PATOLOGIJA RASPLOĐIVANJA SVINJA. Doc. dr. sc. Marko Samardžija, DVM Veterinarski fakultet Zagreb

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PATOLOGIJA RASPLOĐIVANJA SVINJA. Doc. dr. sc. Marko Samardžija, DVM Veterinarski fakultet Zagreb"

Transcript

1 PATOLOGIJA RASPLOĐIVANJA SVINJA Doc. dr. sc. Marko Samardžija, DVM Veterinarski fakultet Zagreb

2 PATOLOGIJA RASPLOĐIVANJA SVINJA Slabije plodne- nazimice koje ne koncipiraju u optimalnom roku (do dobi od 8 mjeseci, težine 120 kg), nakon 3 pripusta ili UO, a držane u dobrim uvjetima i pravilno hranjene Neplodne- nazimice koje zbog nasljednih, neizlječivih promjena na sp. organima ne mogu koncipirati te nazimice i krmače u kojih su utvrđene teže pat. promjene na sp. organima koje priječe koncepciju

3 PATOLOGIJA RASPLOĐIVANJA SVINJA prirođene i stečene nepravilnosti u razvoju sp. organa poremećaji u funkciji sp. organa poremećaji vezani uz koncepciju, gravidnost, porod i puerperij

4 Prirođene nepravilnosti u razvoju spolnih organa Infantilizam (hipoplazija spolnih organa) Hermafroditizam (hermafroditismus) Pseudohermafroditizam Segmentirana aplazija Müllerovih kanala Ostale abnormalnosti sp. organa

5 Infantilizam važan u farmski držanih životinja, češće u muških spolni organi mali i nerazvijeni jedinke mogu biti zakržljale, ali i normalno razvijene hipoplazija jajnika u ženskih životinja - nasljedna nepravilnost jednostrana i obostrana i djelomična i potpuna.

6 Infantilizam posljedice hipoplazije slabija plodnost, neplodnost životinje se ne gone i tako se same isključuju iz daljnjeg rasploda uzrok nedostatnim izlučivanjem hormona adenohipofize (fetalni razvoj ili tijekom puberteta) KS: potpuna obostrana hipoplazija jajnika očituje se anestrijom L: nema, a otkrivene jedinke treba isključiti iz uzgoja

7 Hermafroditizam pravi hermafroditizam se očituje različitim kombinacijama ovaria, testisa i ovotestisa više teorija objašnjava neslaganje genskog spola i razvoja obaju gonada u hermafrodita najčešća anomalija, prenosi se nasljedno putem recesivnih gena liječenja nema, profilaksa stroga selekcija

8 Pseudohermafroditizam Nesklad u razvoju Wolfovih i Müllerovih kanala Muški pseudohermafroditi - genski muške životinje koje se fenotipski razvijaju kao ženske. Ženski pseudohermafroditi, iako rijetko, javljaju se kad u genski ženskih životinja dolazi do maskulinizacije Liječenja nema, profilaksa je stroga selekcija

9 Segmentirana aplazija Müllerovih kanala Aplazija 1. ili oba jajovoda, 1. roga maternice ili samo dijela roga (unilateralno), a rjeđe oba roga (bilateralno) Etiologija nerazjašnjena (incest u uzgoju) KS: jajnici funkcionalni - zbog nerazvijenog 1. roga maternice mana u većini slučajeva neprimjetna Plodnost slabija, oplodnja samo u slučaju kad do ovulacije dolazi na jajniku koji se nalazi uz razvijeni rog maternice- Suzbijanje radikalna selekcija

10 Stečene nepravilnosti u građi sp. organa Strikture rodnice (povrede, vaginitis itd.) Novotvorevine u rodnici (tumor vaginae) spontano nastali i posljedica ozljeda

11 Poremećena funkcija jajnika Anestrija a) u krmača nakon odbića i nakon pripusta ili UO (pod uvjetom da sigurno nisu gravidne) b) u nazimica koje zbog toga kasnije ulaze u pubertet Ciste na jajnicima

12 ANESTRIJA KRMAČA NAKON ODBIĆA I NAKON PRIPUSTA IL UO

13 Anestrija češća u krmača koje su već jednom odbile praščiće (višepraskinje) te ljeti plodnost krmača smanjena, odnosno sp. ciklusi krmača slabije pravilni u kasno ljeto - sezonska ili ljetna anestrija, ali nije anestrija u pravom smislu riječi

14 Anestrija smanjenom plodnošću, uključujući smanjeni postotak prasenja inače plodnih jedinki kašnjenjem puberteta u nazimica produženim intervalima od odbića do prvog estrusa najčešće smanjenim leglima češća rana embrionalna smrtnost

15 Anestrija važno razlučiti - pravi anestrus (nefunkcionalni jajnici), tiho gonjenje (funkcionalni jajnici) ili neprepoznavanje znakova estrusa vlasnika u intenzivnom uzgoju s pravilnom prehranom i dobrim uvjetima držanja ova pojava rjeđa do izostanka ciklične aktivnosti jajnika dolazi zbog prestanka stimulacije adenohipofize (smanjeno izlučivanje gonadotropnih hormona, tj. GnRH). Nije posljedica primarnog patološkog procesa.

16 Anestrija stres, nepravilni način prehrane, držanja i iskorištavanja različite kronične bolesti i parazitarne invazije poremećaji mijene tvari bolesti papaka i ostale bolesti ekstremiteta deficitarna prehrana

17 Anestrija nepovoljan odnos elemenata Ca i P, Na i K, Cu, Co, Fe, J i Mn, fitoestrogeni, hipo- i avitaminoze. preobilna prehrana bjelančevinama može uzrokovati oštećenje jetre - posljedica izostanak ciklične aktivnosti jajnika negativno djeluje manjak svjetla u stočnim nastambama, nedostatak kretanja

18 Anestrija Liječenje utvrditi i ukloniti primarne uzroke (korekcija prehrane, u prvom redu veći unos energije, poboljšanje zdravstvenog stanje životinje itd.) biološka stimulacija (stres uzrokovan transportom ili promjenom okoliša plotkinja i prisutstvo nerasta) može tijekom puerperija stimulirati početak estrusa

19 Anestrija Metode kontrole regulacije spolnog ciklusa važne za rasplođivanje i plansko držanje (nehormonalne i hormonalne) Rana dg. gravidnosti (UZV, biološke metode) Pripuštene ili UO plotkinje, posebno one koje su liječene od anestrije treba pregledati na gravidnost 40 do 50 dana po pripustu ili UO Ukoliko nisu gravidne treba ih odmah liječiti, ako ne reagiraju na tretman izdvajaju se

20 Anestrija hormonalna terapija gonadotropinima važno kod krmača koje 8 do 10 d nakon odbića ne pokazuju znakove estrusa, i onih koje nisu nakon pripusta ili UO ostale gravidne kombinacija ecg i hcg (nakon terapije oko 90% plotkinja u estrusu 3 do 8 d nakon tretmana, - ostale se izdvajaju

21 ANESTRIJA PREDPUBERTETNIH NAZIMICA

22 Anestrija u predpubertetnih nazimica ozbiljan problem, posebno u stadima s velikim remontom masovno se pojavljuje u do 50% nazimica, dugo traje, veliki ekonomski gubitci etiologija nastanka kompleksna pasmina, stres, način držanja i prehrane te klimatski uvjeti mogu u nazimica značajno utjecati na kašnjenje puberteta

23 Anestrija postupak uvođenja predpubertetnih nazimica u prvi estrus može biti profilaksa ali i liječenje u nazimica koje su već trebale biti u pubertetu profilaksa anestrije - manje skupine (6 do 9 jedinki). Idealno prisutstvo spolno zrelog nerasta (>10 mj.) tzv. pozitivni stres- stimulativno djeluje na pojavu estrusa (vožnja u kamionu)

24 Anestrija druge biološke (nehormonalne) metode (tzv. flashing hranidba (proteinska) uz dodatak vitamina A i E te folne kiseline, prisustsvo nerasta, držanje nazimica zajedno s krmačama i poboljšanjem uvjeta držanja. hormone koristiti tek ukoliko druge metode nisu dale željeni učinak!!! postupak uvođenja u pubertet ne prije 210d i težine 105 kg. U protivnom nema željenog učinka! ako i dođu u estrus i koncipiraju, leglo s malim brojem praščića i prasit će se premlade - slabije izražen majčinski instinkt i laktacija (komplikacije poroda)

25 Anestrija hormonalna terapija kombinacija ecg i hcg velik postotak nazimica u estrusu za 3 do 8 d krajnji oprez zbog negativne selekcije liječene nazimice najčešće daju potomstvo kod kojeg se također javlja anestrija najvažnije su opisane biološke metode profilakse i liječenja

26 Ciste na jajnicima tvorbe ispunjene želatinoznim ili vodenastim sadržajem, različito dugo perzistiraju na jednom ili oba jajnika najčešće u puerperiju, neovisno o dobi - učestalost 6% nesklad između endokrine funkcije adenohipofize i jajnika (LH) dispozicija za nastanak cista se nasljeđuje putem slabe konstitucije, stres bitan uzrok

27 Ciste na jajnicima velike multiple; Obično veće od 14 mm promjera. U većoj mjeri luteinizirale, izlučuju progesteron. Mogu spontano regresirati, ali i spriječiti pojavu estrusa male multiple; Često izlučuju estrogene. Nepravilnosti sp. ciklusa (preganjanja u pravilnim, kraćim ili dužim intervalima od normalnoga) pojedinačne; Rijetke, ne utječu na plodnost

28 Ciste na jajnicima Dijagnoza isključivo na osnovi patoanatomske pretrage jajnika Liječenje: S obzirom da je klinički nemoguće razlikovati anestrične krmače od onih s cistama, liječenje nije moguće

29 Poremećaji vezani uz koncepciju, gravidnost, porod i puerperij 1. Akoncepcija (preganjanja u pravilnim razm.) 2. Poremećaji postizanja i održavanja gravidnosti rana embrionalna smrtnost, mumifikacija i maceracija pobačaj 3. Mrtvorođenje praščića 4. MMA sindrom

30 Metritis, mastitis, agalakcija sindrom (MMA sindrom) bolest kompleksne etiologije (sindrom mliječne groznice ili puerperalna septikemija obično se javlja 12 do 36 sati nakon prasenja (1 do 4 dana) Češće u prvopraskinja, uglavnom povišena tjelesna temp. (40-42 C), mukopurulentni metritis, parenhimatozni mastitis i hipo-, tj. agalakcija

31 Metritis, mastitis, agalakcija sindrom (MMA sindrom) mliječne žlijezde edematozne, napete, tvrde, bolne i toplije nego normalno ali klinički znakovi mastitisa uoče se u < 50% krmača slično i s metritisom (samo sporadični znakovi) agalakcija nije izražena u potpunosti (većina krmača producira značajno manju količinu kolostruma, odnosno mlijeka od normalne. posljedice - slabost uzrokovana hipoglikemijom i perinatalna smrt praščića od gladi

32 Metritis, mastitis, agalakcija sindrom (MMA sindrom) štalske infekcije enteroklitis nehigijena u prasilištu distocija, atonija maternice koprostaza, intoksikacija zaostajanje posteljice nepravilna prehrana prenapučenost svinjca nedostatak kretanja visoke temp. ili nagle promjene temp. poremećaji metabolizma (hipokalcemija) vlažna stelja edem vimena bakterijski mastitisi opće bolesti nezarazne etiologije i akutne virusne infekcije

33 Metritis, mastitis, agalakcija sindrom (MMA sindrom) praščići pokušavaju sisati, nema kolostruma (eventualno gnojno crvenkasti sekret) i sise mogu biti ozlijeđene. Mamarni komp. edem, tvrdi, napeti, topli, koža tamnocrvena, nategnuta Sise prazne, mlohave, bez mlijeka u cisterni smrdljiv, smeđkast, sluzavo-gnojni iscjedak iz stidnice krmača često legne na trbuh da praščići ne sišu (bol), gnječenje krmače ne jedu i ne defeciraju (ponekad proljev), anoreksija i depresija temp. uglavnom oko 41 C, ali može biti i normalna

34 Metritis, mastitis, agalakcija sindrom (MMA sindrom) Dijagnoza MMA sindroma kliničkim znakovima u praščića i krmače: slabi, kržljavi praščići koji često i neupješno pokušavaju sisati, a krmača veći broj zgnječila iz uzoraka mlijeka uzetih za bakteriološku pretragu mogu se izolirati različite bakterije

35 Metritis, mastitis, agalakcija sindrom (MMA sindrom) praščićima osigurati kolostrum druge krmače, glukoza otkloniti atoniju maternice i crijeva (svakodnevno oksitocin) lokalno u maternicu i i/m atb, sulf., kortiko i diuret. (neurohormon. ravnoteže; edema vimena) za 5 do 10 dana liječene krmače koncipiraju približno kao i ne oboljele u težim slučajevima otvrdnuća i atrofije mamarnih kompleksa te oštećenja sp. organa- neplodnost praščići do 80% ugibaju ne podmetnu li se krmači

36 Metritis, mastitis, agalakcija sindrom (MMA sindrom) pravilna prehrana, njega i držanje krmača tijekom gravidnosti 10 d prije prasenja smanjiti dnevni obrok, na dan prasenja potpuno uskratiti hranu, dati vode ad libitum. i krmače oprati blagim dezinfici. poslije prasenja krmačama mjeriti rektalnu temp. 3 do 4 dana, 2 x dnevno. (preko 39,5 C sumnja na MMA sindrom, - liječenje indukcija poroda s analozima PGF2α smanjuje pojavnost MMA sindroma (ako i obole znatno slabije) adrenergični blokator receptora u gravidnoj maternici Carzolol i analozi PGF2α čime je pojavnost MMA sindroma u krmača smanjena za čak do 20%.

37 PATOLOGIJA RASPLOĐIVANJA NERASTOVA prekomjerno iskorištavanje rasplodnjaka nerastovi veći utjecaj na svojstva populacije od krmača jer daju veći broj potomaka zbog toga treba primjeniti odgovarajući način držanja, njege, hranidbe i iskorištavanja dinamika i intenzitet korištenja utječe značajno na proizvodnju sjemena i rezultate oplodnje

38 PATOLOGIJA RASPLOĐIVANJA NERASTOVA spolni nagon u mladih nerastova javlja se već sa tjelesnom masom kg, ali nerastove se počinje koristiti za UO tek u dobi 8-9 mj. (tjelesna masa 130 kg) ranije korištenje nerastova dovodi u pitanje uspješnost oplodnje krmača mlađe treba koristiti rjeđe, u početku 1 x tjedno, a starije koji su završili tjelesni rast intenzivnije (2-3 x tjedno uz pauzu)

39 PATOLOGIJA RASPLOĐIVANJA NERASTOVA Preduga apstinencija (> 4 tjedna) utječe nepovoljno na veličinu legla i postotak pregonjenja krmača jer za vrijeme pauze spermiji u nadsjemenicima ostare - smanjena plodnost

40 HVALA!!!

UPRAVLJANJE SPOLNIM CIKLUSOM U KRAVA I JUNICA

UPRAVLJANJE SPOLNIM CIKLUSOM U KRAVA I JUNICA UPRAVLJANJE SPOLNIM CIKLUSOM U KRAVA I JUNICA Nastupno predavanje dr. sc.. Ive Getz, održano 29. 11. 2005. Veterinarski fakultet Sveučili ilišta u Zagrebu Klinika za porodništvo i reprodukciju Spolni ciklus

Διαβάστε περισσότερα

SPOLNI CIKLUS KRMAČE. Veterinarski fakultet Zagreb

SPOLNI CIKLUS KRMAČE. Veterinarski fakultet Zagreb SPOLNI CIKLUS KRMAČE Prof. dr. sc. Tomislav Dobranić, DVM Veterinarski fakultet Zagreb MULTIPLI MEHANIZMI KONTROLE RASTA FOLIKULA I FUNKCIJE JAJNIKA GnrH HIPOTALAMUS CNS FAKTORI HRANIDBE PREDNJI REŽANJ

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Prenatalna smrt. Događa se u bilo kojoj fazi. dana. do 42. dana. maceracija) 42. do 271. dana 4..Mrtvorođeni plod od 272. dana

Prenatalna smrt. Događa se u bilo kojoj fazi. dana. do 42. dana. maceracija) 42. do 271. dana 4..Mrtvorođeni plod od 272. dana Prenatalna smrt Događa se u bilo kojoj fazi gestacije 1. Rana embrionalna smrtnost do 13. dana 2. Kasna embrionalna smrtnost 14. do 42. dana 3. Pobačaj ili abortus (mumifikacija, maceracija) 42. do 271.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

KOZA I OVACA KLINIKA ZA PORODNIŠTVO I REPRODUKCIJU

KOZA I OVACA KLINIKA ZA PORODNIŠTVO I REPRODUKCIJU GINEKOLOŠKA PRETRAGA KOZA I OVACA KLINIKA ZA PORODNIŠTVO I REPRODUKCIJU PONAVLJANJE Koze i ovce sezonski poliestrične životinje Duljina rasplodne sezone - rezultat genetičkih i okolišnih faktora - klima

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

SPOLNI CIKLUS KRAVA & JUNICA. Doc. dr. sc. Marko Samardžija, dr. vet. med. Klinika za porodništvo i reprodukciju Veterinarski fakultet Zagreb

SPOLNI CIKLUS KRAVA & JUNICA. Doc. dr. sc. Marko Samardžija, dr. vet. med. Klinika za porodništvo i reprodukciju Veterinarski fakultet Zagreb SPOLNI CIKLUS KRAVA & JUNICA Doc. dr. sc. Marko Samardžija, dr. vet. med. Klinika za porodništvo i reprodukciju Veterinarski fakultet Zagreb HORMONI HIPOTALAMUSA HIPOTALAMUS Lociran na bazi mozga Centar

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Fiziologija žene prije trudnoće i ženski spolni hormoni

Fiziologija žene prije trudnoće i ženski spolni hormoni Ženski reprodukcijski organi Fiziologija žene prije trudnoće i ženski spolni hormoni organ jajnici jajovodi maternica rodnica funkcija stvaranje jajne stanice, lučenje estrogena i progesterona mjesto oplodnje

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2

BETONSKE KONSTRUKCIJE 2 BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Dr.sc. Ljiljana Mayer, spec.med.biokemije Zagreb, 18. ožujka 2017. Klinika za tumore Centar za maligne bolesti, KBCSM

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

ploda tokom gravidnosti i mogućnosti gravidnosti domaćih životinja Klinika za porodništvo i reprodukciju Veterinarski fakultet Sveučilišta u Zagrebu

ploda tokom gravidnosti i mogućnosti gravidnosti domaćih životinja Klinika za porodništvo i reprodukciju Veterinarski fakultet Sveučilišta u Zagrebu Klinički aspekti interakcija majke i ploda tokom gravidnosti i mogućnosti njihove upotrebe u dijagnostici gravidnosti domaćih životinja Doc. dr. sc.nikica Prvanović, dr.vet.med. Klinika za porodništvo

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

DIJAGNOSTIKA GRAVIDITETA

DIJAGNOSTIKA GRAVIDITETA DIJAGNOSTIKA GRAVIDITETA Veliki ekonomski značaj u stočarstvu Plodnost = proizvodna osobina Detekcijom negravidnih životinja smanjujemo neproduktivno razdoblje proizvodnog ciklusa plotkinje tako da: osiguramo

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

SPOLNI CIKLUS KOBILA

SPOLNI CIKLUS KOBILA SPOLNI CIKLUS KOBILA Doc. dr. sc. Iva Getz Pripremila: doc. dr. sc. Iva Getz Klinika za porodništvo i reprodukciju SPOLNI CIKLUS KOBILA Kobila: uniparna sezonski poliestrična podražaj za početak sezone

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Perinatalne bolesti : 1) Bolesti fetusa 2) Bolesti nastale u tijeku poroda 3) Postnatalne bolesti

Perinatalne bolesti : 1) Bolesti fetusa 2) Bolesti nastale u tijeku poroda 3) Postnatalne bolesti Bolesti mladunčadi Prof.dr.sc. Marijan Cergolj Perinatalne bolesti : 1) Bolesti fetusa 2) Bolesti nastale u tijeku poroda 3) Postnatalne bolesti 1) Bolesti fetusa Bolesti fetusa tijekom i/uterinog života

Διαβάστε περισσότερα

Reprodukcijske i hormonske funkcije u muškarca

Reprodukcijske i hormonske funkcije u muškarca Muški reprodukcijski sustav Reprodukcijske i hormonske funkcije u muškarca prof. dr. sc. Reno Hrašćan organ testisi epididimisi sjemenovodi sjemeni mjehurići prostata uretra bulbouretralne žlijezde penis

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

TABLICE AKTUARSKE MATEMATIKE

TABLICE AKTUARSKE MATEMATIKE Na temelju članka 160. stavka 4. Zakona o mirovinskom osiguranju («Narodne novine», br. 102/98., 127/00., 59/01., 109/01., 147/02., 117/03., 30/04., 177/04., 92/05., 43/07., 79/07., 35/08., 40/10., 121/10.,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα