kostura i mekih tkiva Do sindroma loše prilagodljivosti
5 3) Postnatalne bolesti: S obzirom na vrijeme nastanka dijelimo ih na : a) rane postnatalne bolesti (unutar 48 h p.p.) b) prolongirane postnatalne bolesti (2-7 d.) c) kasne postnatalne bolesti (1-4 tjedna)
6 3a) rane postnatalne bolesti (Uginuće unutar 48 h ) Najvjerojatnije nije infekcija (kongenitalno?) zbog inkubacije kasne klinički simptomi - septikemijske bol./ kratka inkubacija - enterotoksogene / Metabolička bolest (pothranjenost majke, hipotermija, avitalnost)
7 3b) prolongirane postnatalne bolesti (2-7 dana p.p.) Napuštanje mladunčeta č Nerazvijenost mliječne žlijezde/gladovanje j Nedostatak kolostruma /manjak IG-a/ Kolibaciloza il Bolesti zglobova o Septikemijske, virusne CRIJEVNE zaraze
8 3c) kasne postnatalne t bolesti (1-4 tjedna p.p.) Utjecaj j hipogamaglobunemija ij s posljedičnim crijevnim infekcijama Bolesti dišnog sustava Nedostatak pasivnog imuniteta
9 OPĆA EPIZOOTIOLOGIJA visoki perinatalni gubici najviše ovise o uvjetima: - prihvata, -njege i -higijene novorođenčadi
10 OPĆA EPIZOOTIOLOGIJA GESTACIJSKA ZRELOST: Porod bliži terminu šanse preživljavanja j veće tele: Minimalno fiziološki 240 dana ( ) ždrijebe: 300 dana ( ) 355) janje: odojci: 138 dana ( ) 155) 108 dana ( ) 116)
11
12 GESTACIJSKA ZRELOST: Porod bliži terminu šanse preživljavanja j veće Period neposredno nakon poroda predstavlja kritično razdoblje za novorođenče Prilagodba vrlo različitim utjecajima okoline i osposobiti se za samostalan život.
13 uspostava i normalizacija svih vitalnih tjelesnih funkcija Prirodan porod pritiskom u porođajnom kanalu izbačen višak tekućine iz prednjih dišnih puteva Carski rez -pomoći mladunčetu da se riješi suvišne tekućine
14 Aktivan povrat krvi u mladunče (progresive arterial resistence) - vraćanje oko 1 l krvi iz placente kroz pupčani tračak
15 ždrijebe treba osušiti trljanjem slamom ili ručnikom - stimulira disanje pregledati i ocijeniti novorođenče neposredno nakon poroda služimo se APGAR sustavom kratica APGAR dolazi od engleskih izraza appearence, pulse, grimase, activity, respiration
16 APGAR sustav ocjenjivanja sastoji se od: Appearance (izgled, dojam) Pulse (frekvencija) Grimase (grimasa, reakcija) Activity (tonus mišićja) Respiration (frekvencija)
17 Ždrebad je najbolje ocjeniti 1-3 minute nakon poroda Telad se ocjenjuje odmah po porodu
18 ždrebad d - jednostavno APGAR ocjenjivanje (3 min p.p.) Ocjena Bilo Ne može se < 60 >60 odrediti Disanje Ne može se odrediti Sporo/nepravilno Pravilno >60 Tonus mišićja labavo Fleksija ekstremiteta Draženje nozdrva Nema odgovora Grimasa/pokretan je Sternalni položaj Kihanje/aktivno odbijanje
19 ždrebad -napredno APGAR ocjenjivanje j j (2 sata p.p.) Bilo (/min) nema <60 ili nepravilno >60 ili pravilno Disanje (/min) nama <60 ili nepravilno >60 ili pravilno Tonus mišićja labavo Lagani pokušaj Sternalni položaj ustajanja j Škakljanje uha Nema odgovora Lagano potresanje trese glavom; odmiće glavu u glavom stranu Podražaj nosa Nema odgovora pomiče glavu Grimasa, kihanje, micanje u stranu Podražaj lumbalnog područja Vidljive sluznice Nema odgovora Sivo/cijanotičn e Micanje/nema namjere ustati Blijedo ružičaste Pokušaj ustajanja ružičasta
20 Primjeri niske vrijednosti APGAR-a
21 ždrebad - Interpretacija i postupci koje treba provesti kod pojedine APGAR ocjene (napredni test) Ocjena Interpretacija Djelovanje Normalno Nastaviti nadziranje mladunćeta Izjegavati uznemiravanje 7-10 Umjerena depresija Davanje kisika Stimulacija kutanih refleksa Stavljanje u sternalni položaj 2-6 Teška depresija Aplicirati doxapram Davanje kisika Stimulacija kutanih refleksa Stavljanje u sternalni položaj Po potrebi početi s reanimacijom 0-2 Smrt skora smrt Primjeniti umjetno disanje i ostale postupke reanimacije Uzaludno trošenje vremena!
22
23 Hypotermia kada tjelesna temperatura (rektalno mjerena) padne ispod 38 o C Ždrijebe/tele treba utopliti Tjelesna temperatura ne koristi se za APGAR ali je pokazatelj moguće infekcije nekog sustava
24 ODREĐIVANJE VITALNOSTI TELADI po APGAR -u kriterij Broj bodova Micanje glave NEMA SMANJENO AKTIVNO pod hladnom vodom Međupapčani i NEMA SAMO JEDAN OBA refleks vjeđa SPONTANO Disanje NEMA ARITMIČNO RITMIČNO Vidljive CIJANOTIČNO CIJANOTIČN sluznice -BIJELE E E RUŽIČASTE
25 Indikacije za oživljavanje j novorođečadi izostanak spontanog disanja nepravilno dahtanje manje od 10 udisaja u minuti odsutnost bila bilo nepravilno ili manje od 40 iktusa/min mlitavo ždrijebe, ne reagira na podražaj porod carskim rezom asfiksija ploda različitog stupnja
26 Procjen avitalnosti na temelju zbroja bodova Zbroj ocjena Stanje teleda 7 8 Vitalno 4 6 Ugroženo 0-3 avitalno
27 Umjerena i teška asfiksija kod ždrebeta/teleta može biti kao posljedica: Sistemska oboljenja majke kolika endotoksemija hipotenzija opća anestezija
28 Janjad: Postotak smrtnosti u stadima ovaca: ispod 5% - primjereni uvjeti držanja 9% do 35% -loši uvjeti držanja (ovisno o stupnju higijene i brige)
29 Glavni uzroci ugibanja janjadi j (oko 75%) Kompleks: hipotermija/ izloženost/ hipoglikemija/ gladovanje. anje. Mrtvorođenje / kompleks distokia - prerani r porod Pobačaj
30 TELAD MLIJEČNIH PASMINA Smrtnosti od 0 do 60% (φ 6%) (uključena slaba i avitalna telad uginula tijekom prvih nekoliko minuta života). Zdrava i vitalna novorođenčad đ č rijetko ugiba (prosječno 2-4%) Smrtnost blizanaca je trostruko veća nego kod jedinaca.
31 morbiditet varira od farme do farme gubici ovise o dobi: a) telad najčešće ugiba u prva dva tjedna - osobito u prvih tjedan dana (septikemijske i gastrointestinalne bolesti) - nakon 14. dana pretežno bolesti dišnog sustava
32 Gubitak teladi ekonomski k je vrlo značajan: - smrtnosti 20% smanjuje neto dobit za 38%. Oboljela telad nakon ozdravljenja - uglavnom posljedice
33 TELAD TOVNIH PASMINA Smrtnost od teljenja do odbića ć varira između 3-7% (neka stada znatno više) Najveći broj uginuća nastupa u prvom tjednu života (najčešće povezano sa protrahiranim porodima i posljedicama) Distokija (apsolutno i relativno prevelika telad - genski uvjetovano) uzrokuje ozljede i hipoksemiju ploda.
34 Nagla pojava proljeva i prehlade uzrokuje velike gubitke u pojedinim godinama. Smrtnost usljed pojave proljeva češća je u teladi prvotelkinja /slabiji prijenos kolostralnih protutijela/. U nekim stadima znatne gubitke uzrokuju kongenitalne anomalije.
35 PRASAD uginuća ć od poroda do odbića -varira od 5 do 48%, najčešće od 12-19%. 19%. Mrtvorođenih 4-8% ( 8% (uglavnom pri porodu). Preko 50% slučajeva č otpada na gubitke u prvih 48 sati života. Uzroci - pretežno nezarazne prirode
36 Glavni uzroci ugibanja prije odbića: nagnječenja č uslijed neadekvatnog smještaja gladovanje veza n/g uzrok 50-80% svih gubitaka: -najslabija i najmanja odgurnuta od sise - dodatno oslabi od gladi - ostala pasad i/ili majka ih nagnječe - dolazi do uginuća
37 kongenitalne anomalije: atrezija rektuma, srčane greške i nepravilnosti na zglobovima zarazne bolesti.
38 veza između izgladnjelosti i smrti na veza između koje otpada 50-80% svih gubitaka uglavnom je najslabija i najmanja prasad odgurnuta sa sise slabi nagnječeno od majke ugiba!
39 Poboljšati management proizvodnje: Selekcionirati i krmače č na: broj sisa, mlijeko i majčinski instikt osigurati dovoljno prostora za prasad /nagnječenje/ nadzor nad prašenjem /spriječavanje ugibanja od hipoksije tijekom prašenja i narednih 48 h/
40 ujednačiti legla premještanjem prasadi iz različitih legala (brojnost i porođajna težina). prasadi koja nije primila dovoljno kolostruma davati mliječne nadomjestke koji sadrže pročišćene svinjske gamaglobuline prevencija crijevnih infekcija kroz 10 dana u dozi prvi dan: 10 g/kg tjelesne težine, Poslije: povećati ć dozu na 2 g/kg.
41 procjena vitalnosti prasadi ocjenjivanjem stabilnosti prasadi na nogama mišićnom tonusu boji kože radu srca i pluća
42 Smrtnost je veća u leglima - sa više od 14 praščića -krmača koje su se već prasile više od 5x Što je više prasadi u leglu i što im je porođajna đ težina manja to je smrtnost veća! -
43 Smrtnosti u prvim danima života ovisi o uvjetima okoliša (temperatura, vlaga, propuh p i sl.) Kritična temp. okoliša iznosi 34 C: Kod nižih temp. prasad doživljava temperaturni stres i mobilizira rezerve glikogena iz jetre osigurati lampe za grijanje legla i spriječiti izlaganje prasadi propuhu
44 ŽDREBAD Novorođena ždrebad ugiba u najmanjem postotku od svih d. ž. (punokrvnjaci 2%). - pruža im se brižljiva njega uz individualni nadzor pobacilo je ili oždrijebilo mrtvu ždrijebad otprilike lk 10% kobila Gubici uglavnom samo kod kobila sa blizancima (preživjelo samo 41% ždrebadi).
45 Uginuća ć u prva dva mjeseca života : nedovoljne zrelosti ploda (36%) anomalija u razvoju (23%) ozljeda u porodu (5%) konvulzivnog sindroma (5%) probavnih poremetnji (12%) generalizirane infekcije (11%) ostalog (9%)
46 Od zaraznih bolesti daleko najznačajnije su: - septikemije i - infekcije ij gastrointest. t t sustava.
47 Istraživanjem metoda liječenja č i prevencije zaraznih i nezaraznih bolesti novorođene ždrebadi (1980) znatno je uspješnije liječenje i preživljavanje ždrebadi oboljele od bolesti koje su ranije smatrane fatalnim: septikemija, crijevne zaraze, sindrom loše prilagođenosti i sl.
48 SAŽETAK Janjad: uzrok ugibanja su loši uvjeti -prihvata - njege i -držanja
49 Telad: uglavnom ugiba od - posljedica ili tijekom otežanog poroda - septikemija i dugotrajnih proljeva nastalih u prvim danima života. Telad nije tako osjetljiva na uvjete držanja kao janjad!
50 Prasad: pretežno ugiba od -slabosti - gladovanja i - nagnječenja č j Zarazne bolesti su od manjeg značaja.
51 Ždrebad: daleko najmanje uginuća ć - zbog brižljive njege u prvim danima života Uginuća uglavnom uslijed pojave - zaraznih bolesti i - urođenih anomalija.
52 SPECIJALISTIČKA PRETRAGA NEONATALNIH UGINUĆA Iscrpna anamneza: uočene nepravilnosti građe klinička slika faktori koji povisuju stopu rizika koji mogu biti nasljedne n prirode ro a uključuju i uvjete okoliša, hranidbe i držanja, veličinu legla, porođajnu masu i slično).
53 Određivanje točnog č termina poroda: otkrivanje eventualne intrauterine infekcije pretragom prekolostralnog seruma utvrđivanje mogućih teratogenih patogena pretragom seruma majke
54 Detaljna razudba svake dostupne lješine: - tjelesna masa (određivanje gestacione dobi) - kada je došlo do uginuća ć (prije, poslije ili za vrijeme poroda) - da li je mladunčad rođena zdrava i vitalna?
55 - uginula od hipoglikemije i gladi? (prema rezervi smeđeg masnog tkiva, nedostatka mlijeka u probavnom traktu i masti u limfi - mozak (eventualna krvarenja, porođajne ozljede) - postoji li sumnja na zarazne bolesti i kongenitalne anomalije - uzeti uzorke za dodatne d pretrage!
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
PT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Prenatalna smrt. Događa se u bilo kojoj fazi. dana. do 42. dana. maceracija) 42. do 271. dana 4..Mrtvorođeni plod od 272. dana
Prenatalna smrt Događa se u bilo kojoj fazi gestacije 1. Rana embrionalna smrtnost do 13. dana 2. Kasna embrionalna smrtnost 14. do 42. dana 3. Pobačaj ili abortus (mumifikacija, maceracija) 42. do 271.
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
UPRAVLJANJE SPOLNIM CIKLUSOM U KRAVA I JUNICA
UPRAVLJANJE SPOLNIM CIKLUSOM U KRAVA I JUNICA Nastupno predavanje dr. sc.. Ive Getz, održano 29. 11. 2005. Veterinarski fakultet Sveučili ilišta u Zagrebu Klinika za porodništvo i reprodukciju Spolni ciklus
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
PATOLOGIJA RASPLOĐIVANJA SVINJA. Doc. dr. sc. Marko Samardžija, DVM Veterinarski fakultet Zagreb
PATOLOGIJA RASPLOĐIVANJA SVINJA Doc. dr. sc. Marko Samardžija, DVM Veterinarski fakultet Zagreb PATOLOGIJA RASPLOĐIVANJA SVINJA Slabije plodne- nazimice koje ne koncipiraju u optimalnom roku (do dobi od
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava
Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje