TRIGONOMETRIJSKE FUNKCIJE I I.1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TRIGONOMETRIJSKE FUNKCIJE I I.1."

Transcript

1 TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg 7π cos π ctg π 4 4 Ako je tg + ctg =, koliko je sin + cos? 5 Dokaži identitet: sin + cos sin 4 + cos 4 + = 0 Riješi nejednadžbu: cos 0, 5 [0, π] I Odredi na brojevnoj kružnici točku Et,akoje cost =,sint > 0 Za koje realne brojeve a postoji realan broj takav da je cos = a + a? Izračunaj: cos π tg 4ctg7π 4 sin 9π 4 Ako je tg + ctg =, koliko je tg + ctg? 5 Dokaži identitet: cos 4 t cos = sin t + tg t, t t k π, k Z Na intervalu [ π, 0] riješi nejednadžbu sin TRIGONOMETRIJSKE FUNKCIJE I

2 I U brojevnu kružnicu r = upisan je pravilni peterokut ABCDE,takodaje A, 0 Kojem luku kružnice, što spaja dva susjedna vrha peterokuta, pripada točka: E, E 5, E0, E? Ako je tg = ctg, π, π, koliko je sin? Izračunaj: 4 Dokaži identitet: sin 7π 5 Riješi u skupu R jednadžbu tg π + cos 4 9π ctg 5π ctg + + ctg = sin, kπ, k Z sin + sin = 0 4 Provjeri da je kπ, k Z, k 0, period funkcije f =sin 4 + sin I4 Bez uporabe tablica ili računala, odgovori što je veće: sin ili sin, cos ili cos? Ako je sin t + cos t =,sin t + cos t =,prikaži kao funkciju od Izračunaj: cos 9π tg 7π sin 4π ctg 9π 4 Dokaži identitet: sin 4 cos 4 cos 4 = tg, k π, k Z 5 Riješi jednadžbu: cos cos = 0 + Odredi temeljni period funkciji f = cos + cos TRIGONOMETRIJSKE FUNKCIJE I

3 Izračunaj: cos 0π I5 sin 5π tg π ctg π 4 Koliko je tg,akoje cos = 5 7, π, 7π Skrati razlomak sin 4 + cos 4 sin + cos 4 Ako je sin + cos = p, koliko je sin 4 + cos 4? 5 Riješi jednadžbu sin sin = cos Na intervalu [0, π] riješi sustav nejednadžbi sin < icos > Izračunaj: cos 7π I ctg 5π sin π tg 77π 4 Koliko je sin,akoje cos = 5 7,ctg < 0? Pojednostavi: sin tg + cos ctg 4 Riješi jednadžbu cos cos = sin 5 Ako je sin + cos =, koliko je tg + ctg? Riješi na intervalu [0, π] sustav nejednadžbi sin > icos < TRIGONOMETRIJSKE FUNKCIJE I

4 I7 Koliko je sin,akoje ctg = 5, π, 0? Dokaži identitet tg + cos ctg + + sin sin = + cos Što je veće sincos ili cossin,akoje = 4π? sin cos 4 Ako je sin cos = 5 8sin cos, [0,, koliko je ctg? 5 Na intervalu [0, π] riješi nejednadžbu: sin > cos Koliko rješenja ima jednadžba sin π = log? Izračunaj vrijednost izraza + cos sin I8 + cos sin ako je cos = 08, π, π Dokaži identitet: sin cos ctg cos = sin cos sin + cos Koliko rješenja na intervalu π, 5π ima jednadžba 4 cos = + sin? 4 Dokaži da je π period funkcije f =cos + sin Jeliπ temeljni period ove funkcije? 5 Riješi na intervalu [0, π] nejednadžbu: sin + cos < 0 Prikaži grafički funkcije: f =sin, g = cos 4 TRIGONOMETRIJSKE FUNKCIJE I

5 I9 Izračunaj vrijednost izraza sin + cos + + cos,akoje = 0π sin Ako je ctg = sin + cos 5, koliko je cos sin? Pojednostavi razlomak sin cos sin + cos sin sin 4 Riješi nejednadžbu 5 sin < 0 5 Odredi temeljni period funkcije f =sin + 5cos 4 Za koje vrijednosti realnog parametra t polinom f =4 8 sin t + prima pozitivne vrijednosti za svaki R? I0 Ako je sin cos = sin cos, koliko je cos, [5, ]? Dokaži identitet sin + ctg +cos + tg =sin + cos Riješi jednadžbu tg sin =ctg cos,na [0, π] 4 Riješi nejednadžbu cos 0 > 0 5 Odredi sve vrijednosti realnih parametara a i b za koje je funkcija f = a cos + b sin neparna Prikaži grafički funkcije f =sin, g = cos TRIGONOMETRIJSKE FUNKCIJE I 5

6 Koliko je Pojednostavi: I sin 4 + cos 4,akoje ctg = 05? [ + cos ] + : + cos sin sin Izračunaj log sin π + log cos π 4 Odredi najmanji pozitivni period funkcije f = cos π 5 Da li funkcija f =cossin na intervalu [ π, 0] raste ili pada? Prikaži grafički funkciju f = cos I Prikaži na brojevnoj kružnici rješenja sustava < sin t Dokaži identitet: + tg + tg + ctg + ctg = tg Je li funkcija f = + sin cos + parna ili neparna? 4 Riješi jednadžbu: = sin 5 Da li funkcija f =sincos na intervalu [π, π ] raste ili pada? Prikaži grafički funkciju f = cos TRIGONOMETRIJSKE FUNKCIJE I

7 I Konstruiraj na brojevnoj kružnici točku Et kojoj pripada realni broj t za kojega je tg t =,cost < 0 Koliko je sin π, ako je ctg = 40 9, π < < π? Dokaži identitet: tg sin = tg sin, k π, k Z 4 sin + cos Ako je tg =, koliko je cos sin? 5 Dokaži da za sve, 0, π vrijedi tg + ctg Prikaži grafički funkciju f = cos + π I4 Konstruiraj na brojevnoj kružnici točku Et kojoj pripada realni broj t za kojega je ctg t =,sint < 0 Koliko je ctg π,akoje cos = 4 9, π < < π? Dokaži identitet: ctg cos = ctg cos, kπ, k Z 4 Ako je sin = tg + ctg 5, koliko je tg ctg? 5 Dokaži da za sve realne brojeve, k π, k Z, vrijedi nejednakost tg + ctg Prikaži grafički funkciju f = sin π TRIGONOMETRIJSKE FUNKCIJE I 7

8 I5 Prikaži na brojevnoj kružnici skup rješenja nejednadžbe sin > Koliko je tg π +,akoje sin = 7 5, π < < π? Dokaži identitet: sin cos = sin cos + sin cos 4 Dokaži da je + sin sin sin + sin = tg, ako je π < < π 5 Koje sve vrijednosti prima funkcija f = sin π + sin π ako je π < < π? Prikaži grafički funkciju f = cos [ π] I Prikaži na brojevnoj kružnici skup rješenja nejednadžbe cos Koliko je cosπ, ako je sin = 08, π < < π? Dokaži identitet: 4 Dokaži da je sin + cos = sin + cos sin cos cos + cos + cos cos = ctg, ako je π < < π 5 Koje sve vrijednosti prima funkcija f = cos π + cos π + ako je π < < π? Prikaži grafički funkciju f =sin[ + π] 8 TRIGONOMETRIJSKE FUNKCIJE I

9 Izračunaj: sin 77π cos 58π I7 Na brojevnoj kružnici naznači skup svih realnih brojeva za koje je tg Dokaži identitet: tg sin tg + sin tg sin =, k π, k Z tg sin 4 Ako je cos t = 7 5, t 4π, 7π, koliko je tg t? sin + tg 5 Razlomak uvijek je pozitivan, za svaku vrijednost realnog broja cos + ctg za koji je cos + ctg 0 Dokaži ovu tvrdnju Odredi temeljni period funkcije f =sin π + cos π Izračunaj: sin 4π cos 55π I8 Na brojevnoj kružnici naznači skup svih realnih brojeva za koje je ctg Dokaži identitet: + tg = + ctg, k π, k Z 4 Ako je ctg t = 7 4, t 7π, π, koliko je sin t? 5 Ako je = sin α + cos α, = sin α cos α,prikaži kao funkciju od Odredi temeljni period funkcije f =cos π + sin π TRIGONOMETRIJSKE FUNKCIJE I 9

10 Koliko je sin π tg 5π I9 cos 40π ctg 7π Na brojevnoj kružnici naznači skup svih realnih brojeva za koje je tg Dokaži identitet: tg + cos ctg + + sin? sin = + cos 4 Izračunaj tg 9π, ako znaš daje cos π = + sin cos 5 Pojednostavni sin ctg cos, ako je π < < π Odredi temeljni period funkcije f =cos π π sin 4 Koliko je cos π I0 tg π sin π ctg 7π? Na brojevnoj kružnici naznači skup svih realnih brojeva za koje je ctg Dokaži identitet: sin cos tg + cos = sin + cos sin ctg 4 Izračunaj ctg 9π 8,akoje sinπ 8 = 5 Pojednostavni cos sin,akoje π < < 5π 4 Odredi temeljni period funkcije f =tg π + ctg π 0 TRIGONOMETRIJSKE FUNKCIJE I

11 I Ako je ctg = tg, π, 5π, koliko je sin? Dokaži identitet: sin + + cos + = 7 + tg + ctg sin cos Ako je cos t = 7 5, t 4π, 7π, koliko je tg t? 4 Pojednostavni: sin π + t ctgt π + sin t ctg t π 5 Ako je sin + cos =, koliko je tg + ctg? Odredi na brojevnoj kružnici skup točaka kojima pridruženi realni brojevi zadovoljavaju nejednakost sin cos < 0 I Ako je tg = ctg, 4π, 7π, koliko je cos? Dokaži identitet: tg + ctg tg + ctg + = tg tg + Ako je ctg t = 4 7, π, koliko je sin t? 4 Pojednostavni: [sin π α+sinπ + α] +[cosπ α cos π α] 5 Ako je tg + ctg = 4, koliko je sin + cos? Odredi na brojevnoj kružnici skup točaka kojima pridruženi realni brojevi zadovoljavaju nejednakost cos + sin > 0 TRIGONOMETRIJSKE FUNKCIJE I

12 I - E _ t Točkajenakružnici u III kvadrantu, te je sin t = za t = 7π + kπ, uz uvjet cos t < 0 Funkcija f =sin je omedena, - sin Stoga valja riješiti nejednadžbu a, odnosno a Ova je nejednadžba ekvivalentna sustavu a ili a,što daje rješenje a 0 ili a Redom: sin π ctg = sin π = sin π + 0π = sin π = sin π =, tg 7π = tg π + 5π = tg π = tg π =, cos π = cos π + 4π = cos π π 4 = cos π =, = ctg π 4 = ctg π4 + 5π = ctg π 4 = Sada je = 4 Najprije imamo iz tg + ctg =, sin cos + cos sin = sin + cos sin cos = sin cos = Zatim, sin + cos = sin + cos sin cos = sin cos = 9 5 Primijeti kako je te slično, sin + cos =sin + cos sin cos sin + cos = sin cos, sin 4 + cos 4 =sin + cos sin cos = sin cos Uvrštavanjem, izravno se dokazuje identitet Iz sustava cos i5 > 0 dobivamo, π ], a iz sustava cos i 5 < 0,, 5π ] Rješenje nejednadžbe je svaki,, π ], 5π ] Vidi sliku E t I - _ a, 0] 4 = 4 tg + ctg = 8 [ π, 5π ], [ π, 0] TRIGONOMETRIJSKE FUNKCIJE I

13 I I Vidi sliku C B = 8 7 A sin cos D E 4 = π + kπ, k Z 5 8 E BC, E 5 BC, E0 CD, E EA sin = + 5 = 5 ili = kπ, k Z =0 π, 7π I7 I4 sin > sin, cos> cos = + = 0 5 = ili =k π, k Z P = π sincos 4π < cossin 4π 4 ctg = 5 π 4, 5π 4 Jednadžba ima 4 rješenja Vidi sliku I5 = + 4 tg = 4 7 p 4 + p = π + kπ, k Z 4π, π TRIGONOMETRIJSKE FUNKCIJE I

14 sin = 0 8rješenja I8 4 Da, π je temeljni period funkcije 5 π, 5π j sin, 0, sin = sin, < 0 5 P = 8 π Pretpostavimo da je P, P > 0period od f, tj da za svaki R vrijedi sin + P+5cos 4 + P = sin + 5cos 4 Uvrstimo li za vrijednost nepoznanice = 0 i = P, dobit ćemo sustav sin 5P + 5cos075P = 5 sin 5P + 5cos075P = 5 iz kojeg slijedi cos 4 P = ili P = 8nπ, n Z \{0} Za n = imamo P = 8π, temeljni period Iz D < 0 slijedi sin t < π + kπ, π + kπ, k Z, te je t j cos, cos 0, cos = cos, cos < 0 = π 4 ili = 7π 4 4, 5 5 a = 0, b R sin I0 I9 π π π π - sin = sin 4π + ctg ctg = 9 = 4 = 4 Primijeti kako je sin 0, za svaki R Stoga je nejednadžba ekvivalentna nejednadžbi 5 < 0 uz uvjet sin Odatle je,, π cos - π π 4 TRIGONOMETRIJSKE FUNKCIJE I

15 I I 50 7 Vidi sliku E t 4 P 0 = 5 Raste f = sin - _ 5 π - _π I _ π _ π _ π sin π = cos = 9 4 tg sin = sin sin cos cos = sin4 sin = tg sin 4 Nakon dijeljenja brojnika i nazivnika danog razlomka s cos dobije se + tg tg = 5 Primjenom nejednakosti aritmetičke i geometrijske sredine dvaju pozitivnih brojeva a i b a+b a b imamo: tg +ctg tg ctg = Temeljni je period P 0 = π, nultočke su brojevi π + k π, k Z I4 _ 7π 4π 5π _ π Vidi sliku Neparna 4 Primijeti kako je,zasve R Samo za = 0 vrijedi 0 =,ali sin0= 0 Jednadžba nema rješenja 5 Raste f = sin E t ctg π = ctgπ =ctg = 4 7 ctg cos = cos sin cos = cos sin sin = cos4 sin = ctg cos TRIGONOMETRIJSKE FUNKCIJE I 5

16 4 tg + ctg tg ctg = sin cos = sin = Vidi rješenje zadatka 5 u prethodnoj zadaći Možemo pisati: f = sin π = cos Temeljni je period P 0 = π, nultočke su brojevi 0 = π + k π, k Z Vidi sliku I _ π 4 I5 Vidi sliku tg π Iz sin > slijedi sin < ili sin > + = ctg = 4 7 sin cos + sin cos sin cos + sin cos = = sin cos + sin cos 4 Lijeva strana jednakosti jednaka je sin cos = + sin + sin cos + sin cos = tg 5 f = sin + cos = cos + cos = cos Skup vrijednosti funkcije f jeinterval, f = cosπ π = cos π Temeljni je period funkcije P 0 =, nultočke su brojevi 0 = k +, k Z Iz cos slijedi cos, odnosno cos cosπ = cos = 0 sin + cos sin cos sin + cos sin cos = = sin + cos sin cos 4 Lijeva strana jednakosti jednaka je + cos sin = cos cos sin cos sin = ctg 5 f = cos + sin = sin + sin = sin Područje vrijednosti funkcije f je interval, f =sinπ + π = sinπ Temeljni je period P 0 =, nultočke su brojevi 0 = k, k Z I7 sin 77π = sin 5π + π = sin 5π =, cos 58π 58π = cos = cos 4π + 8π = cos 4π = ; konačno, = 4 Iz tg slijedi tg Vidi sliku TRIGONOMETRIJSKE FUNKCIJE I

17 Identitet je ekvivalentan sa tg sin = tg sin Lijeva strana ove jednakosti jednaka je sin cos sin = sin cos cos = tg sin 4 tg t = tg t = Uoči da dani razlomak možemo zapisati u obliku sin + cos cos + sin Neka je P temeljni period funkcije sin π,a P temeljni period funkcije cos π tada je P =, P =, te je P P = Konačno je period od f jednak P = P = P = _ - _ + tg = + tg + tg = zamijeni tg = ctg = + ctg 4 sin t = sin t = p + ctg t = = Neka je P temeljni period funkcije cos π, a P temeljni period funkcije sin π Tada je P = 4, P =, te je P P = Konačno je period od f jednak P = P = P = I9 sin π =, tg 5π =, cos 40π =, ctg 7π = Konačni rezultat je Iz tg Vidi sliku slijedi tg ili tg _ I8 - _ sin 4π sin 4π = 4π = sin = sin 4π + 4π =, cos 55π = cos 7π + 8π = cos 7π = i konačno, = 4 Iz ctg slijedi ctg ili ctg Vidi sliku Lijeva je strana jednakosti jednaka: sin + sin + cos cos + cos + sin cos + sin sin + cos + sin = cos + sin + cos sin + cos = sin cos 4 tg 9π = tg π = s cos 4 5 sin sin = sin cos sin = sin + cos = sin sin Neka je P temeljni period funkcije cos π 4, a P temeljni period funkcije sin π Tada je P = 8, P =, te je P P = 4 Konačno je period od f jednak P = P = 4P = 4 TRIGONOMETRIJSKE FUNKCIJE I 7

18 I0 cos π =,tgπ =,sin π = 7π,ctg = Konačni rezultat je Iz ctg slijedi ctg ili ctg Vidi sliku tg t = tg t = sin t + cos t 5 tg + ctg = sin cos = 8 5 Iz sin < cos imamo: za cos > 0, tg <, za cos < 0, tg > Lijeva je strana jednakosti jednaka: sin sin cos + cos cos sin = sin cos sin cos = sin + cos 4 ctg 9π 8 = ctg 5π 8 + π =ctg 5π 8 = ctg π + π 8 = tg π 8 = 5 s cos cos cos = sin = sin Neka je P temeljni period funkcije tg π,a P temeljni period funkcije ctg π Tada je P =, P =, te je period od f jednak P = I I Iz tg = ctg slijedi tg =, te je cos =cos = Na lijevoj strani imamo redom: tg + tg tg + tg + = tg tg + = «tg tg + sin t = sin t = cos α sin α cos α + sin α = 5 sin + cos = ± Iz cos > sin imamo: za sin > 0, ctg >, za sin < 0, ctg < - Iz ctg = tg slijedi ctg =, te je sin = sin = Nakon kvadriranja na lijevoj strani dobit ćemo sin + cos sin + cos = ctg + + tg = 7 + tg + ctg 8 TRIGONOMETRIJSKE FUNKCIJE I

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Periodične funkcije. Branimir Dakić, Zagreb

Periodične funkcije. Branimir Dakić, Zagreb Periodične funkcije Branimir Dakić, Zagreb Periodičnost 1 je pojava koju susrećemo na svakom koraku. Periodične su mnoge prirodne pojave, primjerice izmjena dana i noći ili izmjena godišnjih doba, pojava

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

1. Trigonometrijske funkcije realnog broja

1. Trigonometrijske funkcije realnog broja 1. Trigonometrijske funkcije realnog broja 1. Brojevna kružnica... 1 7.Adicijskeformule.... Definicija trigonometrijskih funkcija....... 8. Još neki identiteti.......... 9. Trigonometrijske funkcije kutova........

Διαβάστε περισσότερα

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= * POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0

Διαβάστε περισσότερα

Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK

Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK Živinice 1.4.014. ZADACI UDRUŽENJE MATEMATIČARA TUZLANSKOG KANTONA PEDAGOŠKI ZAVOD TUZLA Takmičenje učenika srednjih škola Tuzlanskog

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

1. Skup kompleksnih brojeva

1. Skup kompleksnih brojeva 1. Skup kompleksnih brojeva 1. Skupovibrojeva... 2 2. Skup kompleksnih brojeva................................. 5 3. Zbrajanje i množenje kompleksnih brojeva..................... 8 4. Kompleksno konjugirani

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Trigonometrijske funkcije

Trigonometrijske funkcije Trigonometrijske funkcije September 5, 008 Brojevna kružnica. Mjerenje kuteva pretpostavimo da se po kružnici jediničnog radijusa pomaknemo za kut t u smjeru suprotnom od kazaljke na satu II T(t) O t I

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a

Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a Zadatak 8 (Nina, gimnazija) Skup svih vrijednosti funkcije f() = + c jest interval, 3 ]. Tada je: Rješenje 8 A. c = B. c = C. c = 3 D. c = 4 Polinom drugog stupnja (kvadratna funkcija) iznosi f = a + b

Διαβάστε περισσότερα

Trigonometrijske funkcije

Trigonometrijske funkcije 9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.

Διαβάστε περισσότερα

O fiksnim točkama osnovnih trigonometrijskih funkcija

O fiksnim točkama osnovnih trigonometrijskih funkcija O fiksnim točkama... O fiksnim točkama osnovnih trigonometrijskih funkcija Matea Jelčić, Kristina Ivankić, Mirela Katić Žlepalo 3 i Bojan Kovačić Sažetak U ovom članku razmatramo fiksne točke četiriju

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LIMES NIZOVA LIMES MONOTONIH NIZOVA GEOMETRIJSKOG REDA LIMES FUNKCIJA 1 2.4. LIMES NIZA I TEOREMI O LIMESIMA 2.4.1. Definicija limesa i konvergentnog niza 2.4.1.1 Riješeni

Διαβάστε περισσότερα

Osnovni teoremi diferencijalnog računa

Osnovni teoremi diferencijalnog računa Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Tena Pavić Osnovni teoremi diferencijalnog računa Završni rad Osijek, 2009. Sveučilište J.J. Strossmayera u Osijeku

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010.

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010. ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Koordinatni sustav u ravnini. Funkcija

Koordinatni sustav u ravnini. Funkcija Koordinatni sustav u ravnini Koordinatni sustav u ravnini Funkcija 4. 1. Koordinatni sustav u ravnini..................... Uvod U drugom smo poglavlju opisali koordinatni sustav na pravcu. Pridruživanjem

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα