MODIFIED COUPLINGS FOR A LIGHT COMPOSITE HIGGS. Roberto Contino Università di Roma La Sapienza

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MODIFIED COUPLINGS FOR A LIGHT COMPOSITE HIGGS. Roberto Contino Università di Roma La Sapienza"

Transcript

1 MODIFIED COUPLINGS FOR A LIGHT COMPOSITE HIGGS Roberto Contino Università di Roma La Sapienza

2 Part 1 Effective Lagrangians for a light Higgs

3 In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian The explicit form of the Lagrangian depends on the assumptions one makes If new particles are discovered they can be included in the Lagrangian in a bottom-up approach 3

4 In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian The explicit form of the Lagrangian depends on the assumptions one makes If new particles are discovered they can be included in the Lagrangian in a bottom-up approach I WILL ASSUME: 1) SU(2)LxU(1)Y is linearly realized at high energies 2) h(x) is a scalar (CP even) and is part of an SU(2)L doublet H(x) 3) The EWSB dynamics has an (approximate) custodial symmetry global symmetry includes: SU(2)LxSU(2)R SU(2)V 3

5 In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian The explicit form of the Lagrangian depends on the assumptions one makes If new particles are discovered they can be included in the Lagrangian in a bottom-up approach POWER COUNTING: each extra derivative costs a factor 1/Λ each extra power of H(x) costs a factor g /Λ 1/f 4

6 In absence of a direct observation of new particles, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian The explicit form of the Lagrangian depends on the assumptions one makes If new particles are discovered they can be included in the Lagrangian in a bottom-up approach POWER COUNTING: each extra derivative costs a factor 1/Λ each extra power of H(x) costs a factor g /Λ 1/f For a strongly-interacting Higgs: Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) f 1 Λ 4

7 The list of dim=6 operators of the effective Lagrangian has been known in the literature since long time Buchmuller and Wyler, NPB 268 (1986) 621 In the following I will follow the SILH parametrization proposed in: Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045 L SILH = c H 2f 2 µ H H µ H H + c T 2f 2 c 6λ f 2 H H ic W g 2m 2 ρ cy y f f 2 H D µ H H D µ H H H f L Hf R + h.c. H σ i D µ H (D ν W µν ) i + ic Bg 2m 2 ρ H D µ H ( ν B µν ) + ic HW g m 2 ρ g 2 ρ 16π 2 (Dµ H) σ i (D ν H)W i µν + ic HBg m 2 ρ g 2 ρ 16π 2 (Dµ H) (D ν H)B µν + c γg 2 m 2 ρ g 2 ρ 16π 2 g 2 g 2 ρ H HB µν B µν + c gg 2 S m 2 ρ g 2 ρ 16π 2 y 2 t g 2 ρ H HG a µνg aµν 5

8 The list of dim=6 operators of the effective Lagrangian has been known in the literature since long time Buchmuller and Wyler, NPB 268 (1986) 621 In the following I will follow the SILH parametrization proposed in: Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045 probe Higgs strong coupling g L SILH = c H 2f 2 µ H H µ H H + c T 2f 2 c 6λ f 2 H H ic W g 2m 2 ρ cy y f f 2 H D µ H H D µ H H H f L Hf R + h.c. H σ i D µ H (D ν W µν ) i + ic Bg 2m 2 ρ H D µ H ( ν B µν ) + ic HW g m 2 ρ g 2 ρ 16π 2 (Dµ H) σ i (D ν H)W i µν + ic HBg m 2 ρ g 2 ρ 16π 2 (Dµ H) (D ν H)B µν + c γg 2 m 2 ρ g 2 ρ 16π 2 g 2 g 2 ρ H HB µν B µν + c gg 2 S m 2 ρ g 2 ρ 16π 2 y 2 t g 2 ρ H HG a µνg aµν 5

9 The list of dim=6 operators of the effective Lagrangian has been known in the literature since long time Buchmuller and Wyler, NPB 268 (1986) 621 In the following I will follow the SILH parametrization proposed in: Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045 probe Higgs strong coupling g L SILH = c H 2f 2 µ H H µ H H + c T 2f 2 c 6λ f 2 H H ic W g 2m 2 ρ cy y f f 2 H D µ H H D µ H H H f L Hf R + h.c. H σ i D µ H (D ν W µν ) i + ic Bg 2m 2 ρ H D µ H ( ν B µν ) the request of custodial invariance forbids this operator + ic HW g m 2 ρ g 2 ρ 16π 2 (Dµ H) σ i (D ν H)W i µν + ic HBg m 2 ρ g 2 ρ 16π 2 (Dµ H) (D ν H)B µν + c γg 2 m 2 ρ g 2 ρ 16π 2 g 2 g 2 ρ H HB µν B µν + c gg 2 S m 2 ρ g 2 ρ 16π 2 y 2 t g 2 ρ H HG a µνg aµν 5

10 The list of dim=6 operators of the effective Lagrangian has been known in the literature since long time Buchmuller and Wyler, NPB 268 (1986) 621 In the following I will follow the SILH parametrization proposed in: Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045 probe Higgs strong coupling L SILH = c H 2f 2 µ H H µ H H + c T 2f 2 c 6λ f 2 H H ic W g 2m 2 ρ cy y f f 2 g H D µ H H D µ H H H f L Hf R + h.c. H σ i D µ H (D ν W µν ) i + ic Bg 2m 2 ρ H D µ H ( ν B µν ) the request of custodial invariance forbids this operator probe mass scale Form factors Λ + ic HW g m 2 ρ + c γg 2 m 2 ρ g 2 ρ 16π 2 (Dµ H) σ i (D ν H)W i µν + ic HBg m 2 ρ g 2 ρ 16π 2 g 2 g 2 ρ H HB µν B µν + c gg 2 S m 2 ρ g 2 ρ 16π 2 y 2 t g 2 ρ g 2 ρ 16π 2 (Dµ H) (D ν H)B µν H HG a µνg aµν 5

11 Probes of Higgs strong interaction c H 2f 2 µ H H µ H H c y y ψ f 2 H H ψ L Hψ R + h.c. c 6 λ 4 f 2 H H 3 Parametrize corrections to tree-level Higgs couplings: c v2 c SM f 2 = g v 2 Λ 6

12 Probes of Higgs strong interaction c H 2f 2 µ H H µ H H c y y ψ f 2 H H ψ L Hψ R + h.c. c 6 λ 4 f 2 H H 3 Parametrize corrections to tree-level Higgs couplings: c v2 c SM f 2 = g v 2 Λ Energy Λ s = Λ 4πΛ g ch domain of validity of the effective theory m h 6 m V

13 Probes of Higgs strong interaction c H 2f 2 µ H H µ H H c y y ψ f 2 H H ψ L Hψ R + h.c. c 6 λ 4 f 2 H H 3 Parametrize corrections to tree-level Higgs couplings: c v2 c SM f 2 = g v 2 Λ Energy Λ s = Λ 4πΛ g ch to keep the theory perturbative new physics must come in before Λ s to regulate the scattering amplitudes domain of validity of the effective theory m h 6 m V

14 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance 7 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

15 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h 7 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

16 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h subleading correction to tree-level couplings c V m 2 W Λ 2 v f 2 7 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

17 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h subleading correction to tree-level couplings c V m 2 W Λ 2 v f 2 contact correction to three-body decays δa A SM m 2 W Λ 2 inclusive WW,ZZ observables 7 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

18 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h subleading correction to tree-level couplings c V m 2 W Λ 2 v f 2 Form factor effects contact correction to three-body decays δa A SM m 2 W Λ 2 inclusive WW,ZZ observables 7 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

19 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h subleading correction to tree-level couplings c V m 2 W Λ 2 v f 2 Form factor effects contact correction to three-body decays δa A SM m 2 W Λ 2 16π2 g 2 exclusive WW,ZZ observables and Zγ 8 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

20 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h subleading correction to tree-level couplings c V m 2 W Λ 2 v f 2 Form factor effects contact correction to three-body decays δa A SM v 2 16π 2 f 2 g 2 exclusive WW,ZZ observables and Zγ 9 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

21 c W g 2Λ 2 H σ a i D µ H (D ν W µν ) a c B g 2Λ 2 H i D µ H ( ν B µν ) D µ W + µνw ν h µ Z µν Z ν h µ γ µν Z ν h one linear combination fixed due to (accidental) custodial invariance Use equations of motions: D µ V µν V ν h =(m 2 V V ν + ψγ ν ψ)v ν h Notice: LEP already puts strong bounds on these operators Ŝ =(c W + c B ) m2 W Λ effects expected to be small 10 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

22 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 c g g 2 S Λ 2 G µν G µν H H G µν G µν h 11

23 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 c g g 2 S Λ 2 G µν G µν H H G µν G µν h These operators imply couplings of photon and gluons to neutral particles and give corrections to the gyromagnetic ratios c γzh (c HW c HB ) (g 2) W (c HW + c HB ) 11

24 g 2 16π 2 g 2 16π 2 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν g 2 16π 2 ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 g 2 16π 2 c g g 2 S Λ 2 G µν G µν H H G µν G µν h These operators imply couplings of photon and gluons to neutral particles and give corrections to the gyromagnetic ratios They cannot be generated by integrating out heavy states at tree-level in a minimally coupled gauge theory c γzh (c HW c HB ) (g 2) W (c HW + c HB ) [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ] 11

25 g 2 16π 2 g 2 16π 2 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν g 2 16π 2 ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 g 2 16π 2 c g g 2 S Λ 2 G µν G µν H H G µν G µν h Corrections to h WW, ZZ rates: δa A SM m 2 W Λ 2 g 2 16π 2 Form factor 12 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

26 g 2 16π 2 g 2 16π 2 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν g 2 16π 2 ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 g 2 16π 2 c g g 2 S Λ 2 G µν G µν H H G µν G µν h Corrections to h WW, ZZ rates: δa A SM m 2 W Λ 2 g 2 16π 2 Form factor Corrections to h WW, ZZ angular distributions and h γz rate: δa A SM v 2 f 2 test Higgs strong interactions 12 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

27 g 2 16π 2 g 2 16π 2 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν g 2 16π 2 ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 g 2 16π 2 c g g 2 S Λ 2 G µν G µν H H G µν G µν h In principle h γγ, gg rates also probe strong dynamics... δa A SM v 2 f 2 13

28 g 2 16π 2 λ 2 g 2 g 2 16π 2 ic HW g Λ 2 (D µ H) σ a (D µ H) W a µν g 2 16π 2 ic HB g Λ 2 (D µ H) (D µ H) B µν c γ g 2 Λ 2 B µν B µν H H W + µνw µνh, Z µν Z µν h, γ µν γ µν h, Z µν γ µν h one linear combination starts at dim=8 λ 2 g 2 g 2 16π 2 c g g 2 S Λ 2 G µν G µν H H G µν G µν h In principle h γγ, gg rates also probe strong dynamics... δa A SM v 2 f 2 λ2 g 2 Form factor For a png boson Higgs additional suppression follows from breaking the shift symmetry 13 [ Giudice, Grojean, Pomarol, Rattazzi, JHEP 0706 (2007) 045 ]

29 Effective Lagrangian in the unitary basis L = 1 2 µh µ h 1 2 m2 hh 2 1 3m 2 + d h 3 h v m 2W W µ W µ + 12 m2z Z µ Z µ h 1+2c V v +... ψ=u,d,l m ψ (i) ψ (i) ψ (i) h 1+c ψ v α em 8π 2 cww W + µνw µν + c ZZ Z µν Z µν +2c Zγ Z µν γ µν + c γγ γ µν γ µν h v + α s 8π c gg G a µνg aµν h v + c W (Wν D µ W + µν + h.c.) h v + c Z Z ν µ Z µν h v c W + c Z Z ν µ γ µν h sin θ W cos θ W tan θ W v

30 Effective Lagrangian in the unitary basis L = 1 2 µh µ h 1 2 m2 hh 2 1 3m 2 + d h 3 h v m 2W W µ W µ + 12 m2z Z µ Z µ h 1+2c V v +... ψ=u,d,l m ψ (i) ψ (i) ψ (i) h 1+c ψ v α em 8π 2 cww W + µνw µν + c ZZ Z µν Z µν +2c Zγ Z µν γ µν + c γγ γ µν γ µν h v + α s 8π c gg G a µνg aµν h v + c W (Wν D µ W + µν + h.c.) h v + c Z Z ν µ Z µν h v c W + c Z Z ν µ γ µν h sin θ W cos θ W tan θ W v +... The same effective Lagrangian describes a generic scalar h (custodial singlet) with SU(2)LxU(1)Y non-linearly realized Each term can be dressed up with Nambu-Goldstone bosons and made manifestly SU(2)LxU(1)Y invariant 14 RC, Grojean, Moretti, Piccinini, Rattazzi JHEP 1005 (2010) 089 Azatov, RC, Galloway JHEP 04 (2012) 127

31 Effective Lagrangian in the unitary basis L = 1 2 µh µ h 1 2 m2 hh 2 1 3m 2 + d h 3 h v m 2W W µ W µ + 12 m2z Z µ Z µ h 1+2c V v +... ψ=u,d,l m ψ (i) ψ (i) ψ (i) h 1+c ψ v α em 8π 2 cww W + µνw µν + c ZZ Z µν Z µν +2c Zγ Z µν γ µν + c γγ γ µν γ µν h v + α s 8π c gg G a µνg aµν h v + c W (Wν D µ W + µν + h.c.) h v + c Z Z ν µ Z µν h v c W + c Z Z ν µ γ µν h sin θ W cos θ W tan θ W v +... The only predictions of SILH (for single Higgs processes) are: (1) The deviation of each coupling from its SM value must be small ex: c V =1+ c H 2 v 2 f 2 15 (2) The following relation holds: c Zγ = c WW sin(2θ W ) c ZZ 2 cot(θ W ) c γγ 2 tan(θ W )

32 Effective Lagrangian in the unitary basis L = 1 2 µh µ h 1 2 m2 hh 2 1 3m 2 + d h 3 h v m 2W W µ W µ + 12 m2z Z µ Z µ h 1+2c V v +... ψ=u,d,l m ψ (i) ψ (i) ψ (i) h 1+c ψ v α em 8π 2 cww W + µνw µν + c ZZ Z µν Z µν +2c Zγ Z µν γ µν + c γγ γ µν γ µν h v + α s 8π c gg G a µνg aµν h v + c W (Wν D µ W + µν + h.c.) h v + c Z Z ν µ Z µν h v c W + c Z Z ν µ γ µν h sin θ W cos θ W tan θ W v +... Large deviations from SM couplings do not necessarily disprove a Higgs doublet (e.g. non-linearities can be large) In that case a test of doublet/pngb Higgs can come from double (and triple) Higgs processes 16 RC, Grojean, Moretti, Piccinini, Rattazzi, JHEP 1005 (2010) 089 RC, Grojean, Pappadopulo, Rattazzi, Thamm, work in progress

33 SO(5)/SO(4) non-linear sigma-model Enlarge SO(4)/SO(3) to SO(5)/SO(4): [ Agashe, RC, Pomarol, NPB 719 (2005) 165 ] four NG bosons form an SU(2)L doublet H(x): the Higgs is the fourth NG boson resums powers of H/f (Higgs non-linearities), while still assuming expansion in /Λ Validity: E Λ 4πf 17

34 SO(5)/SO(4) non-linear sigma-model RULES: Dress up all operators with NG bosons and build the most general Lagrangian invariant under local SO(4) transformations Building blocks: CCWZ variables U(π) =e iπ(x)/f iu(π) D µ U(π) dâµ T â + E a µ T a d µ D µπ f +... E µ A µ + 1 f 2 π D µ π +... d µ h(π,g) d µ h 1 (π,g) E µ h(π,g) E µ h 1 (π,g)+i [ µ h(π,g)]h 1 (π,g) 18 h SO(4)

35 SO(5)/SO(4) non-linear sigma-model O(p 4 ) Lagrangian SILH Lagrangian f 2 Tr(d µ d µ ) O H O + 1 =[Tr(d µd µ )] 2 O + 2 =[Tr(d µd ν )] 2 dim=8 O ± 3 =Tr (E L µν) 2 ± (E R µν) 2 O W,O B O ± 4 =Tr (E L µν ± E R µν) i[d µ,d ν ] O HW,O HB O 5 =[Tr(T a L [d µ,d ν ])] 2 [Tr(T a R [d µ,d ν ])] 2 dim=8 19 [ RC, Marzocca, Pappadopulo, Rattazzi JHEP 1110 (2011) 081; Azatov, RC, Di Iura, Galloway, work in progress ]

36 SO(5)/SO(4) non-linear sigma-model O(p 4 ) Lagrangian SILH Lagrangian f 2 Tr(d µ d µ ) O H O + 1 =[Tr(d µd µ )] 2 O + 2 =[Tr(d µd ν )] 2 dim=8 O ± 3 =Tr (E L µν) 2 ± (E R µν) 2 O W,O B O ± 4 =Tr (E L µν ± E R µν) i[d µ,d ν ] O HW,O HB O 5 =[Tr(T a L [d µ,d ν ])] 2 [Tr(T a R [d µ,d ν ])] 2 dim=8 Not included [require SO(5) breaking]: B µν B µν H H G a µνg aµν H H (H H) 3 19 [ RC, Marzocca, Pappadopulo, Rattazzi JHEP 1110 (2011) 081; Azatov, RC, Di Iura, Galloway, work in progress ]

37 O + 1 =[Tr(d µd µ )] 2 O 2 + =[Tr(d µd ν )] 2 Operators with +(-) O 3 ± =Tr (Eµν) L 2 ± (Eµν) R 2 superscript are even (odd) under a LR parity O ± 4 =Tr (E L µν ± E R µν) i[d µ,d ν ] O 5 =[Tr(T a L [d µ,d ν ])] 2 [Tr(T a R [d µ,d ν ])] 2 PLR: πî πî πˆ4 + πˆ4 î =1, 2, 3 d µ P RL d µ P LR E L µ P RL E R µ P RL P LR =

38 O + 1 =[Tr(d µd µ )] 2 O 2 + =[Tr(d µd ν )] 2 Operators with +(-) O 3 ± =Tr (Eµν) L 2 ± (Eµν) R 2 superscript are even (odd) under a LR parity O ± 4 =Tr (E L µν ± E R µν) i[d µ,d ν ] O 5 =[Tr(T a L [d µ,d ν ])] 2 [Tr(T a R [d µ,d ν ])] 2 PLR: πî πî πˆ4 + πˆ4 î =1, 2, 3 d µ P RL d µ P LR E L µ P RL E R µ P RL P LR = Notice: PLR: is an accidental invariance at O(p 2 ) 20 L (2) = f 2 4 Tr(d µd µ )

39 Part 2 The decay h Zγ in composite Higgs models [ Based on: Azatov, RC, Di Iura, Galloway, work in progress ]

40 Why looking at h Zγ Mediated by two operators of the SILH Lagrangian: O HW = ic HWg 16π 2 f 2 (Dµ H) σ a (D µ H) W a µν O HB = ic HBg 16π 2 f 2 (Dµ H) (D µ H) B µν O BB = c BB g 2 16π 2 f 2 B µνb µν H H c Zγ αem 2π γ µν Z µν h v c Zγ = c HB c HW 4 sin(2θ W ) 2 tan θ W c BB 22

41 Why looking at h Zγ Mediated by two operators of the SILH Lagrangian: only one breaks the Higgs shift symmetry O HW = ic HWg 16π 2 f 2 (Dµ H) σ a (D µ H) W a µν O HB = ic HBg 16π 2 f 2 (Dµ H) (D µ H) B µν O BB = c BB g 2 16π 2 f 2 B µνb µν H H c Zγ αem 2π γ µν Z µν h v c Zγ = c HB c HW 4 sin(2θ W ) 2 tan θ W c BB 22

42 Why looking at h Zγ Mediated by two operators of the SILH Lagrangian: only one breaks the Higgs shift symmetry O HW = ic HWg 16π 2 f 2 (Dµ H) σ a (D µ H) W a µν O HB = ic HBg 16π 2 f 2 (Dµ H) (D µ H) B µν O BB = c BB g 2 16π 2 f 2 B µνb µν H H c Zγ αem 2π γ µν Z µν h v c Zγ = c HB c HW 4 sin(2θ W ) 2 tan θ W c BB Unlike h γγ, gg, the rate h γz does not carry the extra spurion suppression: Γ(h Zγ) v 2 =1+O Γ(h Zγ) SM f 2 tests Higgs strong interactions 22

43 Why looking at h Zγ Mediated by two operators of the SILH Lagrangian: only one breaks the Higgs shift symmetry O HW = ic HWg 16π 2 f 2 (Dµ H) σ a (D µ H) W a µν O HB = ic HBg 16π 2 f 2 (Dµ H) (D µ H) B µν O BB = c BB g 2 16π 2 f 2 B µνb µν H H c Zγ αem 2π γ µν Z µν h v c Zγ = c HB c HW 4 sin(2θ W ) 2 tan θ W c BB In the SO(5)/SO(4) Lagrangian there is one operator at O(p 4 ): O HW O HB O4 =Tr (Eµν L Eµν) R i[d µ,d ν ] c Zγ = g 2 c 4 v f 2 23

44 Why looking at h Zγ Mediated by two operators of the SILH Lagrangian: only one breaks the Higgs shift symmetry O HW = ic HWg 16π 2 f 2 (Dµ H) σ a (D µ H) W a µν O HB = ic HBg 16π 2 f 2 (Dµ H) (D µ H) B µν O BB = c BB g 2 16π 2 f 2 B µνb µν H H c Zγ αem 2π γ µν Z µν h v c Zγ = c HB c HW 4 sin(2θ W ) 2 tan θ W c BB In the SO(5)/SO(4) Lagrangian there is one operator at O(p 4 ): O HW O HB O 4 ν h/f =Tr (Eµν L Eµν) R i[d µ,d ν ] γµν Z µ (v/f) c Zγ = g 2 c 4 v f 2 23

45 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h 24

46 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h at 1-loop: 1 16π 2 24

47 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h at 1-loop: 1 16π 2 IR running due to light modes 24

48 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h at 1-loop: 1 16π 2 IR running due to light modes Naively the IR contribution would dominate over the UV one 24

49 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h at 1-loop: 1 16π 2 IR running due to light modes Naively the IR contribution would dominate over the UV one However: O 4 =Tr (E L µν E R µν) i[d µ,d ν ] is odd under PLR Accidental PLR invariance of the O(p 2 ) Lagrangian forbids any running due NG bosons 24

50 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h at 1-loop: 1 16π 2 IR running due to light modes Naively the IR contribution would dominate over the UV one However: O 4 =Tr (E L µν E R µν) i[d µ,d ν ] is odd under PLR Accidental PLR invariance of the O(p 2 ) Lagrangian forbids any running due NG bosons c 4 entirely comes from UV threshold contributions 24

51 By integrating out heavy modes with mass M one expects: c 4 (m h)=c 4 (M)+ b 16π 2 log M m h at 1-loop: 1 16π 2 IR running due to light modes Naively the IR contribution would dominate over the UV one However: O 4 =Tr (E L µν E R µν) i[d µ,d ν ] is odd under PLR If PLR is an exact invariance of the strong dynamics, generating costs an additional weak spurion factor: O 4 25 c π 2 λ2 g 2 back to the estimate of γγ, gg

52 Example #1: tree-level exchange of a heavy spin1 Consider the case of one spin-1 (3,1) of SU(2)LxSU(2)R lighter than the other resonances ρ µ h(π,g)ρ µ h 1 (π,g)+[ µ h(π,g)] h 1 (π,g) ρ Λ = g f m ρ m h,m W 26

53 Example #1: tree-level exchange of a heavy spin1 Consider the case of one spin-1 (3,1) of SU(2)LxSU(2)R lighter than the other resonances ρ µ h(π,g)ρ µ h 1 (π,g)+[ µ h(π,g)] h 1 (π,g) ρ Λ = g f m ρ m ρ g ρ f g ρ <g m h,m W 26

54 Example #1: tree-level exchange of a heavy spin1 Consider the case of one spin-1 (3,1) of SU(2)LxSU(2)R lighter than the other resonances ρ µ h(π,g)ρ µ h 1 (π,g)+[ µ h(π,g)] h 1 (π,g) ρ Λ = g f m ρ m ρ g ρ f g ρ <g m h,m W Assumption: the derivative expansion of the Lagrangian is controlled by ( /Λ ): L = f 2 4 dâµdâµ 1 4gρ 2 ρ a L µν ρ a L µν + m2 ρ L 2gρ 2 L ρ a L µ E a L 2 µ + α i Q i + i 26

55 Example #1: tree-level exchange of a heavy spin1 Consider the case of one spin-1 (3,1) of SU(2)LxSU(2)R lighter than the other resonances ρ µ h(π,g)ρ µ h 1 (π,g)+[ µ h(π,g)] h 1 (π,g) ρ Λ = g f m ρ m ρ g ρ f g ρ <g m h,m W Assumption: the derivative expansion of the Lagrangian is controlled by ( /Λ ): L = f 2 4 dâµdâµ 1 4gρ 2 ρ a L µν ρ a L µν + m2 ρ L 2gρ 2 L ρ a L µ E a L 2 µ + α i Q i + i Q 1 =Tr(ρ µν i[d µ,d ν ]) Q 2 =Tr ρ µν f µν + leading operators in ( /Λ) Ex: α1( µ ρ µ ) 2 has α1 m2 ρ gρλ g 2 26

56 ρ can be integrated out by solving the e.o.m at lowest order ρ µ = E µ + O( 2 /m 2 ρ) L eff = 1 g 2 ρ E L 2 + α 2 Tr µν +(α 1 α 2 )Tr Eµν L i[d µ,d ν ] 27

57 ρ can be integrated out by solving the e.o.m at lowest order ρ µ = E µ + O( 2 /m 2 ρ) L eff = 1 g 2 ρ E L 2 + α 2 Tr µν +(α 1 α 2 )Tr Eµν L i[d µ,d ν ] O 4 generated if α i are non-vanishing ν h h γ µν γ µν Z µν α 1 α 2 Z µ 27

58 ρ can be integrated out by solving the e.o.m at lowest order ρ µ = E µ + O( 2 /m 2 ρ) L eff = 1 g 2 ρ E L 2 + α 2 Tr µν +(α 1 α 2 )Tr Eµν L i[d µ,d ν ] O 4 generated if α i are non-vanishing ν h h γ µν γ µν Z µν α 1 α 2 Z µ non-minimal couplings (arise at loop level) 27

59 The coefficients α i can be estimated by assuming the following criterion: the strength of any interactions of the resonance does not exceed up to the cutoff scale g [ Partial UV completion ] RC, Marzocca, Pappadopulo, Rattazzi JHEP 1110 (2011)

60 The coefficients α i can be estimated by assuming the following criterion: the strength of any interactions of the resonance does not exceed up to the cutoff scale g [ Partial UV completion ] RC, Marzocca, Pappadopulo, Rattazzi JHEP 1110 (2011) 081 Ex: A(ππρ (T ) ) g ρ a 2 ρ + α 1 E 2 f 2 A g for E Λ α 1 1 < 1 g g ρ gρ 2 28

61 The coefficients α i can be estimated by assuming the following criterion: the strength of any interactions of the resonance does not exceed up to the cutoff scale g [ Partial UV completion ] RC, Marzocca, Pappadopulo, Rattazzi JHEP 1110 (2011) 081 Ex: A(ππρ (T ) ) g ρ a 2 ρ + α 1 E 2 f 2 A g for E Λ α 1 1 < 1 g g ρ gρ 2 By saturating the bound: α 1,2 1 g 2 ρ g2 ρ 16π 2 28

62 The coefficients α i can be estimated by assuming the following criterion: the strength of any interactions of the resonance does not exceed up to the cutoff scale g [ Partial UV completion ] RC, Marzocca, Pappadopulo, Rattazzi JHEP 1110 (2011) 081 Ex: A(ππρ (T ) ) g ρ a 2 ρ + α 1 E 2 f 2 A g for E Λ α 1 1 < 1 g g ρ gρ 2 By saturating the bound: α 1,2 1 g 2 ρ g2 ρ 16π 2 In general: c 4 =(αl 1 α R 1 ) (α L 2 α R 2 ) 1 16π 2 28

63 Example #2: one loop of heavy fermions Let us neglect the mixings with elementary fields and work in the CCWZ basis: L = χ (γ µ i µ m) χ + ζ χγ µ id µ χ 29

64 Example #2: one loop of heavy fermions Let us neglect the mixings with elementary fields and work in the CCWZ basis: L = χ (γ µ i µ m) χ + ζ χγ µ id µ χ µ + i(e L µ + E R µ ) LR symmetric 29

65 Example #2: one loop of heavy fermions Let us neglect the mixings with elementary fields and work in the CCWZ basis: L = χ (γ µ i µ m) χ + ζ χγ µ id µ χ µ + i(e L µ + E R µ ) LR symmetric arbitrary coupling 29

66 Example #2: one loop of heavy fermions Let us neglect the mixings with elementary fields and work in the CCWZ basis: L = χ (γ µ i µ m) χ + ζ χγ µ id µ χ µ + i(e L µ + E R µ ) LR symmetric arbitrary coupling E α Only one diagram generates : O 4 O 4 =Tr (E L µν E R µν) i[d µ,d ν ] d µ d ν 29

67 Example #2: one loop of heavy fermions Let us neglect the mixings with elementary fields and work in the CCWZ basis: L = χ (γ µ i µ m) χ + ζ χγ µ id µ χ µ + i(e L µ + E R µ ) LR symmetric arbitrary coupling E α Only one diagram generates : O 4 O 4 =Tr (E L µν E R µν) i[d µ,d ν ] d µ d ν SO(5) explicit breaking from gauging entirely subsumed into the external legs 29 d µ = Z µ (v/f)+ µ π/f +...

68 Example #2: one loop of heavy fermions Let us neglect the mixings with elementary fields and work in the CCWZ basis: L = χ (γ µ i µ m) χ + ζ χγ µ id µ χ µ + i(e L µ + E R µ ) LR symmetric arbitrary coupling E α no SO(5) explicit breaking into the loop: fermions can be taken as SO(4) eigenstates Only one diagram generates : O 4 O 4 =Tr (E L µν E R µν) i[d µ,d ν ] d µ d ν SO(5) explicit breaking from gauging entirely subsumed into the external legs 29 d µ = Z µ (v/f)+ µ π/f +...

69 MODEL 1 [MCHM5]: Composite fermions in 5 s of SO(5) χ =(2, 2) (1, 1) = {χ 4, χ 1 } L = χ 4 (γ µ i µ m 4 ) χ 4 + χ 1 (γ µ i µ m 1 ) χ 1 + ζ χ 4 γ µ id µ χ 1 + h.c. 30

70 MODEL 1 [MCHM5]: Composite fermions in 5 s of SO(5) χ =(2, 2) (1, 1) = {χ 4, χ 1 } L = χ 4 (γ µ i µ m 4 ) χ 4 + χ 1 (γ µ i µ m 1 ) χ 1 There is an accidental PLR invariance in the spectrum and in the couplings + ζ χ 4 γ µ id µ χ 1 + h.c. Noticed in: Mrazek et al. NPB 853 (2011) 1 30

71 MODEL 1 [MCHM5]: Composite fermions in 5 s of SO(5) χ =(2, 2) (1, 1) = {χ 4, χ 1 } L = χ 4 (γ µ i µ m 4 ) χ 4 + χ 1 (γ µ i µ m 1 ) χ 1 + ζ χ 4 γ µ id µ χ 1 + h.c. There is an accidental PLR invariance in the spectrum and in the couplings Noticed in: Mrazek et al. NPB 853 (2011) 1 E L α E R α (2, 2) - (2, 2) (2, 2) (2, 2) d µ (1, 1) d ν d µ (1, 1) d ν 30

72 MODEL 1 [MCHM5]: Composite fermions in 5 s of SO(5) χ =(2, 2) (1, 1) = {χ 4, χ 1 } L = χ 4 (γ µ i µ m 4 ) χ 4 + χ 1 (γ µ i µ m 1 ) χ 1 + ζ χ 4 γ µ id µ χ 1 + h.c. There is an accidental PLR invariance in the spectrum and in the couplings Noticed in: Mrazek et al. NPB 853 (2011) 1 E L α same coupling E R α (2, 2) - (2, 2) (2, 2) (2, 2) d µ (1, 1) d ν d µ (1, 1) d ν 30

73 MODEL 1 [MCHM5]: Composite fermions in 5 s of SO(5) χ =(2, 2) (1, 1) = {χ 4, χ 1 } L = χ 4 (γ µ i µ m 4 ) χ 4 + χ 1 (γ µ i µ m 1 ) χ 1 + ζ χ 4 γ µ id µ χ 1 + h.c. There is an accidental PLR invariance in the spectrum and in the couplings Noticed in: Mrazek et al. NPB 853 (2011) 1 E L α same coupling E R α (2, 2) - (2, 2) (2, 2) (2, 2) c 4 =0 d µ (1, 1) d ν d µ (1, 1) d ν 30

74 MODEL 2 [MCHM10]: Composite fermions in 10 s of SO(5) χ =(2, 2) (3, 1) (1, 3) = {χ 4, χ 3L, χ 3R } L = χ i (γ µ i µ m i ) χ i i=4,3l,3r + ζ L χ 4 γ µ id µ χ 3L + ζ R χ 4 γ µ id µ χ 3R + h.c. 31

75 MODEL 2 [MCHM10]: Composite fermions in 10 s of SO(5) χ =(2, 2) (3, 1) (1, 3) = {χ 4, χ 3L, χ 3R } L = χ i (γ µ i µ m i ) χ i i=4,3l,3r + ζ L χ 4 γ µ id µ χ 3L + ζ R χ 4 γ µ id µ χ 3R + h.c. E L α E L α E L α (3, 1) (3, 1) + (2, 2) (2, 2) + (2, 2) (2, 2) ζ L ζ L d µ (2, 2) d ν d µ (3, 1) d ν d µ (1, 3) d ν 31

76 MODEL 2 [MCHM10]: Composite fermions in 10 s of SO(5) χ =(2, 2) (3, 1) (1, 3) = {χ 4, χ 3L, χ 3R } L = χ i (γ µ i µ m i ) χ i i=4,3l,3r + ζ L χ 4 γ µ id µ χ 3L + ζ R χ 4 γ µ id µ χ 3R + h.c. E L α E L α E L α (3, 1) (3, 1) + (2, 2) (2, 2) + (2, 2) (2, 2) ζ L ζ L d µ (2, 2) d ν d µ (3, 1) d ν d µ (1, 3) d ν E R α - (1, 3) (1, 3) - ζ R d µ (2, 2) ζ R d ν same diagrams as above with ( ), have the same value L R 31

77 In general: c 4 1 Λ 16π 2 (ζl 2 ζr) 2 2 log m 3L m 3R +(ζ 2 L + ζ 2 R) log m2 3R m 2 3L + ζ2 L m2 3L ζ2 R m2 3R m

78 In general: c 4 1 Λ 16π 2 (ζl 2 ζr) 2 2 log m 3L m 3R +(ζ 2 L + ζ 2 R) log m2 3R m 2 3L + ζ2 L m2 3L ζ2 R m2 3R m 2 4 P RELIMINARY A(h Zγ) hzγ A(h hzγ top Zγ) top 4 2 Blue: Red: f = 800 GeV f = 500 GeV m 3L m 3R m 3L + m 3R M 3,1 M 1,3 M 3,1 M 1,3 2 Azatov, RC, Di Iura, Galloway work in progress 4 32 FIG. 1. Ratio of the hzγ 10 hzγ top only for the one generation of the composite fermions. Blue (red) points correspond to the values of f = 800(500)GeV. During the scan we varied M (3,1),M (1,3),M (2,2) for ζ L = ζ R =1varying m 4,m 3L,m 3R between [2f,10f] between [2f,10f]. 1. Same in the two site basis

79 Conclusions Effective Lagrangian for a light Higgs useful to interpret current data and guide future searches 33

80 Conclusions Effective Lagrangian for a light Higgs useful to interpret current data and guide future searches Most important is to have power counting rules to estimate impact of new operators on physical observables 33

81 Conclusions Effective Lagrangian for a light Higgs useful to interpret current data and guide future searches Most important is to have power counting rules to estimate impact of new operators on physical observables Decay h Zγ can in principle be a probe of Higgs strong interactions, contrary to h γγ,gg 33

82 Conclusions Effective Lagrangian for a light Higgs useful to interpret current data and guide future searches Most important is to have power counting rules to estimate impact of new operators on physical observables Decay h Zγ can in principle be a probe of Higgs strong interactions, contrary to h γγ,gg In practice h Zγ is protected by PLR at leading order, same estimate as for γγ,gg follows in (motivated) models where strong dynamics is LR symmetric 33

83 Conclusions Effective Lagrangian for a light Higgs useful to interpret current data and guide future searches Most important is to have power counting rules to estimate impact of new operators on physical observables Decay h Zγ can in principle be a probe of Higgs strong interactions, contrary to h γγ,gg In practice h Zγ is protected by PLR at leading order, same estimate as for γγ,gg follows in (motivated) models where strong dynamics is LR symmetric 33 Yet scenarios with O(1) enhancements in h Zγ exist, and an experimental measurement would be important

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity 1.- Introduction. 2.- Higgs physics 3.- hhh at one loop level in SM 4.- Littlest Higgs Model with T-parity 5.- hhh at one loop in LHM with T-parity 7.- Conclusions Higgs Decay modes at LHC Direct measurement

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Non-Abelian Gauge Fields

Non-Abelian Gauge Fields Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial Many Electron Spin Eigenfunctions An arbitrary Slater determinant for N electrons can be written as ÂΦ,,,N )χ M,,,N ) Where Φ,,,N functions and χ M ) = a)b ) c N ) is a product of N orthonormal spatial,,,n

Διαβάστε περισσότερα

A manifestly scale-invariant regularization and quantum effective operators

A manifestly scale-invariant regularization and quantum effective operators A manifestly scale-invariant regularization and quantum effective operators D. Ghilencea Corfu Summer Institute, Greece - 8 Sep 2015 E-print: arxiv:1508.00595 sponsored by RRC grant - project PN-II-ID-PCE-2011-3-0607

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα